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A B S T R A C T

Optical properties of clouds and heavy aerosol retrieved from satellite measurements are the most important
elements for calculating surface solar radiation (SSR). The Himawari-8/Advanced Himawari Imager (AHI) sa-
tellite measurements receive high spatial, temporal and spectral signals, which provides an opportunity to es-
timate cloud, aerosol and SSR accurately.

In this study, we developed the AHI official cloud property product (version 1.0) for JAXA P-Tree system. A
look-up table (LUT) method was used to calculate high-temporal (10 min) and high-spatial (5 km) SSR from AHI
cloud properties. First, the LUT of the SSR estimation was optimized through a radiative transfer model to
account for solar zenith angle, cloud optical thickness (COT), effective particle radius (CER), aerosol optical
thickness and surface albedo. Following this, COT and CER were retrieved from the AHI data, with ice cloud
parameters being retrieved from an extended Voronoi ice crystal scattering database and water cloud parameters
being retrieved from the Mie–Lorenz scattering model. The retrieved COT and CER for water clouds were
compared well with MODIS collection 6 cloud property products, with correlation coefficients of 0.77 and 0.82,
respectively. The COT of ice cloud also shows good consistency, with a correlation coefficient of 0.85. Finally,
the SSR was calculated based on the SSR LUT and the retrieved cloud optical parameters. The estimated SSR was
validated at 122 radiation stations from several observing networks covering the disk region of Himawari-8. The
root-mean-square error (RMSE) at CMA (China Meteorological Administration) stations was 101.86 Wm−2 for
hourly SSR and 31.42 Wm−2 for daily SSR; RMSE at non-CMA stations was 119.07 Wm−2 for instantaneous SSR,
81.10 Wm−2 for hourly SSR and 26.58 Wm−2 for daily SSR. Compared with the SSR estimated from conven-
tional geostationary satellites, the accuracy of the SSR obtained in this study was significantly improved.

1. Introduction

Surface solar radiation (SSR) is an essential component of the
Earth's energy budget. It is the downward solar flux at the surface,

where the solar energy reaches the surface through the absorption and
scattering of the atmosphere. SSR is also major driver for hydrological
models and land surface models (Wild, 2009, 2012; Xue et al., 2013; He
et al., 2015; Zhang et al., 2015; Huang et al., 2016a, 2016b; Tang et al.,
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2016), which is important for solar resource assessment and photo-
voltaic power design. Ground-based stations measure accurate SSR with
high temporal resolutions, but they are distributed sparsely. Because of
this, it is difficult to produce spatiotemporally-continuous SSR from
station data (Wang et al., 2012; Bao et al., 2018).

SSR values depend not only on the solar zenith angle (SZA), but also
on optical properties of the cloud, aerosol and water vapor. Trace gases
(e.g., O3, O2, CO2) in the atmosphere also reduce SSR through Rayleigh
scattering. However, the atmospheric loading of clouds and aerosols are
the main parameters for affecting the spatial and temporal variation of
the SSR. Satellite remote sensing is an efficient means to estimate these
parameters, and has become the primary method to provide regional
SSR (Takenaka et al., 2011; Lu et al., 2011; Qin et al., 2015; Bao et al.,
2018). So far, geostationary and polar-orbiting satellite data have been
widely used to estimate SSR. Geostationary satellites have high ob-
servation frequency compared with polar-orbiting satellites, and they
are widely used to generate SSR products. The work of Pinker et al.
(2002, 2003) developed a surface radiation budget product using the
GOES-8 geostationary satellite data. In addition, the studies by
Takenaka et al. (2011) proposed an artificial neural network (ANN)-
based method to calculate the SSR with cloud microphysical properties
retrieved from Multi-functional Transport Satellites (MTSAT) and Hi-
mawari-8 (H-8) geostationary satellite data (Damiani et al., 2018). On
the other hand, some studies (Wang and Liang, 2009; Wang and Pinker,
2009; Huang et al., 2011; Qin et al., 2015) estimated high spatial-re-
solution SSR using the Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite measurements. The MODIS has advantages in mon-
itoring cloud parameters and so yields highly-accurate SSR data with
high spatial resolutions (Wang et al., 2015), but it cannot capture the
diurnal variation of the SSR because of its low temporal resolution.
Tang et al. (2016) attempted to improve the SSR accuracy through
combining MODIS and MTSAT to retrieve cloud parameters. However,
due to the limited channels of conventional geostationary satellites, the
retrieval accuracy of cloud parameters still needs to be improved.

The Advanced Himawari Imager (AHI) instrument, carried on board
the H-8 satellite, has 16 spectral bands with 0.5 km, 1 km and 2 km
spatial resolutions from visible to thermal infrared regions. The tem-
poral resolution is 10 min for the full disk observation region in East
Asia. The observation capability of the AHI instrument is comparable to
that of the GOES-R (Schmit et al., 2005) – another new-generation
geostationary satellite. The H-8/AHI provides the possibility to observe
the SSR with high accuracy and high spatiotemporal resolution (Bessho
et al., 2016; Letu et al., 2018). However, a high-performance and fast-
retrieval algorithm is required to retrieve cloud microphysical and
optical parameters, while maintaining high accuracy, from a large
amount of data from this advanced satellite.

There is a long history of development for SSR estimation from
satellite data. Early studies (Klink and Dollhopf, 1986; Tarpley, 1979)
used empirical algorithms that were established based on relationships
between coincident satellite observed radiance and observed surface
solar radiance. These algorithms cannot be extended from one region to
another. In contrast, the Radiation Transfer Model (RTM) can calculate
SSR more accurately, although the atmosphere in the model is assumed
to be of a plane-parallel structure (Dedieu et al., 1987; Dubayah, 1992;
Pinker and Ewing, 1985; Takenaka et al., 2011). However, this method
is too computationally expensive to meet the requirement of rapid ac-
quisition of SSR. Alternatively, some parameterization schemes based
on the atmospheric radiative transfer were proposed to estimate SSR
(Bisht et al., 2005; Duarte et al., 2006; Sridhar and Elliott, 2002; Yang
et al., 2001a,b, 2006; Zhou and Cess, 2001; Zhou et al., 2007). These
methods can greatly speed up the calculation, but at the expense of a
certain amount of precision. Furthermore, another approach called
Heliosat (Cano et al., 1986) and its more recent versions (e.g. Rigollier
et al., 2000; Rigollier et al., 2004) are widely used to derive the SSR.
One advantage of this approach is that the cloud effect can be directly
retrieved from the satellite observations. A drawback of the method is

that no microphysical cloud information is gained. To improve the
computing efficiency without loss of accuracy, a variety of pre-calcu-
lated look-up table (LUT) algorithms were developed (Li et al., 1993;
Liang et al., 2006; Tang et al., 2006; Tang and Li, 2008; Zheng et al.,
2008; Wang and Liang, 2009; Wang and Pinker, 2009; Wang and Liang,
2009; Kim and Liang, 2010; Yan et al., 2016).

In addition to the SSR estimation algorithms, the accuracy of cloud
microphysical properties (e.g. particle habit and size) is crucial when it
comes to making highly-accurate estimations of SSR. Particularly, un-
derstanding ice crystal scattering (ICS) properties is essential for re-
trieving ice cloud optical parameters. However, ice cloud particles have
various habits and sizes and their retrievals have significant un-
certainties (Letu et al., 2016; Mei et al., 2018). In recent decades, nu-
merous ICS models have been developed to retrieve ice cloud properties
(Yang et al., 2000, 2005, 2013; Baran and Labonnote, 2007; Baran
et al., 2014; C.-Labonnote et al., 2000, 2001; Doutriaux-Boucher et al.,
2000; Ishimoto et al., 2010). Among them, the Voronoi ICS model was
developed to produce the ice cloud product for the Second Generation
Global Imager (SGLI)/Global Change Observation Mission-Climate
(GCOM-C) (Ishimoto et al., 2012; Letu et al., 2012, 2016; Masuda et al.,
2012; Nakajima et al., 2019), the AHI/H-8 (Letu et al., 2018; Shang
et al., 2019) and Multi-Spectral Imager (MSI)/Earth Cloud Aerosol and
Radiation Explorer (EarthCARE) satellite programs (Illingworth et al.,
2015). The EarthCARE is to be launched in 2021. It was demonstrated
that the Voronoi model can effectively retrieve the ice cloud properties
from satellite measurements (Letu et al., 2016).

In this study, a new LUT-derived algorithm was developed to cal-
culate all-sky SSR, based on the H-8/AHI data, which have high spa-
tiotemporal and spectral resolutions. Specifically, the Voronoi ICS da-
tabase was extended for the purpose of accurately deriving the ice cloud
optical parameters, and their estimates were evaluated through com-
paring them with MODIS products. The forward RTM, together with the
ICS database, was used to build the LUT utilized in the SSR estimation,
and the SSR estimates from AHI were validated against widely-dis-
tributed station data.

2. Ground-based observation data

In this study, a total of 122 pieces of surface radiation observational
data from 6 networks were used to validate satellite-derived SSR: 1 site
from the Aerosol Robotic Network (AERONET) (Holben et al., 1998), 9
sites from the Australian Governments Bureau of Meteorology (BOM), 6

Fig. 1. Geographical distribution of ground observation sites for SSR validation.
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Fig. 2. Flowchart for calculating SSR from the AHI data.

Fig. 3. Solar spectral irradiances as a function of the wavelength (black line), calculated using the ice refractive index data compiled by Warren and Brandt (2008):
(a) the conventional Voronoi ICS model (red line) and (b) at the wavelengths of the new Voronoi ICS model (red line in Fig. 3b). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Input parameters and grid points of the variables used to build the LUT version of the CAPCOM.

Variables Value range No. of grid points Unit

Solar zenith angle 0, 5, 10, 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80 15 degree
Satellite zenith angle 0, 5, 10, 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80 15 –
Azimuth angle 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180 19 –
Water cloud optical thickness 0.2, 0.5, 1, 2, 3, 4, 5, 8, 12, 17, 23, 31, 41, 54, 70, 80, 90, 100 18 –
Water cloud effective particle radii 4, 7, 9, 11, 14, 17, 22, 30, 38, 46, 54, 62 12 μm
Ice cloud optical thickness 0.1, 0.5, 1, 2, 4, 8, 16, 32, 48, 64, 80, 90, 100, 110, 120, 130, 140, 150 18 –
Ice cloud effective particle radii 5, 10, 20, 40, 60, 80, 100, 110, 120, 130, 140, 150 12 μm
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sites from the Baseline Surface Radiation Network (BSRN) (Driemel
et al., 2018), 1 site from the Earth System Research Laboratory Global
Monitoring Division (ESRL_GMD) (Bruhwiler and Dlugokencky, 1970),
16 sites from the Global Moored Buoy Array (GTMBA) (Mangum,
1998), and 89 sites from China Meteorological Administration (CMA)
radiation stations. The above 122 sites are located in a variety of cli-
mate zones, and Fig. 1 shows the spatial location of the aforementioned
sites. All of the stations, except the CMA stations, provide high temporal
resolutions (1–3 min) of radiation data, and SSR estimates were vali-
dated at the individual sites.

3. Development of the retrieval algorithm

In this study, we improved the cloud property retrieval algorithm
and updated the product from the beta version to the formal version

1.0, which included some improvements of the ice cloud microphysical
properties. The official cloud property product (beta version) was re-
leased on JAXA P-Tree system in September 2016 (https://www.eorc.
jaxa.jp/ptree/). This work was introduced in our recently-published
paper (Letu et al., 2018). Fig. 2 shows the SSR estimation algorithm in
the present study. There are two LUT algorithms used for retrieving
cloud parameters and SSR, respectively. The retrieval procedure is as
follows:

(1) Identify the sky conditions (clear or cloudy), by utilizing a cloud
screening algorithm (Ishida and Nakajima, 2009), from the AHI L1B
data.

(2) For clear sky, the aerosol optical thickness (AOT) official AHI level
2 (L2) product (Yoshida et al., 2018; Kikuchi et al., 2018) is used in
the SSR algorithm.

(3) For the cloudy sky, we first determine the cloud phase using the
brightness temperature (BT) band and differences between two BT
bands (Baum et al., 2000). To retrieve cloud optical thickness (COT)
and cloud effective radius (CER), the Mie-Lorenz scattering model is
used if the cloud is identified as a water cloud, and the Voronoi ICS
is used if the cloud is ice. The cloud parameters are retrieved based
on a LUT algorithm, whose input is the AHI-observed reflectance at
center wavelength of λ = 0.64 μm and 2.3 μm. The details of the
ICS model and the retrieval algorithm are provided in Section 3.2.

(4) With the input of the estimated cloud and aerosol optical para-
meters, the SSR is estimated through the SSR algorithm, which is
based on a forward RTM called RSTAR (Nakajima and Tanaka,
1986, 1988; Sekiguchi and Nakajima, 2008). The details of the
RSTAR are introduced in Section 3.1.

3.1. The RSTAR model

The RSTAR model is used to establish the LUTs for the purpose of
retrieving the SSR from AHI measurements. The RSTAR model is a
package of numerical models specializing in atmospheric radiative
transfer that is applicable to the plane-parallel atmosphere, and the
calculated wavelengths can cover 0.17–1000 μm. The presumed plane-
parallel atmosphere can be divided into 50 layers, from the sea surface

Fig. 4. Simulated reflectance of the water and ice clouds at weakly-absorbing
channel (center wavelength at 0.64 μm) and absorbing channel (center wave-
length at 2.25 μm) of the AHI measurements (SZA = 30°, SatZA = 30°,
RAA = 60°).

Fig. 5. a Variations of the SSR with SZA for water
and ice clouds, with conditions for water cloud
(COT = 10, CER = 8 μm, As = 0.1) and ice cloud
(COT= 10, CER= 32 μm, As = 0.1). b Variations of
the SSR with COT for water and ice clouds, with
conditions for water cloud (CER = 8um, SZA = 30°,
As = 0.1) and ice cloud (CER = 32um, SZA = 30°,
As = 0.1). c Variations of the SSR with SZA and
aerosol optical thickness (AOT), with conditions for
aerosol model assumed to be of the rural type and
As = 0.1. d Variations of the SSR with As for COT
and CER of the water cloud (COT = 10,
CER = 8 μm, SZA = 30°) and ice cloud (COT = 10,
CER = 32 μm, SZA = 30°) (Atmospheric model: U.S.
standard atmosphere).
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Table 2
Grid points of the variables used to build the LUT algorithm of SSR.

Variables Value range Increment No. of grid point Unit

Solar zenith angle 0–70, 80, 90 2.0 38 Degree
Aerosol optical thickness 0–3 0.25 13 –
Water cloud optical thickness 0–60, 80, 100, 150 2.5 28 –
Water cloud effective particle radii 4, 8, 16, 32, 64 – 5 μm
Ice cloud optical thickness 0–40, 80, 100, 150 2.5 20 –
Ice cloud effective particle radii 4, 8, 16, 32, 64, 128, 150 – 7 μm
Surface albedo 0–0.8 0.2 6 –

Fig. 6. Comparison of retrieved optical parameters for water cloud. a AHI true color composition image. b Cloud phase. c COT from MODIS C6 at 02:45 UTC,
November 12, 2018. d COT from the AHI. e CER from MODIS C6. f CER from the AHI at 02:50 UTC, November 12, 2018.
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level to the highest altitude of 120 km, and 6 atmosphere models can be
selected. The plane-parallel atmosphere includes 11 classes of aerosol
models that are composed of seven basic components (Sekiguchi and
Nakajima, 2008).

The cloud particle scattering model in the RSTAR is composed of
water and ice clouds. The ice cloud model further consists of various ice
scattering kernels, such as spherical and ellipsoidal shapes and hex-
agonal columns. In this study, we installed the Voronoi ICS model into
RSTAR as a new ice scattering kernel to retrieve the ice cloud properties
from the AHI data.

3.2. Extension of Voronoi ICS database

The conventional Voronoi ICS model consists of single-scattering
properties (e.g. phase function, single-scattering albedo, asymmetry
factor, absorption efficiency, extinction efficiency) at 86 spectral wa-
velengths that were selected to retrieve the optical properties of the ice
clouds (Letu et al., 2018). The selected wavelengths in the Voronoi ICS
model are determined by the variation of the refractive index of ice in
the satellite observation bands. They can satisfy the requirement of
accurate estimation of ice cloud parameters from satellite measure-
ments, e.g. MODIS, AHI, SGLI and MSI (Letu et al., 2018), but need an
extension in order to estimate SSR accurately. Fig. 3 shows the solar
spectral irradiation (SSI) at the wavelengths of the Voronoi ICS model
calculated using the refractive index data provided by Warren and
Brandt (2008). The integral SSI at the wavelengths of the conventional
Voronoi model accounts for 84.7% of the accurate SSR (Fig. 3a). This
implies that the number of wavelengths utilized by this Voronoi model
is not enough to calculate the surface SSR. In the present study, we

enlarged the number of spectral wavelengths to calculate the single-
scattering properties of the Voronoi ISC model from 86 to 100 and in-
stalled them in the RSTAR model as an ice scattering kernel. From
Fig. 3b, we can confirm that the solar irradiation over the selected 100
wavelengths (red line) of the new Voronoi ISC model is highly con-
sistent with the accurate data (black line), i.e. the calculated solar ir-
radiation produced by the new Voronoi model accounts for 99.87% of
the accurate total solar irradiance. With the extended ICS database, the
RSTAR is used to construct the LUT of the SSR estimation.

3.3. Cloud parameter retrieval

A LUT algorithm was developed using the “Comprehensive Analysis
Program for Cloud Optical Measurement” (CAPCOM) to retrieve the
cloud properties (e.g. COT and CER). CAPCOM is a comprehensive
cloud property retrieval package (Nakajima and Nakajma, 1995;
Kawamoto et al., 2001). One component included in the package is a
forward model called CAPCOM-fwd, which is essentially the same as
RSTAR. The RSTAR module is a comprehensive radiative transfer
package designed for multiple purposes. The CAPCOM-fwd is more
convenient for constructing the LUT of the cloud property retrievals.

As shown in Fig. 2, a cloud screening algorithm is used to identify
cloudy and clear pixels from AHI L1B data (Letu et al., 2014, 2018;
Shang et al., 2017; Ishida et al., 2018). Water and ice cloud phases are
also detected in this process. CAPCOM-fwd is used to build the LUT for
establishing the AHI cloud properties retrieval algorithm. Input para-
meters (Table 1) include observation geometries, COT and CER for the
water and ice cloud phases. They are optimized to reduce the compu-
tational cost without loss of accuracy. The radiance at AHI band with

Fig. 7. Scattering plot (a and c) and the histograms (b and d) of CER and COT from MODIS C6 (MYD) and AHI data in the selected area as presented in Fig. 6.
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center wavelength of 0.64 μm and 2.3 μm are the input parameters. The
Mie–Lorenz scattering database installed in the CAPCOM-fwd is used to
establish the water cloud LUT. The Voronoi ICS database installed in
the CAPCOM-fwd is employed to establish the ice cloud LUT. Based on
the LUT, the Newton–Raphson method is used to find the solution of
two cloud parameters (COT and CER) from AHI band 3 and band 6.
Detailed descriptions of the cloud retrieval algorithm are introduced in
Nakajima and Nakajma (1995) and Letu et al. (2018).

The CER and particle size distribution (PSD) is a main cloud mi-
crophysical parameter to be retrieved. The Log-normal distribution
function is used to represent the PSD of both the water and ice clouds.
The CER and PSD for the water cloud are defined by Eqs. (1) and (2),
respectively (Nakajima and Nakajma, 1995).

∫
∫

=
∞

∞r
r n r dr

r n r dr

( )

( )
,e

0
3

0
2 (1)

where n(r) indicates the PSD. Log-normal distribution is used in the
calculations.

= ⎡
⎣⎢

− ⎤
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n r N
π σ

exp ln r r
σ

( )
2

( ( / ))
2

,e 0
2

2 (2)

where r0 and σ are the mode radius and standard deviation of the cloud
particle, respectively.

The definition of the CER for the beta version of AHI official ice
cloud products is given by Eq. (3), which was introduced by Letu et al.
(2018). In this study, we employed Eq. (4) to define the CER and thus
improve the AHI ice cloud retrieval algorithm. The improved algorithm
was applied in version 1.0 of the AHI cloud products, which was re-
leased by Japan Aerospace Exploration Agency (JAXA) in December
2018 (https://www.eorc.jaxa.jp/ptree/). Eq. (4) uses the projected area
of the Voronoi single particle to define the ice cloud CER.

Fig. 8. Similar to Fig. 6, but for ice cloud. a AHI true color composition image. b Cloud phase. c COT from MODIS C6. d COT from the AHI. e CER from MODIS C6. f
CER from the AHI at 02:50 UTC, November 11, 2018.
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where Vol(L) and Aeqa(L) are the volume and area of an equivalent
volume sphere of a Voronoi particle, respectively; Aprj(L) is the pro-
jected area of the randomly-orientated Voronoi single particle; L and n
(L) are the maximum dimension and PSD of the ice crystals, respec-
tively.

Fig. 4 shows simulation results of the satellite-observed reflectance
at AHI band 3 (center wavelength at 0. 64 μm) and band 6 (center
wavelength at 2.3 μm) as a function of various COT and CER, according
to the Mie–Lorenz scattering model and Voronoi ICS model applied in
the RSTAR. The results show that the reflectance for water and ice
cloud models are significantly different as a function of COT and CER,
because of different single-scattering and microphysical properties be-
tween water and ice cloud particles. Therefore, it is important to dif-
ferentiate the water and ice cloud properties, respectively, to ensure
accurate calculation of the SSR.

3.4. LUT for SSR calculation

The RSTAR model is used to calculate the SSR from AHI data-de-
rived cloud and aerosol properties. The RSTAR is a narrow-band ra-
diative transfer model, and therefore the SSR is calculated by in-
tegrating the radiative flux over the spectral wavelengths. In this study,
the Voronoi new scattering database with 100 spectral wavelengths was
installed in the RSTAR to calculate the radiative flux for ice clouds.
These wavelengths were determined by the characteristics of the

refractive index and SSI in the spectral wavelength when developing
the scattering database. The calculation of the radiative flux from AHI
measurements by the RTM requires a large amount of computational
time. Moreover, the AHI data contains a large number of pixels due to
its high spatial-temporal resolution. Therefore, we developed a pre-
calculated LUT-based algorithm to estimate the SSR from the AHI
measurements.

The sensitivity analysis was performed using the RSTAR model to
optimize the most important parameters for calculation of the SSR,
which includes SZA, AOT, COT, CER and surface albedo (As). The
sensitivity of each of the parameters in the calculation of the SSR is
shown in Fig. 5. The SSR changes greatly from approximately 478
Wm−2 and 677 Wm−2 to 0 Wm−2 as a function of SZA ranging over
0°–90° for ice and water clouds, respectively (Fig. 5a). The SSR dras-
tically changes from around 960 Wm−2 to 100 Wm−2 and 200 Wm−2

with COT ranging over 0–40, but relatively smoothly when COT varies
from 40 to 100 for ice and water clouds, respectively (Fig. 5b). Fig. 5c
shows the variation of SSR for different AOTs with the increase of SZA.
When the SZA is equal to 0, the effect of the AOT changes on SSR is
most obvious. When AOT increases from 0.4 to 2.0, the SSR decreases
from 1050 Wm−2 to 760 Wm−2 for SZA = 0. In this study, AOD in-
formation about aerosols is used in the calculation of the SSR, which is
of great significance to improve the calculation accuracy of SSR.
However, not only the AOD, but also the aerosol type has a significant
impact on the calculation. At present, there are still some shortcomings
in the estimation of AOD, and types of passive observation satellite
data, which will lead to uncertainty in the SSR calculation, this being
also the limitation of the current aerosol algorithm in the calculation of
the SSR. Fig. 5d shows the effect of As on SSR, which indicates that SSR
changes from 508 Wm−2 and 356 Wm−2 to 877 Wm−2 and 720 Wm−2

with As ranging over 0 to 0.8 for water and ice clouds, respectively.

Fig. 9. Similar to Fig. 7, but for ice cloud at 06:50 UTC, September 11, 2018.
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High values of As can bring multiple scattering effects between surface
and atmosphere, and thus the surface can receive more downward solar
radiation. According to the above sensitivity analysis, we constructed
an optimal LUT, whose grid points for each of the input variables are
shown in Table 2. Furthermore, the water vapor effect on SSR is sig-
nificant and varies spatiotemporally, but the LUT uses a standard at-
mosphere. Therefore, this effect is corrected through the water vapor
effect parameterization in Yang et al. (2006) using ERA-Interim re-
analysis water vapor data.

4. Validations

4.1. Cloud property retrievals

Cloud is highly variable in the vertical scale, and the CER can also
vary substantially in a cloud. However, such vertical information is not
assumed in the radiative transfer model and retrieval algorithms, and
thus leads to uncertainties in the final retrievals. The MODIS-derived
COT and CER are two of the satellite cloud products with a long time
series, high precision and high reliability, even though they also have
considerable uncertainties (Platnick et al., 2003, 2017). To investigate
the accuracy of the AHI cloud retrievals, we compared them with cloud
property retrievals from the MODIS collection 6 (MODIS C6) product
(Platnick et al., 2017). Fig. 6 shows the AHI true color composition
image, cloud phase, COT and CER (2.1 μm) from MODIS C6 and the AHI
Ver 1.0 cloud property product at 02:50 UTC, on November 12, 2018.
Fig. 6a shows the cloud distribution in the selected area. The area is
almost completely occupied by water clouds (Fig. 6b). The spatial

distribution of the COT from MODIS C6 (Fig. 6c) and AHI data (Fig. 6d)
are comparatively consistent. The distribution of CERs from the AHI
data (Fig. 6f) is also consistent with MODIS C6 (Fig. 6e). Fig. 7 illus-
trates the comparisons of COT and CER by showing the scattering plot
and histogram in the area as presented in Fig. 6. The COT from the AHI
data is also consistent with results from MODIS C6, with a coefficient of
determination (R2) of 0.59, mean bias error (MBE) of 0.2 and root-
mean-square error (RMSE) of 3.47. Similarly, CER from the AHI data is
also well correlated with MODIS C6 results. The R2, MBE and RMSE are
0.71, 0.39 μm and 2.58 μm in the selected areas, respectively.

Fig. 8 is similar to Fig. 6, but for the time of 02:45 UTC, November
12, 2018. In this case, most of the area in the image is covered by ice
cloud (Fig. 8b) rather than water cloud. Spatial distributions of the COT
and CER from the AHI data (Fig. 8d and f) are comparable to that from
the MODIS C6 product (Fig. 8c and e). The bright region in Fig. 8a
corresponds to high COT (red color area) in Fig. 8c and d. Fig. 9a and b
also indicate good correlations of the COT between AHI and MODIS C6,
with R2 of 0.72, MBE of 1.08, and RMSE of 3.96. From Fig. 8e, f, Fig. 9c,
and d, we can see that CER of the ice cloud from the AHI data is gen-
erally larger than the MODIS C6 retrievals, except for CERs ranging
from 25 to 40 μm. The R2, MBE and RMSE are 0.15, 1.7 μm and 7.98 μm
in the selected areas, respectively. A possible reason for this is the ra-
diance calibration error for the AHI measurement, as well as the dif-
ferences in the single-scattering properties of the assumed ice particle
models used in the AHI and MODIS cloud products. A study by
Okuyama et al. (2018) pointed out that the radiance calibration error of
the AHI data has little effect on COT and CER retrievals. It can be in-
ferred that the different ice scattering models used in AHI and MODSI

Fig. 10. Comparison of single scattering albedo, volume-normalized extinction coefficient and asymmetry factor for bulk-scattering properties of ice particle models
at the wavelengths of 0.64 μm and 2.3 μm as a function of the parameter size.
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Fig. 11. a True color composition. b AOT. c COT. d SSR estimation result in the full disk region of the AHI measurement for 03:00 UTC, August 28, 2016.

Fig. 12. a): Scattering plot of the estimated and observed instantaneous SSR, b): PDF of the instantaneous SSR between AHI estimated results and ground ob-
servations at 33 non-CMA stations in 2016, except for the months of January, February and June.
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cloud products have resulted in these differences. To investigate the
influence of the different ice scattering models on the ice cloud re-
trievals, we compared the bulk scattering properties of the Voronoi and
8-solid column aggregates with severe roughness (8-agg-cl) (Platnick
et al., 2017) at wavelength of 0.64 μm and 2.3 μm as a function of
effective parameter size (EPS). EPS is defined as twice the value of CER
found from Eq. (4). From Fig. 10, it can be seen that the single scat-
tering albedo of the two models is similar and relatively consistent.

However, there are obvious differences between the volume-normal-
ized extinction coefficient (Eqs. (5), (6); Yang et al., 2001a,b) for small
particles (about EPS < 10 μm) and the asymmetry factors of the two
models, which may lead to differences in COT retrievals between the
two products.

∫=β λ Q D λ A D n D dD( ) ( , ) ( ) ( )ext D

D
ext

min

max

(5)

Fig. 13. Comparison of the instantaneous SSR from AHI estimated results and ground observations for July 2016 (UTC) at four sites in Fig. 1 (red symbols). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Comparison of the hourly SSR between AHI estimated results and ground observations for the non-CMA (a and b) and the CMA stations (c and d).
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where D is particle maximum dimension, Dmin and Dmax are the
minimum and maximum ice particle dimensions, V and A are the vo-
lume and area of an ice particle, n is the number distribution, Qext is the
extinction efficiency of an ice particle. βext is the bulk extinction coef-
ficients, ρice is the solid density of ice, IWC is the ice water content, β͠ext
is the IWC-normalized extinction coefficients.

4.2. Validation of the SSR from AHI

A total of 122 radiation stations, shown in Fig. 1, were used to
evaluate the estimated SSR. Among them, a total of 33 radiation sta-
tions provided high temporal resolution SSR of 1–3 min and were used
to evaluate instantaneous, hourly, and daily SSR estimates. A total of 89
CMA radiation stations provided hourly mean SSR, and they were used
to validate the hourly and daily SSR estimates. The three metrics of
MBE, RMSE, and R2 were used to test the performance of the estimated
SSR. However, it is necessary to point out the characteristics of the
satellite data and ground-based observation data. The ground ob-
servation data at the radiation stations represent the SSR value at a
point. However, the SSR estimated by the satellite represents the
average SSR of a pixel (5 × 5 km2). This observation feature is also a
limitation of the satellite product validation.

4.2.1. Validation of instantaneous SSR estimates
First, we show the spatial distribution of SSR in a severe weather

condition. Fig. 11 presents SSR estimation results from H-8 data with
near full disk regions for 03:00 UTC, August 8, 2016. In the true color

image (Fig. 11a), a typhoon near Japan can clearly be seen. Fig. 11b
and c show the spatial distribution of AOT and COT in the full disk
region. Fig. 11d illustrates the estimated SSR. It is indicated that SSR
decreases drastically with increasing COT; high values of SSR with
lower SZA can also be seen.

H-8/AHI has a high temporal resolution of 10 min, and thus here we
adopted 10 minute-averaged SSR observations to evaluate the in-
stantaneous SSR from the satellite data. Since CMA stations do not have
instantaneous observation data, we evaluated AHI-derived SSR using
the 33 non-CMA stations. Fig. 12a presents comparisons of in-
stantaneous SSR between AHI estimated results and ground observa-
tions at 33 non-CMA stations in 2016 except for the months of January,
February, and June. The instantaneous SSR from the AHI data are
highly consistent with the ground-based observation data, with R2 of
0.85. The MBE and RMSE values at these 33 sites are 11.86 Wm−2 and
119.07 Wm−2, respectively. Fig. 12b shows the probability density
function (PDF) of the SSR in Fig. 12a. From the figure, we can confirm
that the PDF of the estimated SSR (red line) is consistent with the result
of the ground-based SSR. Fig. 13 shows comparisons of instantaneous
SSR at four randomly selected stations. Clearly, high temporal varia-
bility of SSR is retrieved well.

4.2.2. Validation of hourly SSR estimates
Fig. 14 shows the hourly mean SSR validation results at the non-

CMA and CMA stations. Both the non-CMA and CMA SSR validation
results show a high consistency between the satellite-derived SSR and
the ground observation data. For the non-CMA stations (Fig. 14a and b),
a total of 33 sites show R2 and RMSE values of 0.93 and 81.1 Wm−2,
respectively. For CMA stations (Fig. 14c and d), a total of 89 sites show
R2 and RMSE values of 0.87 and 101.86 Wm−2, respectively. The PDF
of the two SSRs for the non-CMA and CMA stations also illustrates good

Fig. 15. Same as Fig. 14, but for daily SSR validation results of the non-CMA (a and b) and CMA stations (c and d).
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consistency, as shown in Fig. 14b and d.

4.2.3. Validation of daily SSR estimates
Fig. 15 shows the scattering plot and PDF of the daily mean SSR

between AHI estimated results and ground-based observation data at
the non-CMA (Fig. 15a and b) and CMA stations (Fig. 15c and d). The
non-CMA stations show R2 and RMSE values of 0.88 and 26.58 Wm−2,
while the CMA values are 0.87 and 31.42 Wm−2, respectively. The
RMSE value at CMA stations is less than the one found by Tang et al.
(2016) (34.2 Wm−2), who combined MTSAT measurements and MODIS

atmospheric products to estimate SSR over China at all CMA stations.
Moreover, the RMSE of our daily mean SSR is significantly smaller than
the results produced by Jia et al. (2013), who used FY-2C data to es-
timate SSR with a RMSE of 49.3 Wm−2 over China. These results in-
dicate that SSR estimation in the present study works well in various
climate regions.

Fig. 16 shows the MBE, RMSE and R2 values for daily mean SSR at
all ground stations. Different symbols represent different networks.
Most of the MBE values are positive and large positive values are mainly
located in South China and the sea surface (Fig. 16a). Tang et al. (2016)

Fig. 16. a): MBE, b): RMSE, c): R2 for daily SSR at all ground stations in 2016, except the months of January, February, and June. Symbols with different shapes mean
a different network; the color bar shows the daily mean MBE, RMSE and R2 values.

Fig. 17. Comparison of SSR from hourly mean and hourly interval data at Yonsei University site on a clear day (March 29, 2018) and a cloudy day (March 7, 2018).
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reported that the higher SSR biases in South China are due to dense and
frequent cloud cover in this subtropical continental region, and this was
also confirmed by Li et al. (2004) by time-series ISCCP data and cloud
observation data. As shown in Fig. 16b, RMSE values are smaller in
most parts of China's mid-high latitudes (north of 30°N) and Aus-
tralia, < 25 W/m2. The RMSE values in southern China, southwestern
mountain areas and the equatorial waters of South Asia are higher than
those in northern China mentioned above – probably larger than 25 W/
m2. The R2 in Fig. 16c also shows similar spatial distributions to those
of MBE and RMSE, but they are inverted. The accuracy of the estimated
SSR depends not only on the calculation algorithm, but also on the
accuracy of trace gases, water vapor, retrieved aerosol and cloud
parameters, such as AOT, COT, and CER. When the accuracy of the
above parameters is high enough, the RMSE error in Fig. 16b mainly
comes from the matching of satellite data and ground-based observa-
tion, as well as the accuracy of ground-based data itself. From Fig. 16,
we can also confirm that the spatial distribution of RMSE and R2 is
obviously different each other. We consider that different surface types
and complex terrain areas lead to the poor matching between the sa-
tellite calculated SSR, and the ground observation data. The SSR esti-
mated by the satellite is the averaged value over the space of 5 × 5 km
(1 pixel), but the ground observation is a point of data. The large dif-
ference between the observation point and the surrounding surface type
or the distribution of stations in the complex terrain area will reduce
the representativeness of the observation site to the satellite observa-
tion range, resulting in the above differences.

5. Discussions

SSR products with a high temporal resolution can be used to drive
land surface models that usually need hourly or sub-hourly radiation
data. AHI has a 10-minute observation frequency, which is essential for
monitoring variations of the SSR. Here we discuss how the AHI high
observation frequency may improve the accuracy of SSR estimation.
Taking the Yonsei University site as an example, Fig. 17 shows hourly

variations of SSR for a clear day and a cloudy day. In the figure,
SSR_10min is the average of six retrievals of SSR instantaneous value
from AHI within 1 h, and the SSR_60min is a single SSR instantaneous
value from AHI within 1 h. Their difference shows the role of ob-
servation frequency in the retrieval. The difference between SSR_10min
and SSR_60min is small for the clear sky (Fig. 17a), but the difference is
considerably large under the cloudy sky (Fig. 17b). Fig. 18 shows the
comparison of daily SSR data at this station in March 2016 among the
observations, the 10-min retrieval mean and the 60-min retrieval mean.
It can be found that the degree of agreement between the ground ob-
servation data and SSR_10min is high, with MBE, RMSE and R2 of 7.1
Wm−2, 20.0 Wm−2 and 0.94, respectively (in Table 3). These error
metrics indicate much better accuracy than the SSR_60min that yields
MBE, RMSE and R2 of 20.0 Wm−2, 25.0 Wm−2, and 0.77, respectively.
Therefore, the AHI high temporal resolution is of great significance for
improving the SSR retrieval accuracy.

6. Conclusions

In this paper, surface solar radiation (SSR) was estimated from H-8/
AHI new-generation geostationary satellite measurements produced by
the LUT-based algorithm. Cloud properties derived from AHI mea-
surements were used to calculate the SSR from the proposed algorithm.
However, the accuracy of calculated SSR depends largely on the relia-
bility of cloud parameters. The calculation process of the SSR includes
two major steps.

The first step was the retrieval of cloud properties. A cloud property
retrieval algorithm was established to calculate the COT and CER for
water and ice clouds as input data to the SSR calculation algorithm. The
Voronoi ice crystal scattering database was improved to retrieve the
AHI ice cloud properties. The retrieval results of the COT and CER from
the AHI data were validated by comparing them with cloud properties
from the MODIS C6 product. As a result, the AHI-derived COT and CER
for water cloud were correlated well with MODIS C6, with correlation
coefficients of 0.77 and 0.82, respectively. The COT of the ice cloud also
shows good consistency with a correlation coefficient of 0.85. It was
confirmed that the CER from the AHI data is significantly larger than
that of the MODIS C6. The R2, MBE and RMSE of the ice cloud CER from
the two sets of satellite data are 0.38 μm, 3.98 μm and 14.03 μm in the
selected areas, respectively. The reason for the lower correlations is
considered to be caused by the differences in the shapes of assumed ice
particle models as well as the different single-scattering properties as-
sumed for the retrievals from the two sets of satellite data.

The second step was the estimation of the SSR, with the input of
cloud parameters derived in the first step and the AHI official aerosol

Fig. 18. Comparison of daily SSR between high temporal (SSR_10min) and hourly interval (SSR_60min) against in-situ measurements (Yonsei University) for March
2016.

Table 3
Comparison of daily SSR values between high temporal (SSR_10min) and
hourly interval (SSR_60min) against in-situ measurements at Yonsei University
station for March 2016.

Yonsei University MBE (Wm−2) RMSE (Wm−2) R2

H8 10min 7.1 20.0 0.94
H8 60min 20.0 25.0 0.77
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product. Sensitivity analysis of SSR to SZA, COT, AOT and surface al-
bedo was performed to optimize the LUT in the SSR calculation algo-
rithm. Based on the sensitivity analysis, LUT was calculated using the
RSTAR model. Furthermore, a LUT-based algorithm was developed to
estimate SSR by inputting the cloud and aerosol parameters and other
auxiliary data (e.g. SZA, As). Finally, estimated SSR from the AHI data
were validated via ground observation data. The estimated SSR was
validated by 122 radiation stations at several networks, which covered
the full disk regions of Himawari-8. From the validation result we
confirmed that AHI estimated SSR in this study is retrieved well. The
instantaneous, hourly and daily SSR from the AHI estimations is highly
consistent with observed SSR. The RMSE of instantaneous SSR was
119.07 Wm−2, hourly was SSR 101.86 Wm−2 (81.18 Wm−2 for CMA
stations), and the daily SSR was 31.42 Wm−2 (26.58 Wm−2). The
RMSE of the hourly and daily SSR data for CMA stations is smaller than
the conventional results produced by Jia et al. (2013) and Tang et al.
(2016). Finally, the importance of high observation frequency SSR data
is discussed. It is confirmed that SSR with 10-minute observation fre-
quency from the AHI data is useful to improve the accuracy of SSR
estimation, which is used to drive the land surface models.

In summary, high accuracy of the SSR product can be obtained
through new-generation satellite sensor AHI, compared to conventional
satellites. These high-resolution SSR data are important for solar energy
applications and for the driving of land surface and hydrological
models.
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