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Abstract 

MED13L syndrome is a rare congenital disorder comprising moderate intellectual disability, 

hypotonia and facial dysmorphism. Whole exome or genome sequencing in patients with non-

specific neurodevelopmental disorders leads to identification of an increasing number of 

MED13L missense variations of unknown signification. The aim of our study was to identify 

relevant annotation parameters enhancing discrimination between candidate pathogenic or 

neutral missense variations, and to assess the performance of seven meta-predictor 

algorithms: BayesDel, CADD, DANN, FATHMM-XF, M-CAP, MISTIC and REVEL for the 

classification of MED13L missense variants. Significant differences were identified for five 

parameters: global conservation through verPhyloP and verPhCons scores; physico-chemical 

difference between amino acids estimated by Grantham scores; conservation of residues 

between MED13L and MED13 protein; proximity to phosphorylation sites for pathogenic 

variations. Among the seven selected in-silico tools, BayesDel, REVEL, and MISTIC 

provided the most interesting performances to discriminate pathogenic from neutral missense 

variations. 

Individual gene parameter studies with MED13L have provided expertise on elements of 

annotation improving meta-predictor choices. The in-silico approach allows us to make 

valuable hypotheses to predict the involvement of these amino acids in MED13L pathogenic 

missense variations. 
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Introduction 

In-silico predictive algorithms are now widely used for annotation of punctual variation in 

gene sequencing analysis. The American College of Medical Genetics and Genomics edited 

guidelines for proper use of these in-silico predictors [1]. Initially, first prediction strategies 

were based on either sequence/evolutionary conservation, or protein sequence, or supervised 

learning methods [2]. More complex approaches are now developed by combining multiple 

single tools [3]. These combinations, which define meta-predictors algorithms, often offer a 

continuous scoring rather than a 2-side classification. The vast majority of the studies 

compare the precision, accuracy and efficiency of in-silico tools on large multigene variation 

datasets such as the ClinVar database [4], and rarely focus on a specific gene for the 

classification of missenses variants. 

The MED13L syndrome is an autosomal dominant syndrome due to heterozygous pathogenic 

variations within MED13L, comprising moderate intellectual disability, hypotonia, and facial 

dysmorphism [5–10]. MED13L encode the subunit 13-like protein, member of the CDK8 

module kinase, part of the mediator complex [11]. The first description of pathogenic 

variations involved either de novo heterozygous nonsense, or frameshift, or intragenic 

microdeletion assumed to lead to haploinsufficiency [5,7,8]. Interpretations of protein-

truncating variations or recurrent missense variations identified in patients with typical 

phenotype will not cause any particular difficulties. However, whole exome or genome 

sequencing in patients with non-specific neurodevelopmental disorders leads to identification 

of an increasing number of MED13L missense variations of unknown signification [9,10,12–

22]. 

The aim of our study was to identify relevant annotation parameters enhancing discrimination 

between candidate pathogenic or neutral missense variations, and to assess the performance of 

seven meta-predictor algorithms (BayesDel [23], CADD [3], DANN [24], FATHMM-XF 
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[25], M-CAP [26], MISTIC [27] and REVEL [28]) for the classification of known MED13L 

missense pathogenic variants. 

 

Methods 

Variation data and annotation 

All possible combinations of MED13L missense variations were generated, corresponding to 

14,545 different nucleotide substitutions. Missense variations were annotated with Ensembl 

Variant Effect Predictor (VEP), using genome assembly GRCh37, and with Combined 

Annotation Dependent Depletion (CADD), using version 1.3 [3,29]. We considered data 

parameters extracted from VEP and CADD annotations. Molecular anomalies with reported 

evidence of a splice defect, substitutions in the first or last three bases of each exon, were 

excluded from the analysis to prevent the pathogenicity classification associated with splice 

effect rather than pathogenicity due to an amino-acid substitution (n=398, 2.73%). 

A comparison of conserved residues between MED13L and MED13 proteins was performed 

using Clustal Omega alignment with canonical transcript sequence of MED13L (Q71F56) and 

MED13 (Q9UHV7) obtained from Uniprot. Clustering was performed in R (v4.0.1). For each 

aligned amino acid, a score ranging from 0 to 1 was applied, according to the conservation of 

residues between MED13L and MED13. Fully conserved residues were annotated with the 

higher score “1”. Substitutions between two residues belonging to a group with strongly 

similar properties were annotated “0.5” and “0.25” respectively for groups with weakly 

similar properties. An unconserved substitution in the Gonnet PAM 250 matrix between 

MED13L and MED13 was annoted “0”. Distance to phosphorylation sites of each neutral or 

pathogenic missense on MED13L was estimated from PhosphoSite database on the protein 

model THRAP2, the previous name of MED13L [30]. 
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Variations were classified according to ACMG 2015 criteria [1]. Frequencies of known 

reported alleles were considered using gnomAD, BRAVO, FREXAC and HGVD databases. 

Likely pathogenic and pathogenic variations described in the MED13L syndrome were 

identified in ClinVar, DECIPHER, HGMD and LOVD databases. Likely pathogenic and 

pathogenic variations previously reported were merged in the pathogenic missense group. 

Benign and likely benign missenses reported in ClinVar and LOVD, and missense variations 

above or equal to one allele in gnomAD control subpopulation, were merged in the 

control/neutral group. 

 

Algorithms 

Seven in-silico combined tools were used to analyze all the MED13L missense variants. All 

algorithms and methodology associated with the prediction tools are described in the 

reference articles. BayesDel is a deleteriousness measure, combining multiple annotation 

scores including PolyPhen2, SIFT, FATHMM, LRT, Mutation Taster, Mutation Assessor, 

PhyloP, GERP++, Siphy, and the minor allele frequency across populations [23]. BayesDel 

gave an important place to conservation measured and population frequency including ExAC 

[31]. CADD, Combined Annotation-Dependent Depletion, establishes a continuous Phred-

like score from conservation matrix (GERP, PhastCons, PhyloP), functional annotations and 

protein-level scores (Grantham, SIFT, PolyPhen2) [3]. DANN, for deleterious annotation of 

genetic variants using neutral networks, is based on the same training data as CADD, but used 

a deep neural network rather a linear kernel support vector machine to score the variations 

[24]. FATHMM-XF scores are obtained from a supervised machine learning model using 

features from 27 data sets [25]. M-CAP, standing for Mendelien Clinically Applicable 

Pathogenicity Score, is notably based on pathogenicity scores as SIFT, PolyPhen2 and CADD 

[26]. MISTIC, for MISsense deleTeriousness predICTor, combines a soft voting system based 
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on Random Forest and Logistic Regression [27]. REVEL, for Rare Exome Variant Ensemble 

Learning, combines 9 individual tools: MutPred, FATHMM, VEST, PolyPhen2, SIFT, 

PROVEAN, Mutation Assessor, Mutation Taster and LRT, and 4 conservation scores: GERP, 

SiPhy, PhyloP and PhastCons [28]. To identify thresholds for MED13L gene variations for all 

tools, a logistic regression has been performed with OptimalCutpoints R package, with default 

parameters [32]. 

 

Performance comparison 

For all algorithms, we calculated the overall accuracy (ACC), specificity, sensitivity and area 

under curve (AUC) from Receiver operating characteristics (ROC) curves. The positive 

predictive values (PPV) and the negative predictive values (NPV) were determined for each 

algorithm. The Matthews correlation coefficient (MCC) was used to provide a balanced 

comparison between in-silico tools. Comparison of pathogenic and neutral classifications was 

performed with the following R-packages: rstatix, mltools and pROC. 

 

 

Results 

Among the 14,545 missense variations, 38 were classified as pathogenic or likely pathogenic 

(0.26%) and 495 as benign or likely benign (3.42%). The descriptions of missenses are listed 

in supplemental table 1.  

 

Comparison of annotation parameters 

To identify relevant parameters, a comparison of 19 scores provided by VEP, and based on 

conservation, functional and protein-level annotations, was performed. Comparisons of 

features between the 495 control variations and the 38 pathogenic variations with statistically 
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significant differences were described Table 1. Statistically significant differences were 

identified for five parameters. Mean degree of physicochemical difference between pairs of 

amino acids estimated by Grantham scores was estimated at 58.00 [0.00 – 215.00] and at 

94.50 [0.00 – 194.00] respectively for neutral and pathogenic variations (p=5.31e-4, Wilcoxon 

test). Significant differences in side chain atomic composition, polarity and size between the 

two amino acids were associated with missense pathogenic variations. 

Analysis of conservation across the entire length of the MED13L protein was then performed. 

MED13L encodes a conserved protein associated with a global verPhyloP score of 3.30 [-2.87 

– 6.53] over the entire protein sequence. Higher level of amino-acid and nucleotide 

conservations were observed for pathogenic variations compared to neutral variations with 

mean vertebrate verPhyloP scores respectively of 5.19 [0.17 – 6.17] and 3.04 [-0.84 – 6.32] 

(p=1.14e-8), as well as for verPhCons with mean scores of 1.00 [1.00 – 1.00] and 0.93 [0.00 – 

1.00] (p=5.17e-3, Wilcoxon test). Therefore, MED13L appeared to be a conserved protein in 

which the more highly conserved amino acids could be involved in pathogenic variations. 

Then, we compared the conservation between both MED13 and MED13L paralogs. Sequence 

alignments using Clustal Omega analysis allowed to identify a homology rate of 54.80% 

between the paralogs, and a high degree of conservation of amino-acids involved in 

pathogenic variations versus neutral variations: median values of 1.00 vs 0.50 (p=2.95e-5, 

Wilcoxon test). Only 4 out of the 38 pathogenic missenses involved “unconserved” amino 

acids in MED13 protein: p.(Pro573Leu), p.(Leu844Ile), p.(Ser878Phe) and p.(Pro879Leu). In 

MED13 protein sequence, the four amino acids corresponded respectively to Thr551, Ser810, 

Phe847, and Ser848 residues. 

Then, we analyzed the proximity with a phosphorylation site for each missense variant. 

Indeed, phosphodegron motifs were previously identified in MED13L and MED13, and were 

found to be critical for their degradation and dissociation from the CDK8-module [33,34]. 
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Pathogenic missense variations were significantly closer to phosphorylation sites than neutral 

missenses: 17.50 [0.00 – 263.00] vs 30.00 [0.00 – 321.00] (p=2.95e-3, Wilcoxon test). Twenty 

out of the 38 (52.6%) pathogenic missenses were identified within ±20 amino acids of a 

phosphorylation site. 

 

Evaluation of in-silico classification tool performance 

As a first step, optimal cut-offs were determined for the seven in-silico tools which provide a 

global raw value. Using OptimalCutpoints R package, the thresholds were defined for 

BayesDel, CADD, DANN, FATHMM-XF, M-CAP, MISTIC and REVEL (Table 2). The 

performances of the in-silico evaluations were also described in Table 2. The ROC curves of 

the individual in-silico combined tools for MED13L showed that MISTIC presented the 

highest AUC with a 0.902 value (Figure 1A). The ACC scores ranked MISTIC, BayesDel and 

REVEL as the best tools with respectively values of 0.912, 0.902 and 0.886. Based on the 

MCC scores, MISTIC, BayesDel and REVEL provided the best performances with 

respectively values of 0.533, 0.492 and 0.484. Among the seven in-silico tools, MISTIC, 

REVEL ,and BayesDel provided the most interesting performances to discriminate pathogenic 

from neutral missense variations.  

 

Concordance analysis 

Considering all reported pathogenic missense variations, we have assessed the level of 

correlation of all predictors. Only 18 out of the 38 pathogenic missense variations were 

classified as deleterious by all tools (47.4%). Twenty-five out of the 38 variations were 

considered as deleterious for at least 6 tools (65.8%). The correlations of the seven in-silico 

tools were then compared to predict the pathogenic and the neutral missense classifications. 

For pathogenic classifications, the strongest correlation was observed between BayesDel and 
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REVEL (R2 = 0.872) (Figure 1D). For the neutral group, the strongest correlation was also 

observed between BayesDel and REVEL (R2 = 0.682) (Figure 1C). Indeed, combination of 

BayesDel, REVEL and MISTIC showed the highest rate of correct prediction targeting 

pathogenic variations.  

 

 

Discussion 

Our study evaluated the performances of seven in-silico tools in order to evaluate MED13L 

missense classification, by targeting the most discriminant parameters. The ACMG/AMP 

guideline included the concordance of computational in-silico predictive programs in the 

criteria of variation classification, either with multiple lines of computational evidence for a 

deleterious effect on the gene, as PP3 criteria, or with multiple lines of computational 

evidence suggesting no impact on gene, as BP4 criteria [1]. When first reported MED13L 

pathogenic variations corresponded to de novo truncating variations as well as nonsense, 

frameshift, or intragenic deletions [5,7,8], the most recent now involve an important number 

of missense variations [9,10,35]. As the description of pathogenicity mechanisms in MED13L 

syndrome is still ongoing, the knowledge of in-silico missense annotations could improve 

performance in data interpretations, since computational parameters were routinely used in 

sequencing data analysis. 

 

Based on all parameters evaluated, the verPhyloP scores have been considered as the most 

discriminant parameters with scores of 5.19 for pathogenic and 3.04 for neutral missenses 

(p=1.14e-8). The verPhyloP scores measured the evolutionary conservation at individual 

alignment sites in vertebrae [36]. MED13L is considered as a highly conserved protein across 

species with a global verPhyloP conservation score of 3.30 [11], and is involved in the 
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conserved CDK8 kinase module. However, some regions show higher conservation scores 

and are associated with clustering of bona fide pathogenic missense variations [9,35]. The 

importance of the conservation score was emphasized by the comparison between the two 

paralogs MED13 and MED13L [37]. We undercovered a strong association between amino 

acids involved in pathogenic missense variations and conserved residues, within MED13 and 

MED13L. These results would suggest a critical role played by these residues, whose function 

remains to be determined. The reciprocal is also observed within MED13. The five missense 

variations previously described in MED13-related neurodevelopmental disorder were highly 

conserved: p.(Thr326Ile), p.(Pro327Gln), p.(Pro327Ser), p.(Pro540Thr) and p.(Ala2064Val) 

(Supplemental Table 1) [34].  

 

The physicochemical distance between two residues, evaluated by the Grantham score, is also 

considered as a robust parameter to discriminate pathogenic from neutral missense variations. 

The most frequently substituted amino-acids in pathogenic missenses were proline, serine, 

and threonine residues (43%, Supplemental Table 1). The recurrence of these three amino-

acids in pathogenic substitutions could suggest an implication of MED13L phosphorylation 

sites [38]. One hypothesis could be an alteration of residues phosphorylated by proline-

directed protein kinase targeting serine or threonine residues located next to a proline. 

Interestingly, CDK proteins, as well as CDK8, are members of the proline-directed 

serine/threonine-protein kinase family [39]. These residues could represent targets of cyclin 

C-CDK8 phosphorylation of MED13L altered in pathogenic missense variations [33]. 

 

Prediction of deleterious effect of MED13L missense variations using optimized thresholds 

showed relatively correct outcomes for the identification of potential neutral variations with 

negative predictive values ranging between 0.964 and 0.984 (Table 2). Conversely, as 
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expected, the positive predictive values were associated with the lowest scores, ranging from 

0.132 for DANN to 0.441 for MISTIC (Table 2). Among the different in-silico tools, 

MISTIC, BayesDel and REVEL have outperformed other algorithms. The approach for 

MISTIC, with two different classes of machine-learning algorithms, including information of 

multiple conservation scores and functional measures, was associated with the highest scores 

for specificity, PPV, MCC, ACC and AUC (Table 2). Gene level evaluation using REVEL 

and BayesDel tools has previously considered one of the most discriminant in-silico tools for 

clinical variation classification considering actionable genes [40]. 

 

Our data highlighted the difficulty of the application of in-silico parameters in routine 

diagnosis when these global statistical approaches were applied to one gene targeting. 

Individual gene parameter studies, such as MED13L, provide expertise on elements of 

annotation improving meta-predictor choices. Moreover, the in-silico approach allows us to 

make useful hypotheses to predict the involvement of these amino acids in MED13L 

pathogenic missense variations. 
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Figure legends 

 

Figure 1: Comparison and correlations of meta-predictor algorithms. (A) ROC curve 
performances; (B) Correlation regarding all missense classifications; (C) Correlation 
regarding neutral missense classifications; (D) Correlation regarding pathogenic missense 
classifications. 
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Table 1: Evaluation of features for pathogenic and neutral missense variations 

 Pathogenic (n = 38) Neutral (n = 495) significance 

Grantham Score 94.50 [0.00 - 194.00] 58.00 [0.00 - 215.00] p=5.31e-4 

verPhyloP 5.19 [0.17 - 6.17] 3.04 [-0.84 - 6.32] p=1.14e-8 

verPhCons 1.00 [1.00 - 1.00] 0.93 [0.00 - 1.00] p=5.17e-3 

MED13 residue conservations 1.00 [0.00 - 1.00] 0.50 [0.00 - 1.00] p=2.95e-5 

Phosphorylation site distance 17.50 [0.00 - 263.00] 30.00 [0.00 - 321.00] p=2.95e-3 

 

 

Table 2: Performances of in-silico tools 

 Thresholds Se Sp PPV NPV MCC ACC AUC 

BayesDel 0.234 0.757 0.913 0.400 0.980 0.492 0.902 0.877 

CADD 25.10 0.842 0.717 0.186 0.983 0.308 0.726 0.810 

DANN 0.995 0.676 0.658 0.132 0.964 0.174 0.660 0.691 

FATHMM-XF 0.768 0.816 0.764 0.209 0.982 0.333 0.767 0.807 

M-CAP 0.056 0.816 0.856 0.304 0.984 0.438 0.853 0.874 

MISTIC 0.663 0.789 0.923 0.441 0.983 0.533 0.912 0.902 

REVEL 0.634 0.789 0.893 0.361 0.982 0.484 0.886 0.873 

ACC = Accuracy ; AUC = Area Under Curve ; MCC = Matthews Correlation Coefficient ; NPV = Negative Predictive Value ; PPV = Predictive Positive 

Value ; Se = Sensiblity ; Sp = Specificity 

 

 





Table 1: Evaluation of features for pathogenic and neutral missense variations 

 Pathogenic (n = 38) Neutral (n = 495) significance 

Grantham Score 94.50 [0.00 - 194.00] 

58.00 [0.00 - 

215.00] p=5.31e-4 

verPhyloP 5.19 [0.17 - 6.17] 3.04 [-0.84 - 6.32] p=1.14e-8 

verPhCons 1.00 [1.00 - 1.00] 0.93 [0.00 - 1.00] p=5.17e-3 

MED13 residue 

conservations 1.00 [0.00 - 1.00] 0.50 [0.00 - 1.00] p=2.95e-5 

Phosphorylation site 

distance 17.50 [0.00 - 263.00] 

30.00 [0.00 - 

321.00] p=2.95e-3 

 

 



Table 2: Performances of in-silico tools 

 Thresholds Se Sp PPV NPV MCC ACC AUC 

BayesDel 0.234 0.757 0.913 0.400 0.980 0.492 0.902 0.877 

CADD 25.10 0.842 0.717 0.186 0.983 0.308 0.726 0.810 

DANN 0.995 0.676 0.658 0.132 0.964 0.174 0.660 0.691 

FATHMM-

XF 0.768 0.816 0.764 0.209 0.982 0.333 0.767 0.807 

M-CAP 0.056 0.816 0.856 0.304 0.984 0.438 0.853 0.874 

MISTIC 0.663 0.789 0.923 0.441 0.983 0.533 0.912 0.902 

REVEL 0.634 0.789 0.893 0.361 0.982 0.484 0.886 0.873 

ACC = Accuracy ; AUC = Area Under Curve ; MCC = Matthews Correlation Coefficient ; NPV = 

Negative Predictive Value ; PPV = Predictive Positive Value ; Se = Sensiblity ; Sp = Specificity 

 




