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Introduction

The comfort evaluation of sportswear has always been a 
hotspot in the study of clothing comfort. It is a result of the 
harmonious interaction between human physiological and 
psychological factors and sportswear under motion condi-
tions. However, the research on the comfort of sportswear 
mainly focuses on the analysis of the physical and basic 
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properties of clothing fabric, clothing esthetics, environ-
ment conditions, and other objective factors. With the in-
depth study of the relationship between clothing and 
human beings, the research on wearable comfort including 
psychological and physical comfort, has become more and 
more important, and people have begun to pay attention to 
comfort perception that researchers rarely get involved in. 
Comfort is a subjective reflection of the human body. Only 
when the physiological, psychological, and physical fac-
tors interact in a satisfactory manner can a comfortable 
state be achieved. The physiological reaction of human 
body is the objective reaction of human body to external 
conditions in order to achieve a steady state, but the objec-
tive response may not truly reflect people’s subjective feel-
ings, or there are some differences between subjective and 
objective responses of the human body to external condi-
tions. Human feelings cannot be measured and can only be 
judged by observing related reactions. The comfort sen-
sory of the human body and the psychological feeling of 
dressing are the main evaluation indexes describing the 
psychological reaction of human body. Hu et  al.1 com-
pared the objective measurements with subjective percep-
tions of moisture sensations during exercise, the results 
shows there existed a significant correlation between them. 
Grujic and Geršak2 designed an experiment that subjects 
wore two different models of summer clothing (women’s 
dresses and women’s blouse plus shorts) made from differ-
ent raw materials, they found that there is a relationship 
between subjective assessment of wearing comfort and 
physiological parameters (mean skin temperature, skin 
relative humidity, amount excreted in sweat absorbed in 
clothing). Suganthi and Senthilkumar3 conducted a wear 
trial for shuttle badminton players and they were ranked 
using thermal environment subjective judgment scale. 
Tadesse et  al.4 used subjective evaluation technique for 
assessing the tactile comfort of some functional textile fab-
rics. Lee et al.5 evaluated the effect of the fabric for Bikram 
yoga clothing and fit measured in clothing pressure on the 
wearer’s physiological response and perceptive sensation 
before and after exercise in hot conditions and during a 
resting period in standard conditions. They found that the 
feeling of comfort was different between before yoga and 
after resting. Teyeme et al.6 developed a questionnaire to 
evaluate the wear comfort of cycling outfits and address 
various key aspects such as tactile sensation, garment fit 
with reference to size, garment esthetics (style and shape), 
comfort (before, during, and after wearing) and overall sat-
isfaction. The results show that the sensorial comfort was 
mainly correlated with fabric properties, fit and moisture 
sensation, and the thermophysiological comfort was 
affected by the fabric properties, the test environment con-
ditions and level of activity. Wang et  al.7 examined the 
effects of the clothing insulation distribution between half-
bodies by Fanger’s predicted mean vote model. The results 
indicated that different distribution index lead different 

subjective thermal evaluations. Although many scholars 
have studied and analyzed the evaluation of human body 
comfort mainly by subjective evaluation method of com-
fort, most of them only used simple questionnaire to 
directly ask the subjects about their thermal comfort or 
pressure comfort after exercise, and then took the evalua-
tion value after exercise or the average value of all motion 
state evaluations as the basis of the whole movement com-
fort evaluation.

Sportswear affects the proprioception and changes the 
movement action, thus optimizing the technical action is 
very important. Doan et al.8 proposed how custom-fit com-
pression shorts affect athletic performance and to examine 
the mechanical properties of the shorts. Shimana et  al.9 
developed a new method for designing compression sports-
wear from the viewpoint of force which effect of these 
forces on physical exercise. Britto et al.10 analyzed the influ-
ence of a compressive garment on knee valgus during land-
ing, they found the compressive garment decreased knee 
flexion and knee valgus range of motion. Zamporri and 
Aguinaldo11 designed compression garments to prevent 
knee injuries by inducing changes in jumping mechanics. 
Silina et al.12 Pointed out coverage of close-fit garments can 
affect the athlete’s range of motion and hinder to reach the 
peak of athletic achievement, so they proposed sportswear 
should preserve athletes ergonomic and pressure comfort. 
Maleki et al.13 discussed the effect of fabric tensile property 
and garment size on the clothing pressure variation, and 
analyzed the pressure alteration during the body movement 
with various ranges. Wang14 studied the wearing comfort of 
elastic tights in riding state, measured the objective pressure 
and subjective comfort evaluation of key parts, combined 
with the skin stretch in riding state, and finally optimized its 
pattern. Therefore, the main concern of the comfort of 
sportswear should be motion comfort. Different sports 
intensity will produce different sports loads on the human 
body. In order to achieve the steady state of the body, the 
human body will have different physiological and psycho-
logical reactions, which are not limited to pressure or ther-
mal-moisture or tactile comfort, but the comprehensive 
sensory comfort of the three or the two, namely pressure 
comfort, tactile comfort and thermal-moisture comfort. 
Therefore, for motion comfort, we should not only study 
one kind of comfort, because there will be different percep-
tions in the process of sports, in order to study motion com-
fort more comprehensively, this paper directly takes 
wearable comfort as the research object, and does not spec-
ify a certain kind of comfort. In addition, the comfort caused 
by different motion loads is quite different. The comfort 
evaluation values in different movements states should not 
be simply averaged as the basis for the comfort evaluation 
of the entire motion state. The comfort in every motion state 
should be evaluated and analyzed. Moreover, the human 
body is a complex system, and there are some differences in 
perception and reaction to different motion loads among 
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different parts. Therefore, specific research is needed, that 
is, to analyze the comfort of different parts. Only by under-
standing the comfort state of different parts in every motion 
state can we better design tight-fitting sportswear, ensure the 
wearable comfort during movement and improve sports per-
formance. In a word, the overall comfort of the human body 
will be affected by the comfort of every part of the human 
body during the movement of the human body, so it is very 
necessary to study the local comfort and the overall comfort 
of the human body. The research on the comfort of tight-
fitting sportswear mostly focuses on the research of overall 
comfort, and there are few researches on the local comfort, 
as well as the research on the relationship between local 
comfort and overall comfort. Most of the existing researches 
on subjective comfort take dynamic comfort as a whole, but 
the influencing factors are different in different motion 
states, so it is unreasonable to study movements comfort as 
a whole. In order to study the influencing factors of overall 
comfort in every movement state, this paper adopts Analytic 
Hierarchy Process-Entropy weight, Fuzzy-Rough Set 
Theory, Analytic Hierarchy Process-Structural Equation 
Model (AHP-SEM), Particle Swarm Optimization-Cuckoo 
Search (PSO-CS) to optimize the influencing index of over-
all comfort in every dynamic state, and then verify Adaptive 
Network-based Fuzzy Influence System (ANFIS) model to 
obtain the best model of index optimization. This research 
will provide a more accurate design basis for the comfort of 
tight-fitting sportswear and favorable technical guidance for 
maximizing motion comfort, proposes a new research 
method and theory for improving the quality of tight-fitting 
sportswear, which is perfect to a certain extent evaluation 
standard for comfort of tight-fitting sportswear.

Experiment

Selection and training of subjects

Eight healthy young men with similar age, size, and hob-
bies were selected. They all have long-term running 
experience, were all graduate students majoring in cloth-
ing and have sufficient knowledge of ergonomics. They 
were taken to the climate room for temperature, humid-
ity, and pressure sensitivity tests. More details are as 
follows.

The room temperature of the climate chamber can be 
controlled between −5°C and 42°C with an accuracy 
±0.5°C. The relative humidity of the room can be con-
trolled between 10% and 85% with an accuracy ±5%.

Without being informed of the temperature and 
humidity of the environment, and under the control of 
the laboratory teacher in charge of the experiment, the 
temperature will increase or decrease by 2°C every 
10 min under the condition that other climatic parame-
ters such as humidity and windy speed which are 
unchanged, because every 1°C increase in air tempera-
ture, the average temperature of human skin will 
increase by 0.3246°C,15 while the temperature of 
human skin will change by 2°C, and the thermal sensa-
tion of human body will change by at least one divi-
sion.16 And ask every subject about their feelings and 
eliminate those who are insensitive to temperature. And 
then, under the condition that other climate chamber 
parameters such as temperature and windy speed which 
are unchanged, increase or decrease humidity of the 
climate chamber, ask everyone’s feelings, eliminate 
subjects who are not sensitive to humidity. And finally 
carry out pressure sensitivity testing on the remaining 
subjects.

At first, we measured the upper arm circumference of 
the remaining subjects in turn, and sewed three simple 
upper arm sleeves (their dimensions are the average upper 
arm circumference subtract 1, subtract 2, and subtract 3, 
respectively) for every subject with knitted fabric with 
good elasticity (see Figure 1). The subjects put these 
sleeves on their upper arms in turn, and do some arm lift-
ing and bending actions to test their sensitivity to pressure. 
After the test, the remaining five subjects in total were the 
participants of the whole experiment.

During the temperature, humidity, and pressure sensi-
tivity tests, in order to avoid the influence of other peo-
ple’s answers to environmental changes (herd effect), to 
ensure that when a certain subject answers to environ-
mental climate changes, the non-respondents can’t hear 
it, everyone should wear earplugs, and then ask everyone 
in turn.

And five young men (named M1, M2,.  .  .M5) were 
selected as participants in this experiment. See Table 1 for 
their body shape parameters.

Textile Fabric Size/cm width/cm

upper arm 
sleeve

elastic  
knitted 
fabric

upper arm 
circumference-1,upper arm 
circumference-2,upper arm 
circumference-3

5

 

Figure 1.  Upper arm sleeve.
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Experimental clothing

According to the average body size of five subjects, three 
tight tops (T1, T2, T3) and three tight trousers (P1, P2, P3) 
were purchased from Decathlon store (All tops’ styles are 
the same or similar and all trousers’ styles are the same or 
similar, the specific information of tops and trousers are all 
shown in Table 2). Tops and trousers should be freely com-
bined for trying-on, there are a total of nine sets of com-
bined tights, which were labeled T1P1, T2P2, T3P3, T1P2, 
T2P3, T3P1, T1P3, T2P1, T3P2. During the whole experi-
ment, five subjects wore nine sets of combined experimen-
tal tights in turn, so there were 45 questionnaires in total. 
And until every subject tried on all tight-fitting combina-
tions (tops + trousers) in turn, wearing trials can be fin-
ished. The experiment take us nearly 8 days in total to 
finish testing.

Experimental environment and requirements

(1)	 The simulation experiment was carried out in a cli-
mate room, with an average temperature of 5.1°C, 
a humidity of 78% and an average wind speed of 
19.1 km/h (realized by a high-power electric fan).

(2)	 Before participating in the experiment, the subjects 
must keep a good mood and emotion.

(3)	 Before the experiment, ensure that all experimental 
tights are restored to their original state and placed 
in the climate room for 24 h.

(4)	 Testers randomly select and try them on in turn 
without being told about the fabric of tights.

(5)	 Before the experiment, all subjects were given a 
unified explanation of the questionnaire, so as to 
ensure that all subjects have the same understand-
ing of the questionnaire content and scale, and 

Table 2.  Fabric parameters of tights.

Tight 
garment

Size Fabric component Thickness 
(mm)

Grammage 
(g m−2)

Longitudinal 
fabric density/coil 
number·(5 cm)−1

Horizontal fabric 
density/coil 
number (5 cm)−1

T1 M 91%Polyester, 9%Spandex 0.94 153.3 136.5 88.5
T2 M 75%Polyester, 25%Polyamide fiber or nylon 0.60 181.1 99.0 103.5
T3 M 70%Polyester, 26%Nylon, 4%Spandex 0.66 230.8 178.0 93.5
P1 M 91%Polyester, 9%Spandex 0.99 305.7 180.5 116.0
P2 M 72%Polyester, 28%Spandex 1.14 334.2 143.5 96.0
P3 M 87%Polyester, 13%Spandex 0.98 237.5 129.5 110.0

Table 1.  Subjects’ body parameters.

No. Age Bust 
(cm)

Waist 
(cm)

Height 
(cm)

Shoulder 
(cm)

Thigh 
girth (cm)

Arm girth 
(cm)

Upper hip 
girth (cm)

Lower hip 
girth (cm)

BMI

M1 26 100.5 83.8 176.8 42.9 61.5 33.1 91.5 100.8 23.0
M2 28 100.2 88.9 178.2 42.6 63.3 33.0 92.4 102.6 23.6
M3 28 99.8 86.6 176.5 42.7 61.2 33.3 93.1 101.4 22.5
M4 26 101.6 85.3 177.0 42.7 60.9 33.1 91.2 100.7 23.3
M5 27 99.5 84.2 176.7 42.7 61.7 33.0 91.9 101.6 22.4

BMI = Weight (kg) ÷ Height (m)2.
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eliminate the systematic error of the experiment as 
much as possible.

Experimental content

The whole test process is divided into eight test stages, 
specifically as follows: preparing (20 min, adapt to the 
testing environment) → standing (10 min) → jumping 
(10 min) → squat (10 min) → squat down (10 min, 1 min as 
a group, rest 0.5 min after a group) → jogging (10 min, 
average speed: 5.5 km/h) → walking (10 min, average 
speed: 4.3 km/h) → lifting legs (10 min, left and right legs 
are raised alternately, 1 min as a group, rest 0.5 min after a 
group) → rest (10 min) → experiment end. Among them, 
during the standing process, the subjects all have limb 
movements, such as bending over, lifting their arms hori-
zontally, lifting their arms vertically and lifting their arms 
laterally by 45°. At the end of every test phase, the staff 
shall record the subjective comfort evaluation value of 
every part and the whole.

By summing up the existing research and the authors’ 
research experience, this paper regards the shoulder, arm-
pit, bust, back, back waist, body side, upper arm (inside 
and outside upper arm), elbow, forearm (inside and outside 
forearm), hip, thigh (inside thigh, outside thigh, back 
thigh), knee, shank, abdomen, and crotch as the initial 
evaluation parts of local comfort.17–23

Evaluation scale

Comfort types of every part and overall comfort is evalu-
ated subjectively according to ISO 10551-2001 
“Ergonomics of Thermal Environment Assessing the 
Influence of Thermal Environment by Subjective Judgment 

Scale,” which means very comfortable, comfortable, nor-
mal, uncomfortable, and extremely uncomfortable, as 
shown in Figure 2.

Comfort data collection

The comfort of shoulder, armpit, bust, back, back waist, 
abdomen, body side, hip, crotch, inside upper arm, outside 
upper arm, elbow, inside forearm, outside forearm, inside 
thigh, outside thigh, back thigh, knee, shank are recorded 
as BM1, BM2,.  .  ., BM19, overall comfort is recorded as 
OM. Because there are 45 questionnaires in total, this 
paper only takes the comfort evaluation of M3 trying on 
T2P1 as an example, as shown in Table 3.

The comfort evaluation data of 45 questionnaires form 
the original data matrix according to the experimental 
stage, which are as follows: (Sstanding)45×20, (Sjumping)45×20, 
(Ssquat)45×20, (Ssquat down)45×20, (Sjogging)45×20, (Swalking)45×20, 
(Slifting legs)45×20, (Srest)45×20. For example, the data matrix of 
comfort and overall comfort evaluation of every part in the 
standing state (Sstanding)45×20：

( )tanS

S S S

S
ding

BM BM OM
M T P M T P M T P

M T P

s 45 20

1 2
1 1 1 1 1 1 1 1 1

2 2 2

× =

− − −

−
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BBM BM OM
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


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

	 (1)

Where, (Sstanding)45×20 indicates the evaluation data matrix of 
every part and overall comfort when all subjects wear nine 
sets of combined experimental tights in turn when indicat-
ing the standing state; S

M T P

BM
1 1 1

1
−

 indicates the comfort evalua-
tion value of the BM1 (i.e. shoulder) when the subject M1 
wore T1P1; S

M T P

BM
1 1 1

2
−

 indicates the comfort evaluation value 

Figure 2.  Comfort evaluation scale.

Table 3.  Comfort evaluation of M3 trying on T2P1.

Posture BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM8 BM9 BM10 BM11 BM12 BM13 BM14 BM15 BM16 BM17 BM18 BM19 OM

Standing 2.0 2.1 2.9 2.1 1.6 1.6 1.5 1.2 2.0 2.2 2.1 2.7 2.4 2.3 2.4 2.2 2.1 2.5 2.4 2.4
Jumping 2.6 2.2 3.6 2.8 2.1 3.7 2.0 2.1 2.2 2.1 2.1 2.8 2.1 2.2 2.2 2.1 2.0 2.3 3.4 3.2
Squat 2.2 2.1 2.4 2.2 2.2 2.6 2.3 2.8 2.2 1.9 1.8 1.8 1.6 1.7 2.1 2.0 2.1 2.6 2.2 2.4
Squat 
down

2.3 2.0 2.3 2.3 2.4 2.8 2.2 3.0 2.5 1.8 1.8 1.9 1.7 1.7 2.5 2.2 2.1 2.8 2.4 2.8

Jogging 3.2 3.0 4.7 4.3 3.8 3.8 4.7 3.1 4.3 2.3 2.2 3.0 2.3 2.1 4.6 3.7 3.6 3.0 3.3 4.5
Walking 3.1 3.1 4.2 4.6 3.4 3.5 3.8 3.0 4.5 2.2 2.2 2.8 2.1 2.0 4.7 3.5 3.4 3.1 3.5 4.3
Lifting legs 2.4 2.3 3.4 3.0 2.9 3.3 2.5 3.7 3.3 2.5 2.3 2.6 2.2 2.2 4.1 3.3 3.2 3.0 3.0 3.6
Rest 2.1 2.1 3.0 2.8 2.5 3.6 2.2 3.0 3.4 2.2 2.2 2.1 2.1 2.2 3.5 3.0 3.1 2.5 2.5 3.3
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of the BM2 (i.e. armpit) when subject M1 wore T1P1; 
S

M T P

OM
1 1 1−

 indicates the comfort evaluation value of the OM 
(i.e. overall comfort) when subject M1 wore T1P1; S

M T P

BM
3 3 3

1
−

 
indicates the comfort evaluation value of the BM1 (i.e. 
shoulder) when subject M3 wore T3P3.

Modeling

When evaluating tights, most people choose as many com-
fort-related indicators as possible. However, this approach 
can easily lead to the complexity of the evaluation process, 
and even affect the evaluation results of comfort. Because 
some indicators have little contribution to the evaluation of 
comfort, in order to make the evaluation results compre-
hensive and accurate, it is necessary to reduce the indica-
tors that have little impact on the evaluation results before 
the comfort evaluation, that is, dimensionality reduction. 
In this paper, AHP-Entropy weight, Fuzzy-Rough Set 
Theory, AHP-SEM, PSO-CS were used to optimize the 
part indexes, and then their optimized indexes are used as 
input parameters, and then the ANFIS model was used to 
predict the comfort of every experimental stage. In finally, 
by comparing comfort prediction values with the real val-
ues of the comfort, the better index optimization model 
and the best prediction indexes are found out.

Index preprocessing

Before using AHP-Entropy weight, Fuzzy-Rough Set 
Theory, AHP-SEM, PSO-CS to optimize the position 
index, the index dimension should be reduced, in order to 
eliminate redundant indexes and improve the accuracy of 
prediction results. Because the establishment of a good 
index system is the key to evaluate the comfort of tight-
fitting sportswear, the index system in this paper is based 
on the subjective evaluation when subjects wear it. 
Although these evaluations can effectively use the actual 
meaning of the indicators, they cause the problems of 
redundant information content and weak discrimination 
ability when screening the indicators. Therefore, the com-
plicated index layer (i.e. secondary indexes, index of every 
part of the human body) is simplified, and a small number 
of effective indexes are used to predict the overall comfort 
behavior, at the same time, the difficulty of subjective 
evaluation will be reduced.

Index dimension reduction.  Sum of Squares of Deviations is 
used for R clustering of evaluation indexes. At first, the 
Sum of Squares of Deviations of every index is calculated, 
and the final cluster number is determined with the goal of 
minimizing the Sum of Squares for Total of all clusters.

Sum of Squares of Deviations of every index:

D A A A Ai i
j

j

n

i i
j

i

i

= − −
=
∑ ( ) ( ))’

1

	 (2)

Sum of Squares for Total of all clusters:

D A A A Ai i
j

j

n

i i
j

i
i

K i

= − −
==
∑∑ ( ) ( ))’

11

	 (3)

Where, Di represents the Sum of Squares of Deviations of 
evaluation indexes of the ith clustering, n = 1, 2,.  .  ., m; Ni 
represents the number of evaluation indexes of the ith clus-
tering; Aj

i represents the normalized sample value vector 
of the jth evaluation index in the ith clustering, j = 1, 2,.  .  ., 
m; Ᾱi represents the vector of the average value of the ith 
clustering index samples.

Test of dimension reduction effect of index.  The number of R 
clustering is set subjectively. Non-parametric K-W test is 
carried out for every kind of indexes after clustering, to test 
whether there are significant differences in numerical val-
ues of similar indexes, so as to judge whether the number of 
clusters is reasonable. If the significance level value Sig. of 
every kind of index is greater than 0.05, it indicates that 
there is no significant difference in similar indexes after 
clustering, that is, the number of clusters is reasonable.

Preliminary screening of indicators.  The index information 
content in every clustering is analyzed by coefficient of 
variation. The larger the coefficient of variation of the 
index is, the stronger the information separation ability of 
the index is, and the better it can represent other indicators 
in the same category to represent the overall comfort. 
Coefficient of variation formula is as follows:

V
n

V V

Vj

ij j
i

n

ij

=

−
=
∑1
1

( ) 	 (4)

Where, Vj represents the coefficient of variation of the jth 
index in every experimental stage; n represents the number 
of objects to be evaluated; Vj  indicates the jth index of 
every test stage, and the average value of comfort evaluation 
of this part when all subjects wear nine sets of combined 
experimental tights in turn; Vij indicates the comfort evalua-
tion of the ith index and the jth try-on in every test stage.

Taking the preliminary screening results of indicators in 
the standing state as an example, the clustering process is 
illustrated. Substitute the indexes data into formula (2) and 
formula (3), and cluster the indexes data into four categories 
by SPSS 23.0. The clustering results are shown in Table 4.

It can be seen from Table 4, the K-W test Sig. Values are 
all more than 0.05. R-clustering and coefficient of variation 
index screening model were used to screen 19 standardized 
indexes data, and nine evaluation indexes were retained as 
the initial indexes of the overall comfort model (i.e. AHP-
Entropy weight, Fuzzy Rough Set Theory, AHP-SEM, 
PSO-CS) when standing, which were bust, abdomen, 



Cheng et al.	 7

elbow, inside forearm, inside thigh, back thigh, knee, shank, 
and crotch. Most of these indicators are concentrated in 
limbs. Through the coefficient of variation, it is preliminar-
ily known that the upper body comfort is mainly affected 
by bust (0.703) and abdomen (0.680), inside thigh (0.803), 
back thigh (0.779), knee (0.768) and elbow (0.722), and the 
lower body comfort is mainly affected by the crotch.

The preliminary screening results of indexes under var-
ious sports conditions were obtained, as shown in Table 5.

It can be seen from Table 5 that there are many differ-
ences in the influencing indicators of overall comfort 
under different sports conditions. When the human body is 
in the state of squat, squat down, and lifting legs, the main 
influencing factors of overall comfort are the lower limbs, 
which may be due to the large activity of the lower body. 
In the state of jogging, walking, and rest, the main factors 
affecting the overall comfort are concentrated in the upper 
body. These indexes are only preliminary optimization, 
and can’t be used as the parts to characterize the overall 
comfort of every movement state (i.e. every experimental 
stage). These preliminary screening indicators should be 
selected as the final indicators through AHP-Entropy 
weight, Fuzzy Rough Set Theory, AHP-SEM, and PSO-CS.

AHP-Entropy weight evaluation model

Analytic Hierarchy Process (AHP), as a mathematical 
method combining qualitative and quantitative analysis, 
could get the importance sequence of all indexes, that is, the 

weight sequence, by calculating the pairwise importance 
evaluation matrix of indicators at all levels. However, when 
using qualitative method to construct the evaluation matrix, 
this method is easily interfered by subjective factors, which 
will lead to the loss of decision information of the discrimi-
nation matrix and makes the discrimination result too sub-
jective.24,25 Entropy weight method could use information 
entropy to reflect the effective amount of information to 
obtain the weight of indexes, which belongs to objective 
discrimination method. Although using entropy weight 
method to discriminate and analyze indexes has a solid 
mathematical theoretical support, entropy weight method 
does not consider the influence of subjective factors on the 
analysis process, and relies too much on objective data, so 
its evaluation results are vulnerable to data fluctuations, 
which easily leads to the evaluation results being too objec-
tive. Therefore, the combination of AHP and Entropy weight 
method can effectively utilize the experience and profes-
sional knowledge of the subjects, and at the same time effec-
tively utilize the objective information of the data, thus 
avoiding judgments that are too subjective or too objective. 
Finally, the comprehensive weight of every index is obtained 
by AHP and Entropy weight method, and the index which 
has less influence on comfort evaluation is removed, so as to 
reduce the dimension of the index.

AHP-Entropy weight evaluation method has better 
advantages in evaluating fuzzy nonlinear problems. The 
basic idea of using AHP-Entropy weight method is as 
follows:

(1)	 Determine the evaluation index level of the evalua-
tion object. The evaluation subject U is divided into 
m evaluation dimensions, that is, U = {U1, U2, .  .  ., 
Um}, and secondary evaluation indicators Sσ = {Sσ1, 
Sσ2, .  .  ., Sσn} are obtained under different dimen-
sions, where n represents the number of secondary 
indicators under a specific evaluation dimension.

Table 4.  Preliminary screening of indicators in standing state.

Indexes Category K-W 
testing Sig.

Coefficient 
of variation

Y/N

BM1 2 0.579 0.108 N
BM2 1 0.635 0.551 N
BM3 1 0.635 0.703 Y
BM4 2 0.579 0.357 N
BM5 2 0.579 0.234 N
BM6 1 0.635 0.680 Y
BM7 2 0.579 0.431 N
BM8 4 0.714 0.333 N
BM9 4 0.714 0.695 Y
BM10 1 0.635 0.419 N
BM11 1 0.635 0.443 N
BM12 1 0.635 0.722 Y
BM13 2 0.579 0.698 Y
BM14 2 0.579 0.382 N
BM15 3 0.582 0.803 Y
BM16 3 0.582 0.527 N
BM17 3 0.582 0.779 Y
BM18 3 0.582 0.768 Y
BM19 3 0.582 0.651 Y

Y-Will be as evaluation indexes of the overall comfort; N-Will not be 
as evaluation indexes of the overall comfort.

Table 5.  Preliminary screening results affecting the overall 
comfort of every test stage.

Posture Preliminary screening results

Standing BM3, BM6, BM12, BM13,BM15, BM17, BM18, 
BM19

Jumping BM1, BM3, BM6, BM8, BM10, BM12, BM15, 
BM18, BM19

Squat BM5, BM6, BM7, BM8, BM15, BM18, BM19
Squat down BM5, BM6, BM7, BM8, BM15, BM17, BM18, 

BM19
Jogging BM2, BM3, BM4, BM6, BM7, BM8, BM9, 

BM10, BM15, BM18, BM19
Walking BM2, BM3, BM4, BM7, BM9, BM10, BM15, 

BM18, BM19
Lifting legs BM8, BM15, BM17, BM18
Rest BM2, BM3, BM4, BM6, BM9, BM19
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(2)	 Construct judgment matrix J.

The first-class indexes of every experimental stage (i.e. 
every motion state) are upper body, lower body, and limbs. 
Secondary-class indexes are shoulder, armpit, etc., as 
shown in Table 6. During the experiment, at the end of 
every experimental stage, the subjects were asked about the 
comfort of different parts and overall body, according to the 
subject’s feelings during wearing, the subjects compare the 
importance of every layer of comfort index in every experi-
ment state, score according to Table 7 and get the judgment 
matrix J:

The judgment matrix is obtained by pairwise compari-
son of n indexes: J = (aij)n×m, where, aij > 0, aij = 1/aji. i = 1, 
2,.  .  ., m; j = 1, 2,.  .  ., n.

(3)	 According to the definition of Entropy, the Entropy 
value and Entropy weight of evaluation index are 
determined.

H k f f

f x x

x
a a

a

j ij
i

m

ij

ij ij ij
i

m

ij
ij i

i

= −

=

=
− { }

{ }−

=

=

∑

∑
1

1

ln

/

min

max miin a

d
H

m H

i

j
j

j
i

m

{ }

=
−

−
=
∑

1

1

	 (5)

Table 6.  Body parts indexes.

The first-class indexes Secondary indexes Description

Upper body Shoulder Evaluate the 
comfort of 
every part in 
the human 
body.

Armpit
Bust
Back
Lumbar
Abdomen
Body side

Lower body Hip
Crotch

Limbs Inside upper arm
Outside upper arm
Elbow
Inside forearm
Outside forearm
Inside thigh
Outside thigh
Back thigh
Knee
Shank

Where, H j  represents the Entropy of the jth index; fij  
represents the proportion of the subjective weight of the jth 
subject to the ith index, if fij  = 0, so fij  ln fij  = 0. xij  indi-
cates the standard value of every sub-index data in index i; 
aij  indicates the data value of sub-index j in index i; 
max ai{ } , min ai{ }  respectively represent the maximum 
value and minimum value of every sub-item data value in 
index i; d j  represents the Entropy weight of the jth index.

(4)	 Determine the comprehensive weight. According 
to the subjective weight obtained by AHP and the 
objective weight obtained by entropy weight, the 
linear weighting method is adopted to obtain the 
comprehensive weight, which comprehensively 
considers the subjectivity and objectivity and has 
good convincing power.

W w wi i i= ′ + − ′′µ µ( )1 	 (6)

Where, Wi  represents the comprehensive weight; µ repre-
sents subjective and objective weight distribution value, 
µ = 0.5; wi′  represents the weight obtained by AHP, that is, 
subjective weight; wi′′  indicates the weight obtained by 
entropy weight method, that is, objective weight.

Fuzzy Rough Set theory model

Combining Fuzzy Rough Set with comprehensive evalua-
tion, the Fuzzy Rough Set theory is used to obtain the 
indexes that have great influence on the evaluation results, 
thus simplifying the evaluation process without affecting 
the evaluation results.26–29 In the Fuzzy Rough Set theory, 
the decision table is composed of conditional attributes 
and decision attributes. The decision table in this paper is 
composed of comfort evaluation of every part (i.e. the sub-
jects’ scores of every part according to their wearing feel-
ings), in which conditional attributes refer to the parts of 
the human body that affect the overall comfort, while deci-
sion attributes refer to the comfort scores of every part of 
the human body.

Specific steps:

(1)	 Construct membership function

The approximate space S = (U, R), where R is a fuzzy 
equivalent relation on the universe U. if X∈U, then X is a 
membership function of the upper RX

' and lower approxi-
mate sets RX

" of R.

δ δ δ

δ δ

R i
x U

F X

R i
x U

F

X i

X i

F x x

F x

’

’’

( ) inf max ( ), ( )

( ) inf max (

= { }
= −

∈

∈
1 )), ( )δ X x{ }

	 (7)

(2)	 Membership function of fuzzy positive domain
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For ∀ ∈x U , the membership degree of x to fuzzy positive 
domain is: δ δpos Q

x U Q
Rp X

x x( )
/

( ) sup max ( )’’= { }
∈

(3)	 Attribute dependency function

The dependence of decision attribute Q on conditional 
attribute P is

γ

δ

P

pos Q
x U QQ

x

U

p

( )

( )( )
/= ∈
∑

	 (8)

AHP-SEM model

Combining Structural Equation Modeling (SEM) with 
Analytic Hierarchy Process (AHP), the comprehensive 
weight is determined and the comfort evaluation index sys-
tem is constructed. AHP is a commonly used method of 
weight calculation subjectively. However, it is too subjec-
tive to objectively reflect the actual situation because it only 
compares two indexes of a complex problem by AHP and 
the weights are determined by expert scores. SEM method 
is a confirmatory analysis method, which can not only deal 
with the relationship among multiple variables and attach 
importance to the application of multiple statistical indica-
tors, but also reflect the weight information of indicators in 
the correlation.30–33 However, SEM METHOD overcomes 
the influence of experts’ subjective factors to a certain 
extent, but it is easily influenced by the selection of sample 
data. When the sample data is not comprehensive, the 
obtained weights may seriously deviate from reality. 
Therefore, this paper adopts the method of combining SEM 
and AHP to calculate the weight. SEM can obtain objective 
index weight information, and AHP can make full use of the 
experience and knowledge of experts in related fields to 
obtain subjective evaluation results of the importance of 
indicators.

W A Oi i i= + −λ λ( )1 	 (9)

Where, Ai indicates subjective weight; Oi represents objec-
tive weight, and the value range of λ is [0,1], and the spe-
cific value depends on the actual situation.

Table 7.  Setting the standard group of values (i.e. the scaling method of judgment matrix aij).

No. Comparison values Meaning

1 1 Two factors i have the same importance as j
2 3 Two factors i are slightly more important than j.
3 5 Two factors i compared with j, the former is obviously more important than the latter
4 7 Two factors i compared with j, the former is more important than the latter
5 9 Two factors i compared with j, the former is extremely important than the latter
6 2, 4, 6, 8 Median value of the above two adjacent judgments
Reciprocal If the ratio of importance of factor i to factor j is aij, then the ratio of importance of factor j to i is aji = 1/aij

PSO-CS model

Particle Swarm Optimization (PSO) and Cuckoo Search 
(CS) are both swarm bionic intelligent algorithms, which 
have different performances in global search ability and 
convergence speed. PSO algorithm has strong local search 
ability and easy convergence, but it is easy to fall into local 
optimum. CS algorithm has sufficient global searching 
ability, but it has weak local searching ability and is not 
easy to converge. Combining the advantages of Particle 
Swarm Optimization (PSO) and Cuckoo Search algorithm, 
a new method for optimizing comfort prediction index is 
proposed.

According to the principle that every particle in parti-
cle swarm optimization is moving toward the current 
global optimum and every particle searches for the current 
local optimum, after every Levi flight, an improved parti-
cle algorithm is used to update the result solution position 
of Levi flight, so that every bird nest in cuckoo algorithm 
can move toward the global optimum and local optimum 
just like every particle in particle swarm optimization.34–36 
The combination of PSO and CS not only keeps the ran-
domness of searching, but also reduces the blindness of 
searching and accelerates the convergence of particles to 
the optimal solution. At the same time, the random elimi-
nation mechanism of CS algorithm makes the algorithm 
escape from local optimum smoothly, thus improving the 
performance of CS algorithm. Basic flow of PSO-CS 
algorithm:

(1)	 Parameter of PSO-CS algorithm are initialized, that 
numb of nests n, the maximum iteration times Nmax, 
the discovery probability Pa, the inertia weights 
wmax, wmin, the learn factors c1, c2, and the upper lim-
its Ub and lower limits Lb of the search domain. 
Random initialization of bird’s nest position P0

t = 0, 
the initial velocity v0

t = 0 and the initial optimal indi-
vidual Pbest = P0, and the optimal target value in P0 
was defined as the initial population optimal Gbest.

(2)	 Inertial weight: ω ω ω ω= ∗max max min max-( - ) /t N . Up- 

date matrix of bird’s nest i position and particle veloc-
ity: ν ων α αi

t
i
t

best i
t

best i
tc G P c P P+ = + − + −1

1 1 2 2( ) ( ), 
P P vi
t

i
t

i
t+ += +1 1 . Where, α1, α2 are random numbers 

from 0 to 1, Pi
t + 1 is a new nest location matrix
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(3)	 The target values of P0
t and P1

t are calculated, and 
the nest positions in the top n of the target values 
corresponding to the number n of nests are selected 
to form P2

t. Every nest in P2
t is eliminated with a 

random probability of uniform distribution, and the 
random elimination probability matrix C = (C1, C2, 
.  .  . Cn) of every nest is compared with the discov-
ery probability Pa.

P
P ifC Pa

L U L randn else
i

i i

b b b
3,
t 3,

t

n
=

≤
+ − ∗







,

( ) ( , ),1
	 (10)

Where, Ub, Lb are the upper and lower bounds of optimiza-
tion; randn(n,1) is a normal distribution with mean value n 
and variance value 1.

(4)	 Calculate the target values of P2
t and P3

t, select the 
bird’s nest positions in the top n of the target values 
corresponding to the number of bird’s nests n to 

form P4
t, extract the bird’s nest position with the 

best quality in P4
t, and record it as Zbest, judge 

whether it meets the iteration times or error require-
ments, if so, stop and output the optimal solution; 
Otherwise, compare P4

t with P0
t, update individual 

best Pbest and group best Gbest, make P4
t = P0

t, 
t = t + 1, go to step (2) and enter the next iteration.

Results and discussion

Optimization results of different models

The overall comfort impact indicators of every test stage 
(i.e. different exercise states) are screened according to the 
weight, as shown in Table 8.

It can be seen from Table 8 that: (1) There are some dif-
ferences in the indicators that affect the overall comfort in 
different sports states, that is, the comfort in different parts 
is quite different, mostly due to the different senses of ther-
mal and moisture, pressure or tactile in different parts.

Table 8.  Comparison of optimization results of indicators.

Posture AHP-Entropy weight Fuzzy-Rough Set Theory AHP-SEM PSO-CS

Standing BM3 (0.102), BM6 (0.021), 
BM12 (0.154)*, BM13 (0.126), 
BM15 (0.156)*, BM17 (0.063), 
BM18 (0.209)*, BM19 (0.168)*

BM3 (0.250)*, BM6 (0.040), 
BM12 (0.097), BM13 (0.107), 
BM15 (0.246)*, BM17 (0.043), 
BM18 (0.165)*, BM19 (0.054)

BM3 (0.050), BM6 (0.375)*, 
BM12 (0.231)*, BM13 (0.016), 
BM15 (0.038), BM17 (0.072), 
BM18 (0.048), BM19 (0.169)*

BM3*, BM12*, 
BM15*, BM18*

Jumping BM1(0.021), BM3(0.243)*, 
BM6 (0.179)*, BM8 (0.156)*, 
BM10 (0.040), BM12 (0.027), 
BM15 (0.045), BM18 (0.011), 
BM19 (0.277)*

BM1 (0.060), BM3 (0.082), 
BM6 (0.231)*, BM8 (0.038), 
BM10 (0.098), BM12 (0.172)*, 
BM15 (0.106), BM18 (0.019), 
BM19 (0.193)*

BM1 (0.036), BM3 (0.164)*, 
BM6 (107), BM8 (0.082), BM10 
(0.110), BM12 (0.050), BM15 
(0.203)*, BM18 (0.154)*, BM19 
(0.093)

BM3*, BM6*, BM19*

Squat BM5 (0.017), BM6 (0.382)*, 
BM7 (0.046), BM8 (0.261)*, 
BM15 (0.072), BM18 (0.065), 
BM19 (0.157)*

BM5 (0.072), BM6 (0.170)*, 
BM7 (0.248)*, BM8 (0.101), 
BM15 (0.106), BM18 (0.183)*, 
BM19 (0.119)

BM5 (0.226)*, BM6 (0.082), 
BM7 (0.165)*, BM8 (0.373)*, 
BM15 (0.066), BM18 (0.085), 
BM19 (0.002)

BM6*, BM8*, BM18*

Squat 
down

BM5 (0.034), BM6 (0.270)*, 
BM7 (0.017), BM8 (0.332)*, 
BM15 (0.023), BM17 (0.029), 
BM18 (0.281)*, BM19 (0.014)

BM5 (0.126), BM6 (0.013), 
BM7 (0.100), BM8 (0.202)*, 
BM15 (0.069), BM17 (0.237)*, 
BM18 (0.101), BM19 (0.151)*

BM5 (0.081), BM6 (0.188)*, 
BM7 (0.034), BM8 (0.185)*, 
BM15 (0.112), BM17 (0.109), 
BM18 (0.170)*, BM19 (0.131)

BM6*, BM8*, BM15*, 
BM18*

Jogging BM2 (0.059), BM3 (0.172)*, 
BM4 (0.243)*, BM6 (0.020), 
BM7 (0.042), BM8 (0.026), 
BM9 (0.139), BM10 (0.055), 
BM15 (0.213)*, BM18 (0.029), 
BM19 (0.012)

BM2 (0.124), BM3 (0.118), 
BM4 (0.075), BM6 (0.120), 
BM7 (0.045), BM8 (0.102), 
BM9 (0.008), BM10 (0.153)*, 
BM15 (0.164)*, BM18 (0.028), 
BM19 (0.063)

BM2 (0.070), BM3 (0.023), BM4 
(0.018), BM6 (0.035), BM7 
(0.053), BM8 (0.244)*, BM9 
(0.038), BM10 (0.138), BM15 
(0.238)*, BM18 (0.106), BM19 
(0.036)

BM3*, BM4*, BM7*, 
BM9*, BM15*

Walking BM2 (0.171)*, BM3 (0.084), 
BM4 (0.199)*, BM7 (0.011), 
BM9 (0.179)*, BM10 (0.019), 
BM15 (0.201)*, BM18 (0.015), 
BM19 (0.121)

BM2 (0.027), BM3 (0.011), 
BM4 (0.123), BM7 (0.196)*, 
BM9 (0.167)*, BM10 (0.096), 
BM15 (0.100), BM18 (0.191)*, 
BM19 (0.088)

BM2 (0.196)*, BM3 (0.104), 
BM4 (0.180)*, BM7 (0.113), 
BM9 (0.069), BM10 (0.029), 
BM15 (0.092), BM18 (0.159)*, 
BM19 (0.057)

BM4*, BM9*, BM15*, 
BM19*

Lifting 
legs

BM8 (0.208)*, BM15 (0.419)*, 
BM17 (0.139), BM18 (0.233)*

BM8 (0.147), BM15 (0.295)*, 
BM17 (0.447)*, BM18 (0.111)

BM8 (0.389)*, BM15 (0.037), 
BM17 (0.285)*, BM18 (0.290)*

BM8*, BM15*

Rest BM2 (0.344)*, BM3 (0.123), 
BM4 (0.310)*, BM6 (0.156)*, 
BM9 (0.045), BM19 (0.022)

BM2 (0.026), BM3 (0.251)*, 
BM4 (0.054), BM6 (0.210)*, 
BM9 (0.221)*, BM19 (0.238)*

BM2 (0.212)*, BM3 (0.103), 
BM4 (0.216)*, BM6 (0.183)*, 
BM9 (0.122), BM19 (0.164)*

BM4*, BM6*, BM9*

“*” are the final indexes to characterize the overall comfort.
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(2)	 There are some differences in the optimization 
indexes of AHP-entropy weight, fuzzy rough set 
theory, AHP-SEM, and PSO-CS, among which, the 
optimization indexes of AHP- entropy weight and 
PSO-CS are similar, which shows that AHP-
entropy weight, as an evaluation model combining 
subjectivity and objectivity, and intelligent model 
(PSO-CS) are similar to the overall comfort index 
optimization.

(3)	 Observing the four models at every experiment 
state, the optimization level of the indexes when 
standing is similar, and most of the indexes opti-
mized by the four models belong to limbs, which 
shows that the comfort of limbs has the greatest 
influence on the overall comfort when standing. 
Under other conditions, there are great differences 
in the impact indicators.

Simulation results verification and analysis

To verify the effectiveness of AHP-Entropy weight, Fuzzy 
Rough Set theory, AHP-SEM and PSO-CS in optimizing 
indexes, the indexes of every experimental state optimized 
by them are taken as input parameters and the corresponding 
overall comfort is taken as output parameters, and the predic-
tion is made by the Adaptive Network-based Fuzzy Influence 
System (ANFIS) model. And then compare the prediction 
values with the real overall comfort evaluation values.

Model for verifying simulation results.  In this paper, Adaptive 
Network-based Fuzzy Influence System (ANFIS) was 
used to test the validity of optimization indexes of every 
model. Adaptive Network-based Fuzzy Influence System 
(ANFIS), in fact, is also an artificial neural network model. 
ANFIS combines the advantages of neural network and 
fuzzy system, and makes up for the shortcomings of them. 
It can extract fuzzy rules from data sets well, adjust corre-
sponding parameters by learning, simulate ideal input-out-
put correspondence, and complete fuzzy classification 

work well.37–40 The biggest feature of ANFIS model is 
modeling based on data, in which fuzzy membership func-
tion and fuzzy rules are obtained by learning input data. In 
a word, ANFIS network is an optimized model and a com-
bined model. Fuzzy control theory can enhance the reason-
ing ability of neural network and increase the accuracy of 
the model, which can effectively improve the problem that 
the traditional artificial neural network is easy to fall into 
local minimum. The ANFIS model structure is shown in 
Figure 3.

Layer 1: Fuzzy segmentation layer. The nodes in this 
layer are all adaptive nodes, and their node functions are 
shown in Formula (11).
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Where, I1, I2 are the input of node i; Ai, Bi are the “identifi-
cation language” related to the node function value, such 
as “comfortable” or “uncomfortable”; O1,i is a membership 
function, which represents the degree to which I1 and I2 
satisfy Ai and Bi, and usually adopts Gaussian function or 
bell function.

Layer 2: Rule reasoning layer. In Figure 3, ∏ is used to 
represent the nodes of this layer, that is, the input signals 
are multiplied and the output is

O w I I ii i A Ai i2, ( ) ( ), ,= = ⋅ =θ θ1 2 1 2 	 (12)

Where, wi represents that output signal, which is the 
expression of the excitation intensity of I1and I2 under a 
certain rule.

Layer 3: Fuzzy layer. In the figure, the node of this 
layer is represented by N, and the ith node calculates the 
ratio of wi of the ith rule to the sum of w values of all rules.

O w
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w w
ii i

i
3

1 2
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= 	 (13)

Figure 3.  ANFIS model structure.
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Layer 4: Deblurring layer. For the adaptive node for 
parameter learning, the output node function is expressed as

O w f w p I q I ri i i i i i i4, ( )= = + +1 2 	 (14)

Where, pi, qi, ri are parameters learned in fuzzy rules.
Layer 4: Output layer. Marked by symbol Σ, the nodes 

are fixed, and the total output of the system is obtained
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Establishing steps of ANFIS model:

①	 Select sample data.

②	 �The sample data are divided into two parts: training 
data and testing data. In this paper, the comfort 
questionnaires of M3 trying on T2P1, M2 trying on 
T1P1, M2 trying on T3P2 are randomly selected as 
the testing data, and others as the training data.

③	 Set model training parameters.

④	 Training model with training set data.

⑤	 Verify model.

Analysis of prediction results.  The prediction results of the 
overall comfort based on AHP-Entropy weight, Fuzzy 
Rough Set theory, AHP-SEM, and PSO-CS are shown in 
Table 9, and the error of the prediction results is shown in 
Figure 4. The smaller the error between the real value and 
the predicted value of the overall comfort is, the better the 
prediction index of the overall comfort is, that is, the model 
of the optimization index is better.

It can be seen from Table 9 and Figure 4 that the mini-
mum average absolute error of the overall comfort of the 
four mixed models is 0.1485, that is, the maximum accu-
racy of the predicted value and the true value is about 85%. 
The maximum average absolute error is 0.3473, that is, the 
minimum accuracy between the predicted value and the 
true value is about 65%, the prediction level is higher.

The prediction performances of AHP-Entropy weight-
ANFIS, Fuzzy-Rough Set Theory-ANFIS, AHP-SEM-
ANFIS, and PSO-CS-ANFIS are quite different in every 
test stage, which shows that AHP-Entropy weight, fuzzy 
rough set theory, AHP-SEM, and PSO-CS have advantages 
and disadvantages in optimizing indexes. For example, as 
far as the predicted results and errors of overall comfort in 
the standing state are concerned, according to the average 
absolute errors, that is, the average absolute errors between 
the real and predicted values of overall comfort of M3 trying 
on T1P1, M2 trying on T1P1, and M2 trying on T3P2. It can 
be known that PSO-CS-ANFIS (mean absolute error: T
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0.2183) < AHP-Entropy weight-ANFIS (mean absolute 
error: 0.2274) < AHP-SEM-ANFIS (mean absolute error: 
0.4585) < Fuzzy-Rough Set Theory-ANFIS (mean absolute 
error: 0.5123). It shows that there are big problems in the 
indexes optimized by Fuzzy-Rough Set Theory. The accu-
racy of the predicted value and the true value of PSO-CS-
ANFIS and AHP-Entropy weight-ANFIS is about 78%, and 
the prediction ability can be accepted. For the study of over-
all comfort in the standing state, we can use PSO-CS-ANFIS 
or AHP-Entropy weight-ANFIS model to predict, that is, we 
can use PSO-CS or AHP-Entropy weight optimization 
index to study the overall comfort in this state, that is, the 
best index combination to predict the overall comfort in the 
standing state is: group a: BM3 (bust), BM12 (elbow), 
BM15 (inside thigh), BM18 (knee); group b: BM12 (elbow), 
BM15 (inside thigh), BM18 (knee), BM19 (shank).

In jumping state, the average absolute errors of the four 
models are AHP-Entropy weight-ANFIS (average abso-
lute error: 0.1372), fuzzy rough set theory-ANFIS (aver-
age absolute error: 0.3022), AHP-SEM-ANFIS (average 
absolute error: 0.5705), PSO-CS-ANFIS (average abso-
lute error). It shows that the index optimized by PSO-CS-
ANFIS has the highest accuracy in predicting the overall 
comfort in this state, that is, BM3 (bust), BM6 (abdomen), 
and BM19 (shank) are the best indexes for predicting the 
overall comfort in jumping state.

In squat state, the average absolute errors of the four 
models are AHP-Entropy weight-ANFIS (average abso-
lute error: 0.1894), fuzzy rough set theory-ANFIS (aver-
age absolute error: 0.2035), AHP-SEM-ANFIS (average 
absolute error: 0.1535), PSO-CS-ANFIS (average abso-
lute error). Although the average absolute error of AHP-
SEM-ANFIS is the smallest, the average absolute error of 
PSO-CS-ANFIS is very close to it, so the optimization 
indexes of AHP-SEM and PSO-CS can be used to predict 

the overall comfort of this state, that is, group a(BM5 
(lumbar), BM7 (body side), BM8 (hip)) and group b(BM6 
(abdomen), BM8 (hip), BM18 (knee)), respectively.

In squat down state, according to the average of absolute 
errors of the four models, we can know that the best models 
for index optimization are AHP-Entropy weight (average 
absolute error: 0.1527) and PSO-CS-ANFIS (average abso-
lute error: 0.1772), that is, the best index combination for 
predicting the overall comfort in this state are respectively 
group a(BM6 (abdomen), BM8 (hip), BM18 (knee)) and 
group b(BM6 (abdomen), BM8 (hip), BM15 (inside thigh), 
BM18 (knee)).

In the jogging state, the average absolute errors of the 
four models are AHP-Entropy weight-ANFIS (average 
absolute error: 0.1217), AHP-SEM-ANFIS (average abso-
lute error: 0.0945), PSO-CS-ANFIS (average absolute 
error: 0.1399), and the optimization indexes of these three 
models can be used as a whole in this state, but the indexes 
optimized by AHP-SEM are the best, namely BM8 (hip) 
and BM15 (inside thigh).

In the walking state, the minimum average absolute error 
is 0.1827, which belongs to AHP-Entropy weight-ANFIS 
model, that is, the best indicators for predicting the overall 
comfort in this state are BM2 (armpit), BM4 (back), BM9 
(crotch), and BM15 (inside thigh). At this time, the average 
absolute error of PSO-CS-ANFIS is 0.2800, and the accu-
racy rate is 72%, which is an acceptable prediction level.

In the lifting legs state, the best model for predicting the 
overall comfort is PSO-CS-ANFIS (average absolute 
error: 0.1638), that is, the indexes optimized by PSO-CS 
are most suitable for predicting the overall comfort in the 
lifting legs state, and the indexes are BM8 (hip) and BM15 
(inside thighs).

In the rest state, the better models for predicting overall 
comfort are PSO-CS-ANFIS (mean absolute error: 0.1471) 

Figure 4.  Comparison of error values of overall comfort prediction results.
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and AHP-Entropy weight-ANFIS (mean absolute error: 
0.1848), that is, the indexes optimized by PSO-CS or AHP-
Entropy weight model are suitable for predicting overall 
comfort in rest state, and the indexes are respectively: group 
a: BM4 (back), BM6 (abdomen), BM19 (shank); group b: 
BM2 (armpit), BM4 (back), BM6 (abdomen).

Generally speaking, the optimal prediction model of every 
motion state contains PSO-CS-ANFIS model, so the optimi-
zation index of PSO-CS could be used as the prediction of the 
overall comfort of all States. Secondly, AHP-Entropy weight-
ANFIS model can be used to predict the overall comfort 
under most motion conditions. At the same time, PSO-CS and 
AHP-Entropy weight could be used to optimize the human 
body part indexes that affect the overall comfort.

Conclusion

According to the prediction results of every experiment 
state (i.e. standing, jumping, squat, squat down, jogging, 
walking, lifting legs, rest), Fuzzy-Rough Set Theory-
ANFIS prediction model has the worst effect (i.e. the 
indexes optimized by Fuzzy-Rough Set Theory are the 
worst), and the other three models have their own advan-
tages in every experiment state. Among them, PSO-CS-
ANFIS model and AHP-Entropy weight-ANFIS model 
perform well, that is, PSO-CS and AHP-Entropy weight 
can be used to optimize the overall comfort prediction 
index in every experiment state.

There are great differences in the influence indexes of 
overall comfort in every movement state, that is, there are 
great differences in the comfort of human body parts. 
Therefore, when studying dynamic comfort, it is best to 
subdivide the movements and study the comfort in every 
movement state, which is not suitable for studying the 
whole movement state as an entirety.

In short, this study proposed a model which can obtain 
the comfort of every motion state without wearing experi-
ments, which improves the research efficiency of the com-
fort of tights, and provides more accurate design basis for 
the comfort of tights and favorable technical guidance for 
maximizing the sports comfort, and finally realized that 
wearers could gain a better sense of movement when wear-
ing tights and then improve their sport performance. The 
research methods of this study can be used to predict the 
comfort of every movement in other sports events.
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