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Abstract: Lead (Pb), mercury (Hg), and cadmium (Cd) are identified as potent developmental
neurotoxicants. Neonates are the main group receiving multiple blood transfusions. The exposure
of neonates to these heavy metals (HMs) can occur through blood transfusions. This study aimed
to determine the concentrations of lead (Pb), mercury (Hg), and cadmium (Cd) in various blood
products (plasma, platelets, packed red blood cells (pRBCs), and whole blood (WB)) to explore the
probability of concurrent exposure of these HMs and to identify the metal load per transfusion with
risk assessment. Residual bloods from blood bank bags were collected after neonatal transfusion. Pb,
Hg, and Cd concentrations were determined in 120 samples of blood products by inductively coupled
plasma mass spectrometry (ICP-MS). Pb and Cd levels were over the normal levels in 19.2 and 5.9% of
all blood units, respectively. In 35 and 0.8% of blood units, the Pb and Cd concentrations, respectively,
were higher than that recommended for transfusions in premature neonates. The anticipated safe
value was surpassed by 2.5% for Cd of all transfusions, primarily because of WB. However, Hg was
detected only in 5.8% of all samples and their concentrations were within the normal range. The
concurrent neonatal exposure to Pb, Hg, and Cd was statistically significant. Hazard quotients of
Hg and Cr were >1 and Pb cancer risk was 2.41 × 10−4. To the best of our knowledge, this study
is the first report examining Pb, Hg, and Cd in blood products other than WB and pRBCs using
ICP-MS. This study demonstrated the exposure of neonates to Pb, Hg, and Cd during transfusion
with a considerable amount of Pb. It confirms the significant concurrent exposure to the three HMs,
which maximize their potential developmental neurotoxicity with a high probability of developing
non-carcinogenic and carcinogenic health effects.

Keywords: blood transfusion; heavy metal; ICP-MS; neonatal safety

1. Impact Statement

This study measured Pb, Hg, and Cd in different blood product units used for neonatal
transfusion, with no regulation safety limits set in neonates. We aimed to increase aware-
ness to such exposures during transfusion; emphasize the importance of modification of
guidelines by adding screening heavy metals (HMs) prior to transfusion to control and
eliminate the effects of Pb, Hg, and Cd exposures; and provide a base for further studies
and follow-up to aid in the formation of policies and guidelines for neonatal transfusion
and the use of different blood products.
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2. Introduction

Blood products are used for various clinical disorders and play a significant role in the
therapeutic modalities employed in neonatal intensive care units (NICUs) [1]. Transfusions
of plasma, platelets, packed red blood cells (pRBCs), and whole blood (WB) are mainly
used in cases of coagulation disorders, thrombocytopenia, severe anemia, and exchange
transfusion, respectively. Transfusion safety remains of the utmost importance, particularly
in the vulnerable population [2]. Therefore, all blood products are systematically subjected
to universal screening for infectious agents, along with additional practices of blood
processing such as irradiation and leukoreduction before transfusing to neonates [3]. The
risk/benefit ratio must always be taken into account. However, one of the unacknowledged
and regrettably unexplored hazards is the potential presence of HMs in blood products [4].

HMs are naturally found in the Earth’s crust [4]. Moreover, exposure to HMs is known
to be mutagenic, teratogenic, and carcinogenic to human beings [5]. Lead (Pb), mercury
(Hg), and cadmium (Cd) are the most common HMs that induce human toxicity [6,7].
They are potent neurotoxins and can lead to developmental delay and serious sequelae
in children [4]. Pb is an environmental pollutant that accumulates with toxic effects in
the blood, liver, kidney, and central nervous system. The blood–brain barrier (BBB) is a
potential site for Pb neurotoxic effects [8]. The breakdown in the BBB is due to Pb exposure
that disrupts the homeostatic mechanisms of brain. The ability of Pb to mimic or mobilize
calcium and activate protein kinases may alter the endothelial cell behavior in immature
brains and disrupt the BBB. In addition to a direct toxic effect upon the endothelial cells, Pb
may indirectly alter the microvasculature by damaging the astrocytes that provide signals
for the maintenance of BBB integrity. A breakdown of such within the immature BBB
leaves the brain vulnerable to other toxic substances such as Hg or Cd that cause greater
neurological damage [9]. The neurotoxicity of Pb is of special interest because cognitive and
motor deficits in children have been associated with low levels of Pb exposure [10,11]. Hg
is a global pollutant, bio-accumulating mainly through the aquatic food chain, resulting in
a serious health hazard for children [12]. The main concern of Hg is related to its neurotoxic
effects [13]. Methylmercury is a known teratogen that disrupts neuronal migration in
fetuses and newborns [4]. Neonatal exposure to Hg has been associated with impaired
neurobehavioral development, poorer language skills at the age of 5 years, and an increased
risk of respiratory infections during the first year of life [14]. Yassa et al. displayed that there
is a significant relationship between two heavy metals (Pb and Hg) and the appearance of
autism [15]. Cd is a developmental and carcinogenic toxicant [16] and its exposure has been
associated with delayed growth in early childhood [17,18] as well as adverse effects on
neurodevelopment and cognitive function in children [19]. Smoking and diet are the most
common sources of Cd exposure [20]. Health effects resulting from Cd exposure in children
may include kidney, lung, and intestinal damages and possibly bone demineralization with
fractures [21]. Even with low-level exposures, the combination of Pb, Hg, and Cd may
cause subtle effects on children’s renal and dopaminergic systems [22].

The adult donors may be exposed to a variety of substances, including HMs from
either environmental or occupational sources [23]. Neonates are one of the most vulnerable
groups to such exposures because they are the most frequent recipients of transfused
blood [24–26]. Safe levels for intravenous administration of these metals are unknown [3].
The only safety value actually available is called a reference dose (RfD), which is defined as
the maximum estimated daily oral dose of metal likely to be without adverse effects for
adults over a lifetime [27].

While the presence of HMs in donor blood used for transfusions in NICUs has been re-
ported previously [24,25,28,29], this is the first report of multiple HM exposure in neonates
via different blood transfusion products, based on inductively coupled plasma mass spec-
trometry (ICP-MS) assays. The aims of the study were to (i) determine the levels of tested
HMs (Pb, Hg, and Cd) in various blood products (plasma, platelets, pRBCs, and WB),
which are used in neonatal blood transfusion; (ii) explore the probability of concurrent
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exposure to different HMs; (iii) identify the expected HMs’ load/transfusion versus the
anticipated safe values; and (iv) assess the risks of transfusion.

3. Materials and Methods
3.1. Sample Collection

The blood samples were obtained from residual units of different blood products
initially prepared in the Suez Canal University Hospital (SCUH) blood bank and transfused
to neonates. Thirty samples from each type of blood product (PRBCs, platelets, whole blood,
and plasma) were collected, for a total of 120 samples. The different blood product samples
were prepared from the same donors. The samples were transferred into trace-mineral-free
vacutainers and subsequently stored at −20 ◦C until analysis. To exclude any possibility of
contamination, all precautions were taken to minimize the risk of contamination during
sample collection, aliquoting, storage, and transport.

3.2. ICP-MS Analysis

Plasma, platelet, and WB samples underwent the sample dilution method described
below for the subsequent ICP-MS analysis, while pRBCs were previously mineralized
by mixing 400 µL of pRBCs with 800 µL of pure nitric acid (RPE analytical grade 69.5%,
Carlo Erba Reagents, Cornaredo, Italy) at 70 ◦C for 1 h. After homogenization, samples
were diluted in a nitric acid (RPE analytical grade 69.5%, Carlo Erba Reagents) solution in
ultrapure water (Purelab Flex, Veolia Water, Paris, France) containing either (i) TritonTM

X-100 (Sigma-Aldrich, St. Louis, MO, USA) and butan-1-ol (VWR chemicals, Radnor, PA,
USA) for Pb and Cd analysis or (ii) hydrochloric acid (Suprapur 30%, Supelco, Bellefonte,
PA, USA) and gold (Supelco) for Hg analysis.

The analysis was performed on a THERMO ICAPTM Qc ICP-MS (Thermo Scientific,
Waltham, MA, USA). Quantification was performed by external calibration using rhodium
(103Rh) as the internal standard. For plasma, platelets, and WB, the lower limit of quantifi-
cation (LLOQ) was 0.2 µg/L. For pRBCs, the LLOQ was multiplied by 3 according to the
sample dilution during mineralization: 0.6 µg/L [30].

The analytical methods were monitored daily by internal quality controls (reference
materials) as well as successful participation to the QMEQAS external quality assessment
scheme from the Quebec National Institute of Public Health for several years.

3.3. Statistical Analysis

Data entry was performed using the Windows operating system, and data analysis was
performed using the Statistical Package for Social Sciences (SPSS version 22). Descriptive
statistics: median and range were calculated for the detectable values of Pb, Hg, and Cd
concentrations to determine the distributions of Pb, Hg, and Cd levels in different blood
products. Kruskal–Wallis (KW) test was used to compare levels of tested HMs in blood
products that were not normally distributed.

The quantity of transfused HM was estimated using the following equation: volume
of blood product transfused (mL) X metal aliquot concentration (µg/L)/weight (kg)/1000.
A previous study determined the intravenous reference doses (IVRfDs) based on oral
reference doses (RfDs) and the proportion of GIT absorption of each metal [31,32]. The oral
RfD for Hg is 0.1 µg/kg/day and for Cd is 1 µg/kg/day [32]. Because no safe Pb level was
particularly determined for the developing brain, there is no oral RfD for Pb [25]. About
95% of Hg [33] and 10% of Cd [34] are absorbed from the ingested dose. Consequently,
IVRfDs were estimated at 0.095 µg/kg/day for Hg and 0.1 µg/kg/day for Cd.

For non-cancer risk assessment, the risk of an adverse outcome other than cancer
is called the hazard quotient (HQ). It is calculated by dividing the maximum daily dose
(MDD) by the acceptable daily intake (ADI) or reference dose (HQ = MDD/ADI). For
cancer risk assessment, it is calculated by multiplying the cancer slope factor (CSF) and the
lifetime average daily dose (LADD) (cancer risk = CSF × LADD) [35].



Toxics 2023, 11, 712 4 of 10

4. Results
4.1. Quality Control

The method used in this study met the appropriate laboratory quality criteria. The
analytical results of certified materials of whole blood and serum are shown in Table 1.

Table 1. Summary of the analytical results of certified materials of whole blood and serum.

ClinChek Whole Blood—Lot 2192 ClinChek Serum—Lot 2062 Seronorm Whole Blood—Lot 2011933 ¤

Cd Pb Cd Pb £ Hg Hg

Results * Target $ Results Target Results Target Result Target Results Target Results Target

Level 1 1.42–1.56 1.49
(1.12–1.86) 31.1–34.5 35

(28–42) 1.82–1.87 1.91
(1.34–2.48) 2.21–2.44 2.03

(1.63–2.44) 1.38–1.73 1.63
(1.30–1.96)

Level 2 3.37–3.72 3.52
(2.82–4.23) 77.6–87.8 90.7

(72.5–109) 5.51–5.90 5.51
(4.41–6.61)

Level 3 6.68–6.95 6.69
(5.35–8.03) 226–247 250

(200–300)

* Minimum and maximum concentrations of quality controls measured during the experiments, expressed in
µg/L. $ Target values from the material manufacturer, expressed in µg/L. £ Lead was absent from the ClinChek
monitored elements. ¤ With mostly low mercury concentrations in samples, Seronorm whole blood level 1 was
used as the second internal quality control during this experiment.

4.2. Metal Quantification in Donor Blood Units

Metal concentrations in blood units were analyzed for 120 samples of 4 blood products
(30 samples from each type of blood products). The median and ranges of the three
measured HMs in the different blood products are presented in Table 2. The highest metal
concentrations were in pRBCs.

Table 2. Levels of measured heavy metals (µg/L) in blood products used in neonatal transfusion.

Plasma Platelets pRBCs WB p

Pb
median 0.5 0.5 33.0 22.0 <0.00001 *

max 7.7 7.1 54.0 57.0
min 0.2 0.2 9.0 5.0
Hg

median 0.2 0.2 0.6 0.6 0.32
max 0.3 0.6 3.0 1.2
min 0.2 0.2 0.6 0.2
Cd

median 0.2 0.2 0.6 0.2 0.069
max 0.2 0.6 5.8 3.0
min 0.2 0.2 0.6 0.2

Pb: lead; Hg: mercury; Cd: cadmium; pRBCs: packed red blood cells; WB: whole blood; * statistically significant
determined by Kruskal–Wallis test (p = 0.05).

4.3. Concurrent Metal Exposure and Representative Ratios of Metals in Blood Products

There were significant correlations between the exposures to the three tested metals
per transfusion (F = 49.25, p < 0.00001, R2 = 0.50). The representative ratios of the three
measured HMs among different blood products are shown in Table 3 with a comparison to
previously published data.

4.4. Dose per Transfusion Versus IVRfD

The highest dose per transfusion was presented in WB for the three measured metals.
The median and range of doses (Pb, Hg, and Cd) per transfusion are shown in Table 4.
The number (frequency) of transfusions containing doses (Hg and Cd) greater than the
estimated IVRfD is presented in Table 5.
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Table 3. Representative ratios of heavy metal concentrations among different blood products.

Plasma/Plts Plasma/PRBCs Plasma/WB Plts/PRBCs Plts/WB PRBCs/WB

Pb
0.66:26.4 [36]
0.74:100 [37]

0.4:12 [38]
0.1:7.7 [39]
0.3:10 [36]
0.1:21 [40]

0.57:227 [40]

2–3.5:1 [41]

0.9:1 1:33 1:22.6 0.9:33.8 0.9:22.6 33.8:22.6

Hg
2.69:5.8 [42]

0.2:0.2 0.2:0.9 0.2:0.6 0.2:0.9 0.2:0.6 0.9:0.6

Cd
2.27: 6 [42]

0.2:0.2 0.2:1.2 0.2:0.5 0.2:1.2 0.2:0.5 1.2:0.5

Pb: lead; Hg: mercury; Cd: cadmium; Plts: platelets; pRBCs: packed red blood cells; WB: whole blood.

Table 4. Calculated heavy metal (HM) loading per transfusion for different blood products used for
neonatal transfusion.

Metal
Blood Products

Plasma Platelets pRBCs WB

Pb n 30 30 30 30
Median 0.01 0.01 0.55 1.83

Max 0.13 0.12 0.90 4.75
Min 0.003 0.003 0.15 0.003

Hg n 30 25 30 17
Median 0.003 0.003 0.010 0.046

Max 0.005 0.004 0.050 0.100
Min 0.003 0.003 0.010 0.003

Cd n 30 30 30 30
Median 0.003 0.003 0.01 0.017

Max 0.003 0.15 0.10 0.3
Min 0.003 0.003 0.003 0.003

pRBCs: packed RBCs; WB: whole blood; Pb: lead; Hg: mercury; Cd: cadmium.

Table 5. Number and frequency of neonatal transfusions of different blood products with doses
greater than the estimated intravenous reference dose (IVRfD).

Metal IVRfD
(µg/kg/Day)

Number of
Transfusions
with Doses

>IVRfD

Frequency (%) Plasma Platelets pRBCs WB

Hg 0.095 0/102 0 0 0 0 0

Cd 0.1 3/120 2.5 0 0 0 3

pRBCs: packed RBCs; WB: whole blood; Hg: mercury; Cd: cadmium.

4.5. Risk Assessment

For non-cancer risk assessment, the calculated HQs for Hg and Cd are greater than
1. The cancer risk assessment of Pb is 2.14 × 10−4 (Table 6). There is no RfD for Pb [25]
and no CSF for Hg and Cd. The CSF is available only for Pb [35,43]. The maximum
number of transfusions experienced in the neonatal period (first 28 days of life) was about
22 transfusions [44].
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Table 6. Non-cancer and cancer risk assessment of blood product transfusions in neonates.

Measured Metal MDD ADI HQ

Hg 0.12 0.095 1.26

Cd 0.25 0.1 2.5

- CSF LADD Cancer Risk

Pb 8.5 × 10−3 4.8 × 10−3 2.41 × 10−4

Hg: mercury; Cd: cadmium; Pb: lead; MDD: maximum daily dose; ADI: acceptable daily intake; HQ: hazard
quotient; CSF: cancer slope factor; LADD: lifetime average daily dose.

5. Discussion

The present study is the first to the best of our knowledge to examine Pb, Hg, and Cd
in blood products other than WB and pRBCs using ICP-MS. Overall, 19.2% of all blood
units (18 of pRBCs, 5 of WB) had Pb levels higher than the normal Pb concentration in
donor blood (31 µg/L) [45], whereas almost 35% of blood units (24 of pRBCs, 18 of WB)
had Pb concentrations over the alternative limit of 18 µg/L suggested for transfusions
in premature infants [14]. The Pb results of the present study are higher than those of
the Norwegian donor study; the means of Pb among 352 participants from 3 blood banks
ranged from 12.4 to 16.5 µg/L and only 4.5% exceeded the normal Pb concentration in
donor blood, whereas almost 18% had Pb concentrations above the suggested limit for
neonatal transfusions [14]. These higher results might reflect a higher Pb exposure in this
study population.

The two maximum Pb levels were observed with a concentration of 57 and 54 µg/L,
respectively. This agrees with the American study in which one donor unit contained
55 µg/L of Pb. This observation highlights the importance of meticulous donor selection
and/or additional toxicological screening for HMs before neonatal blood transfusion.
Previous studies (Norwegian, Canadian) suggested the selection of young donors younger
than 22–23 years old for transfusions to infants as a feasible approach to reduce the risk
of adverse health effects [14,46]. This suggestion is not in agreement with the results of
the present study in which there were five donors aged younger than 23, and four of these
five blood donors had Pb concentrations ranging from 18 to 54 µg/L. This indicates that
this criterion of donor age could not be applied to the present study. Searching for an
approach to select the donors is a trial to mitigate the exposure risk and avoid the high cost
of performing metal analysis. This approach is not appropriate for all populations as in the
present study. Thus, the screening of donor blood using metal analysis is still the feasible
approach to eliminate the risk and avoid exposure to HMs through blood transfusions,
especially to vulnerable groups.

In the present study, the highest Pb mean was that of pRBCs (33.8 µg/L) followed by
WB (22.6 µg/L), with a statistically significant difference. These high levels in pRBC and
WB units could be accounted for by the binding of Pb to hemoglobin and accumulation in
RBCs [47]. A study from Norway reported that the geometric mean of Pb in WB among 1011
volunteers was 18.8 µg/L [48]. A previous study showed that the average Pb in 192 U.S.
blood donors was 11.1 µg/L [49]. Gehrie et al. screened pRBCs from 100 random donor
units who had a mean Pb concentration of 11 µg/L [50]. The Pb levels in the present study
are higher than in previous studies, which could be due to a high level of Pb exposure in
this study population. These results also showed that pRBCs and WB could carry a higher
risk of exposure than other blood products. The maximum Pb concentration detected in
plasma and platelets in this study was 7.7 and 7.1 µg/L, respectively. It is noteworthy
to mention that no safe Pb concentration was identified and the WHO had not re-issued
the provisional tolerable weekly intake (PTWI), most probably because it was associated
with a significant decrease in intelligence quotient (IQ) in children [49]. In addition, Pb is a
potent irreversible neurotoxicant and exposure leads to developmental delay with effects
on cognition and behavior, with an unexpectedly great impact even at low levels [51].
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Hg was detected only in 5.8% of all samples and their concentrations were within
the normal range (<10 µg/L) [14,52] and below the suggested Hg limit for blood donation
(4.75 µg/L) [14]. The results of this study are consistent with the previous American study,
as it showed a mean Hg among 192 blood donors of 1.01 µg/L [49]. On the other side, a
Norwegian study found that 1.1% out of 352 participants from three blood banks had Hg
concentrations higher than normal and 10.5% had concentrations higher than the suggested
Hg limit for blood donation [14]. The Hg levels in the present study are similar or lower
than in previous studies, which could be due to lower Hg exposure in this study population.
As a limitation, the present study did not measure the different Hg species as percentages
of total Hg. One of its species is methylmercury, which is a very potent neurotoxicant and
the most toxic form [53]. In the present study, the highest Hg mean was that of pRBCs
(3 µg/L), without statistical significance. This could indicate that all blood products could
carry the same exposure risk due to transfusion.

About 5.9% of blood product units had Cd concentrations that exceeded the suggested
limit for blood donation (1.8 µg/L), with one blood unit exceeding the normal blood level
(>5 µg/L) [52]. These results are consistent with a previous Norwegian study that found
that the mean Cd levels ranged from 0.27 to 0.5 µg/L and 4% had concentrations higher
than the suggested Cd limit for blood donation [14]. Similarly, an American study found a
mean Cd level of 0.49 µg/L [49]. The Cd levels in the current study are equivalent to those
in other studies, which suggests that this study population may have experienced similar
amounts of Cd exposure as others. In the present study, the highest Cd mean was that of
pRBCs (1.2 µg/L), without statistical significance, indicating that all blood products could
carry the same exposure risk due to transfusion.

Previous studies reported that the estimated WB-to-plasma Pb ratio was about 30:1 [38]
and 33.3:1 [36]. These results are in accordance with the result of the present study (22.6:1).
Other studies reported higher WB-to-plasma Pb ratios, such as 77:1 [39], 210:1 in indi-
viduals with normal exposure, and higher ratios (398.3:1) among Pb workers [40]. It is
also notable that wide variations in WB-to-plasma Pb ratios were reported within and
among individuals [54]. This may be because of toxicokinetics differences with respect
to δ-aminolaevulinic acid dehydratase (ALAD) gene polymorphisms [55]. Moreover, the
estimated RBCs-to-plasma lead ratio was 40:1 [36]. This is in accordance with the present
study. A higher ratio (135:1) was reported in another study [37]. Pb levels in pRBCs and
plasma of different samples could vary according to the storage capacity of their RBCs and
to the binding capacity of some ligands in plasma [36]. The concentration of Pb in pRBCs is
2 to 3.5 times higher than in WB [41]. This is close to the result of the present study as the
Pb concentration in pRBCs here is 1.5 times higher than in WB. The wide range of variance
was also noticed regarding the ratio between Pb concentrations in pRBCs and WB [41].
Unlike Pb, there is sparse literature regarding the ratios of different blood components in
Hg and Cd. Previous studies reported that the estimated WB-to-plasma Hg ratio is about
2.2:1 [42]. This is near the result of the present study (3:1). Previous studies reported that
the estimated WB-to-plasma Cd ratio is about 2.6:1 [42]. This is in line with the result of
the present study of 2.5:1. The result of current study indicates that pRBCs contain higher
portions of Pb, Hg, and Cd followed by WB, in comparison with other blood products of
the same donor.

In the present study, the transfusions were significantly correlated with concurrent
exposure to the three tested metals. This is in agreement with a previous study that observed
a significant correlation between Hg and Pb doses per transfusion (F = 78, p ≤ 0.0001,
R2 = 0.23). Because of the cumulative effects, simultaneous exposure to Hg, Pb, and Cd
may lower the threshold for neurotoxicity or, in other words, raise the risk of neurotoxicity
in this population [6].

Through estimation of Pb loading per transfusion, it was found that the WB and
pRBCs could be at higher risk in the case of Pb compared with other blood products owing
to the high volume required per transfusion in the case of WB transfusion and the high Pb
content stored within RBCs in the case of pRBCs. Moreover, the WB could be at higher
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risk in the case of Cd compared with other blood products. A previous study revealed that
Cd exposure via pRBCs transfusion is negligible (0%) [28], which is slightly different from
the result of the present study. Although the difference is small, there are two neonates
who received WB units with higher Cd levels than the estimated IVRfD, which could put
them at higher risk during their development and requires frequent follow-up. Meanwhile,
the different blood products could be of minimal risk in the case of Hg. We should bear
in mind that all blood products are sources of HMs, even if the loading per transfusion
is lower than the estimated safety levels. This fear is accounted for by the immaturity of
neonates (especially the central nervous system and excretory system) [56] and persistent
bio-accumulative nature of these metals [57], as the transfusion was associated with an
increase in the Pb and Hg blood levels of the neonates without any increase in the excreted
quantities of these HMs [14,25].

The risk assessment revealed a significant probability that subsequent non-carcinogenic
health effects could be experienced by neonates as a result of Hg and Cd exposures. Moreover,
there is a significant concern for increased cancer risk (>1 × 10−4) in Pb-exposed neonates.

In conclusion, the present study highlights for the first time that neonates are exposed
concurrently to Pb, Hg, and Cd via different blood product transfusions, with considerable
amounts of Pb in donor blood. The highest dose per transfusion was in WB units and
Cd surpassed the safe value per transfusion, with a significant probability of both non-
carcinogenic and carcinogenic health effects. Thus, it is recommended to screen HMs in
blood donors before transfusion in order to eliminate the exposure risk and ensure neonatal
safety. Follow-up of neonates exposed to high levels is requested.
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