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Abstract. Aerosol optical depth (AOD) has become a crucial
metric for assessing global climate change. Although global
and regional AOD trends have been studied extensively, it
remains unclear what factors are driving the inter-decadal
variations in regional AOD and how to quantify the rela-
tive contribution of each dominant factor. This study used
a long-term (1980–2016) aerosol dataset from the Modern-
Era Retrospective Analysis for Research and Applications,
version 2 (MERRA-2) reanalysis, along with two satellite-
based AOD datasets (MODIS/Terra and MISR) from 2001
to 2016, to investigate the long-term trends in global and
regional aerosol loading. Statistical models based on emis-
sion factors and meteorological parameters were developed
to identify the main factors driving the inter-decadal changes
of regional AOD and to quantify their contribution. Evalu-
ation of the MERRA-2 AOD with the ground-based mea-
surements of AERONET indicated significant spatial agree-
ment on the global scale (r = 0.85, root-mean-square er-
ror= 0.12, mean fractional error= 38.7 %, fractional gross
error= 9.86 % and index of agreement= 0.94). However,
when AOD observations from the China Aerosol Remote

Sensing Network (CARSNET) were employed for indepen-
dent verification, the results showed that MERRA-2 AODs
generally underestimated CARSNET AODs in China (rela-
tive mean bias= 0.72 and fractional gross error=−34.3 %).
In general, MERRA-2 was able to quantitatively reproduce
the annual and seasonal AOD trends on both regional and
global scales, as observed by MODIS/Terra, although some
differences were found when compared to MISR. Over the
37-year period in this study, significant decreasing trends
were observed over Europe and the eastern United States.
In contrast, eastern China and southern Asia showed AOD
increases, but the increasing trend of the former reversed
sharply in the most recent decade. The statistical analyses
suggested that the meteorological parameters explained a
larger proportion of the AOD variability (20.4 %–72.8 %)
over almost all regions of interest (ROIs) during 1980–
2014 when compared with emission factors (0 %–56 %). Fur-
ther analysis also showed that SO2 was the dominant emis-
sion factor, explaining 12.7 %–32.6 % of the variation in
AOD over anthropogenic-aerosol-dominant regions, while
black carbon or organic carbon was the leading factor over
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the biomass-burning-dominant (BBD) regions, contributing
24.0 %–27.7 % of the variation. Additionally, wind speed
was found to be the leading meteorological parameter, ex-
plaining 11.8 %–30.3 % of the variance over the mineral-
dust-dominant regions, while ambient humidity (including
soil moisture and relative humidity) was the top meteorolog-
ical parameter over the BBD regions, accounting for 11.7 %–
35.5 % of the variation. The results of this study indicate that
the variation in meteorological parameters is a key factor in
determining the inter-decadal change in regional AOD.

1 Introduction

Atmospheric aerosols play a key role in the energy budget of
the Earth’s climate system through aerosol–radiation interac-
tions (direct effect) and aerosol–cloud interactions (indirect
effect). On the one hand, by absorbing and scattering solar
and terrestrial radiation, aerosols generally cool the Earth’s
surface and heat the atmosphere, depending on the absorp-
tion level of the aerosols (McCormick and Ludwig 1967;
Ding et al., 2016; Sun et al., 2018; Zheng et al., 2019). This
effect is termed the aerosol direct effect. The cooling effect
of aerosols may partly counteract the warming caused by the
increase in CO2 and other greenhouse gases in the past sev-
eral decades (Bernstein et al., 2007). On the other hand, by
acting as cloud condensation nuclei or ice nuclei, not only
can aerosols alter the microphysical and radiative proper-
ties of clouds, as well as their lifetimes (Rosenfeld et al.,
2019; Andreae, 2009), but they can also change the precipi-
tation efficiency (depending on the aerosol type; Jiang et al.,
2018), modify the characteristics of the atmospheric circula-
tion and affect the global hydrological cycle (Ramanathan et
al., 2001; Ackerman et al., 2000; Hansen et al., 1997; Sarangi
et al., 2018). This effect is termed the aerosol indirect ef-
fect. Furthermore, depending on their physical and chemical
properties, as well as their composition, aerosols can affect
ecosystems (Yue et al., 2017; Liu et al., 2017), atmospheric
visibility (Che et al., 2007, 2014; Wang et al., 2009; Gui
et al., 2016) and even human health (such as through their
roles in lung cancer, respiratory infection and cardiovascu-
lar disease; Silva et al., 2013; Lelieveld et al., 2015; Cohen
et al., 2017). Unlike the long-lived greenhouse gases (e.g.,
CO2, CH4 and N2O), aerosols produced via anthropogenic
activity or naturally have relatively short life spans and large
spatial and temporal variability. Therefore, it is essential to
investigate the long-term variability and inter-decadal trends
of atmospheric aerosol loadings on both regional and global
scales.

Aerosol optical depth (AOD), representing the attenuation
of sunlight induced by aerosols and serving as an important
measure of aerosol loading, has become a crucial metric in
assessing global climate change and the effects of aerosols
on radiation, precipitation and clouds. Through the efforts of

scientists in various countries over the past 3 decades, a series
of AOD datasets with different time spans derived from con-
tinuous ground-based and satellite observations have been
accumulated. These datasets have been widely employed to
investigate the long-term annual and seasonal trends of AOD
at global and regional scales. Although ground-based obser-
vations have limited spatial and/or temporal coverage, they
can provide more detailed information on aerosol proper-
ties and long-term variations for satellite and model valida-
tion. For example, using the long-term and high-quality AOD
datasets from the Aerosol Robotic Network (AERONET), Li
et al. (2014) found that North America and Europe experi-
enced a uniform decrease in AOD from 2000 to 2013. Che et
al. (2015) estimated the change in AOD based on AOD data
at 12 long-term ground-based sites in China from the China
Aerosol Remote Sensing Network (CARSNET) and found
that AOD showed a downward trend from 2006 to 2009 and
an upward trend from 2009 to 2013. Compared with the
spatial sparseness of ground-based observations, inferences
from satellite-based sensors can provide a global perspec-
tive of AOD change, due to their continuous spatial measure-
ments. Previous studies (Hsu et al., 2012; Pozzer et al., 2015;
Mehta et al., 2016; Proestakis et al., 2018; Klingmüller et al.,
2016; De Leeuw et al., 2018; Zhang and Reid, 2010) have
investigated global and regional AOD trends by using multi-
ple satellite observations, including the Moderate Resolution
Imaging Spectroradiometer (MODIS), the Multiangle Imag-
ing Spectroradiometer (MISR), the Sea-viewing Wide Field-
of-view Sensor (SeaWiFS) and others. These studies have
shown increased AODs over eastern China, India, the Middle
East (ME), and the Bay of Bengal and decreased AODs over
the eastern United States (EUS) and Europe.

In general, regional AOD changes are closely linked to
the variations in natural emissions driven by meteorologi-
cal conditions (such as mineral dust) and local anthropogenic
emissions associated with economic and population growth.
For example, over anthropogenic-aerosol-dominant regions,
most of the primary pollutant emissions such as black carbon
(BC) and aerosol precursors (such as SO2, NOx and NH3)
in North America and Europe have declined in response to
emissions control (Hammer et al., 2018). In contrast, pollu-
tant emissions and their precursors in the rapidly develop-
ing countries (such as India and China) have increased over
the past few decades, attributable to enhanced industrial ac-
tivity. However, as a consequence of clean-air actions, an-
thropogenic emissions in China have declined significantly
in recent years (Zheng et al., 2018). It has been proven that
these changes in local pollutant emissions or aerosol precur-
sors over the above regions can, to a certain extent, explain
the regional AOD variability, as observed in long-term satel-
lite aerosol data records (De Meij et al., 2012; Itahashi et al.,
2012; Feng et al., 2018). On the other hand, various studies
have shown that meteorological changes play a major role
in determining the inter-decadal trend of AOD over mineral-
dust-dominant regions, particularly in the Sahara desert (SD)
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and the ME (Pozzer et al., 2015; Klingmüller et al., 2016).
Based on model simulations during 2001–2010, Pozzer et
al. (2015) suggested that, over biomass-burning-dominant re-
gions, the changes in both meteorology and emissions are
equally important for driving AOD trends. Considering the
localized changes in anthropogenic aerosol emissions and
meteorological conditions in different regions, a key question
is whether these factors are responsible for the regional AOD
trends or which main factors dominate the trends. Therefore,
it is important to investigate the cause of regional AOD trends
in terms of the variations in both anthropogenic emissions
and meteorological factors for projecting the response of the
Earth atmosphere system to future changes.

In this study, we used a long-term (1980–2016) aerosol
dataset obtained from the Modern-Era Retrospective Anal-
ysis for Research and Applications, version 2 (MERRA-
2) reanalysis, along with two satellite-based datasets
(MODIS/Terra and MISR) during 2001–2016, to conduct a
comprehensive estimation of global and regional AOD trends
over different periods. To ensure the reliability of the trend
assessment, 468 AERONET sites and 37 CARSNET sites
with continuous observations for at least 1 year were used to
assess the performance of the MERRA-2 AOD on a global
scale. A total of 12 regions dominated by different aerosol
types were selected to explore the relationships between lo-
cal anthropogenic emissions, meteorological factors and re-
gional AOD. Furthermore, stepwise multiple linear regres-
sion (MLR) models were developed to estimate the regional
AOD as a function of emission factors and other meteoro-
logical parameters, which allowed the influences of emis-
sions and meteorology to be separated. Then, the Lindeman,
Merenda and Gold (LMG) method was applied to the MLR
models to identify the main factors driving the regional AOD
variability and to quantitatively evaluate the contribution of
each driving factor.

2 Data and methods

2.1 MERRA-2 aerosol reanalysis data

MERRA-2 is the latest atmospheric reanalysis version for the
modern satellite era provided by the NASA Global Modeling
and Assimilation Office (Gelaro et al., 2017), using the God-
dard Earth Observing System, version 5 (GEOS-5), Earth
system model (Molod et al., 2012, 2015), which includes
atmospheric circulation and composition, ocean circulation
and land surface processes, and biogeochemistry. Note that
in MERRA-2, in addition to providing assimilation of tradi-
tional meteorological observations, a series of AOD observa-
tion datasets, including bias-corrected AODs, retrieved from
the Advanced Very High Resolution Radiometer (AVHRR)
instrument over the oceans (Heidinger et al., 2014) and
MODIS (onboard both the Terra and Aqua satellites) (Levy
et al., 2010; Remer et al., 2005), and non-bias-corrected

AODs retrieved from MISR (Kahn et al., 2005) over bright
surfaces and ground-based AERONET observations (Hol-
ben et al., 1998), were also assimilated within the GEOS-5
Earth system model. An overview of the MERRA-2 model-
ing system and a more detailed description of aerosols in the
MERRA-2 system can be found in Gelaro et al. (2017) and
Buchard et al. (2017), respectively. In this study, the 3-hourly
MERRA-2 analyzed AOD fields, at a resolution of 0.5◦ lati-
tude by 0.625◦ longitude, were used for evaluation, while the
monthly mean AOD values were used for climate analysis.

2.2 Satellite aerosol data

Two AOD datasets during 2001–2016 retrieved from MODIS
and MISR, both onboard the Terra platform, were used in
this study. The MODIS sensor onboard the Terra satellite
observes the Earth at multiple wavelengths (range: 410–
1450 nm; 36 bands) with a 2330 km swath, which has pro-
vided near-daily global coverage since 2000 (King et al.,
2003; Levy et al., 2015). This study employed the com-
bined Dark Target–Deep Blue (DTB) AOD algorithm at
550 nm, with a 1◦× 1◦ resolution, from the level 3 (L3)
monthly global aerosol dataset for MODIS Terra, Collection
6.1. The average mean absolute error (RMSE) of the level 3
MODIS/Terra DTB monthly AOD data have been estimated
to be about 0.075 (0.120) over land (Wei et al., 2019). Note
that MODIS/Aqua L3 was not used because it started late
(June 2002). In addition, compared with the linear trend in
MODIS/Aqua AOD during the overlapping period (2003–
2016), MODIS/Terra AOD shows a similar performance
worldwide (including spatial–temporal consistency and dis-
tribution patterns of trend values) (Fig. S1), although the
Terra sensor has been documented to suffer from degrada-
tion issues. The similar performance between MODIS/Terra
and MODIS/Aqua is mainly attributed to a new calibration
approach in the C6 version, which can remove major non-
polarimetric calibration trends from the MODIS data (Levy
et al., 2013, 2015; De Leeuw et al., 2018).

Total column AOD observations from the MISR sen-
sor onboard the Terra satellite, which provides observations
of the Earth’s atmosphere with nine different along-track
viewing zenith angles at four different spectral bands (440–
866 nm) (Diner et al., 1998), were utilized. It should be noted
that, although MISR has a much narrower swath (∼ 360 km)
compared with MODIS, the multi-angle observation from
MISR provides the capability for retrieving a more reliable
AOD over bright surfaces, such as desert areas (Diner et al.,
1998; Kahn et al., 2010). The AOD retrieval in the 555 nm
channel from monthly global aerosol datasets at a spatial res-
olution of 0.5◦×0.5◦ were used in this study. The uncertainty
of the MISR level 2 (L2) AOD data over land and ocean
has been estimated to be ±0.05 or ±(0.2×AOD) (Kahn et
al., 2005). Note that the wavelength of AOD (555 nm) re-
ported by MISR is different from that of the MERRA-2 and
MODIS/Terra datasets (550 nm); however, this slight wave-
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length difference is not expected to affect our analysis and
conclusions regarding AOD annual and seasonal trends.

2.3 Ground-based reference data: AERONET and
CARSNET

Owing to the accuracy of ground-based AOD observa-
tions, long-term instantaneous AOD observation records
from two independent operational networks – AERONET
and CARSNET – were used to validate the 3-hourly
MERRA-2 AOD values. Since there are not enough long-
term AERONET observations in China, it was neces-
sary to examine the performance of the MERRA-2 ana-
lyzed AOD fields using additional AOD observations from
CARSNET. CARSNET is a ground-based network for mon-
itoring aerosol optical properties that was first established
by the China Meteorological Administration in 2002 (Che
et al., 2009). Both AERONET and CARSNET use the same
types of sun photometers, which can observe direct solar
and sky radiances at seven wavelengths (typically 340, 380,
440, 500, 670, 870 and 1020 nm) within a 1.2◦ full field of
view at intervals of about 15 min (Holben et al., 1998; Che
et al., 2009). For CARSNET, operating instruments are cal-
ibrated and standardized using CARSNET reference instru-
ments, which in turn are regularly calibrated at Izaña, Tener-
ife, Spain, together with the AERONET program (Che et al.,
2009, 2018). The cloud-screened AOD (based on the work of
Smirnov et al., 2000) in CARSNET has the same accuracy as
AERONET, with an estimated uncertainty of 0.01–0.02 (Eck
et al., 1999; Che et al., 2009).

In this work, we collected ground-based AOD observa-
tions (more than 1 year of data) from 468 AERONET sites
worldwide and 37 CARSNET sites in China. The locations of
these ground-based sites are shown in Fig. 1. Detailed infor-
mation about these AERONET and CARSNET sites is given
in Tables S4 and S5. The combined instantaneous AOD data
collected by AERONET (quality-assured and cloud-screened
L2 data) during 1993–2016 and CARSNET (cloud-screened
L2 data) during 2002–2014 were used. Moreover, to en-
sure the reliability of AOD evaluation, the AOD measure-
ments in two adjacent channels (i.e., 440 and 675 nm) from
AERONET and CARSNET were subsequently interpolated
to 550 nm for MERRA-2, using a second-order polynomial
fit to ln (AOD) vs. ln (wavelength) (Eck et al., 1999).

2.4 Emissions inventory and meteorological data

The anthropogenic emissions inventories used in this study
were obtained from the Peking University (PKU) website
(http://inventory.pku.edu.cn/, last access: 31 March 2019),
including total suspended particles (TSP) (Huang et al.,
2014), SO2 (Su et al., 2011), BC (Wang et al., 2014) and
organic carbon (OC) (Huang et al., 2015), with a spatial res-
olution of 0.1◦× 0.1◦ and spanning the period 1980–2014.
The emissions were calculated using a bottom-up approach

based on fuel consumption and an emissions factor database.
Huang et al. (2015) showed that the PKU emissions in-
ventories are broadly similar to those of EDGAR version
4.2 (Edgar, 2011). Monthly meteorological fields from the
MERRA-2 global reanalysis were also utilized, including to-
tal surface precipitation, surface wind speed, surface rela-
tive humidity (RH), mean sea level pressure, etc. These data
have a spatial resolution of 0.5◦×0.625◦ and span the period
1980–2016 (Gelaro et al., 2017). For more detailed informa-
tion on the selected meteorological parameters, see Table 1.

2.5 Regions of Interest (ROIs)

In this study, 12 regions of interest (ROIs) dominated by
different aerosol types were selected to study the long-term
trends in regional aerosol loading and how they are related
to local emission changes as well as the variation in meteo-
rological variables. These 12 ROIs included three mineral-
dust-dominant regions, SD (3–25◦ N, 17◦W–20◦ E), ME
(14–33◦ N, 38–56◦ E), and northwestern China (NWC; 35–
47◦ N, 73–94◦ E); three biomass-burning-dominant regions,
the Amazon zone (AMZ; 1–22◦ S, 46–60◦W), central Africa
(CF; 2–18◦ S, 12–33◦ E), and southeastern Asia (SEA; 8◦ S–
18◦ N, 96–127◦ E); and six anthropogenic-aerosol-dominant
regions, EUS (29–45◦ N, 73–94◦W), western Europe (WEU;
37–59◦ N, 10◦W–18◦ E), southern Asia (SA; 10–30◦ N, 72–
90◦ E), northern China (NC; 30–40◦ N, 108–120◦ E), south-
ern China (SC; 20–30◦ N, 108–120◦ E) and northeastern Asia
(NEA; 30–41◦ N, 125–145◦ E). The geographical boundaries
of these ROIs are shown in Fig. 1.

2.6 Statistical analysis

2.6.1 Comparison methods

AOD data from the 468 AERONET sites worldwide and
the 37 CARSNET sites in China were used to evaluate the
performance of the 3-hourly AOD datasets from MERRA-
2. To ensure the accuracy of the assessment, instantaneous
ground-based AOD observations within 1 h, obtained from
AERONET and CARSNET, were averaged as the hourly
mean AOD and compared with those from the MERRA-2 3-
hourly AOD datasets (see Fig. 2a for the whole procedure).

The errors and quality of the MERRA-2 AOD retrievals
are reported using the (Pearson) correlation coefficient (R,
Eq. 1), the mean absolute error (MAE, Eq. 2), root-mean-
square error (RMSE, Eq. 3), the relative mean bias (RMB,
Eq. 4), the mean fractional error (MFE, Eq. 5), the fractional
gross error (FGE, Eq. 6), and the index of agreement (IOA,
Eq. 7) for validating the reanalysis (Yumimoto et al., 2017).
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Figure 1. Geographical locations of the AERONET (yellow dots) and CARSNET sites (magenta dots) used in this work. The red boxes
represent the 12 regions of interest selected in this study: northeastern Asia (NEA), northern China (NC), southern China (SC), southeastern
Asia (SEA), northwestern China (NWC), southern Asia (SA), Middle East (ME), western Europe (WEU), Sahara desert (SD), central Africa
(CF), eastern United States (EUS) and Amazon zone (AMZ).

Table 1. Prediction variables used in the stepwise MLR models.

Data type Variables Predictors used in the stepwise MLR modela Data source

Emission TSP Gridded monthly total emissions of total suspended Peking University global emissions
factors particles inventories at 1× 1 horizontal

SO2 Gridded monthly total emissions of sulfur dioxide resolution
BC Gridded monthly total emissions of black carbon (http://inventory.pku.edu.cn/home.html,
OC Gridded monthly total emissions of organic carbon last access: 31 March 2019)

Meteorological Pre Gridded monthly total surface precipitation MERRA-2 reanalysis dataset at
parameters PBLH Gridded monthly mean planetary 0.5◦× 0.625◦ horizontal resolution

boundary layer height (https://disc.gsfc.nasa.gov/daac-bin/FTPSubset2.pl,
SM Gridded monthly mean soil moisture at surface last access: 31 March 2019)
SLP Gridded monthly mean sea level pressure
CLF Gridded monthly mean cloud fraction
Ts Gridded monthly mean surface temperature
T Gridded monthly mean 850, 700

and 500 hPa temperature
dT Gridded monthly mean temperature difference between

900 hPa and the surface and 850 hPa and the surface
GH Gridded monthly mean 850, 700 and

500 hPa geopotential height
RHs Gridded monthly mean surface relative humidity
RH Gridded monthly mean 850, 700 and

500 hPa relative humidity
Ome Gridded monthly mean 850, 700 and 500 hPa vertical velocity
U Gridded monthly mean 850, 700 and 500 hPa zonal wind
V Gridded monthly mean 850, 700 and

500 hPa meridional wind
WSs Gridded monthly mean surface wind speed
WS Gridded monthly mean 850, 700 and 500 hPa wind speed
VWSb

500−850 Gridded monthly mean vertical wind shear
between 500 and 850 hPa

a Units: g km−2 (TSP, SO2, BC, OC); kg m−2 s−1 (Pre); m (PBLH, GH); 1 (SM, CLF); Pa (SLP); K (T , dT ); % (RH); pa s−1 (Ome) and m s−1 (U,V, WS, VWS500−850). b VWS500−850 was

calculated as
√
(U500 −U850)2 + (V500 −V850)2.

www.atmos-chem-phys.net/19/10497/2019/ Atmos. Chem. Phys., 19, 10497–10523, 2019
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Figure 2. Flowchart with the procedure followed for (a) the evaluation of MERRA-2 global AOD, using the AERONET and CARSNET
ground-based reference dataset, and (b) the evaluation of global and regional AOD trends.

R =

∑N
i=1(Oi −O)(Mi −M)√∑N

i=1(Oi −O)
2
∑N
i=1(Mi −M)2

, (1)

MAE=
1
N

N∑
i=1

|Mi −Oi | , (2)

RMSE=

√
1
N

∑N

i=1
(Mi −Oi)

2, (3)

RMB=M/O, (4)

MFE=
2
N

N∑
i=1

|Mi −Oi |

Mi +Oi
× 100, (5)

FGE=
2
N

N∑
i=1

Mi −Oi

Mi +Oi
× 100, (6)

IOA= 1−
∑N
i=1(Oi −Mi)

2∑N
i=1
(∣∣Oi −O∣∣+ ∣∣Mi −M

∣∣)2 , (7)

where N is the total number of pairs of modeled (M ,
i.e., MERRA-2) and observed (O, i.e., AERONET or
CARSNET) values. MFE represents a measure of overall
modeling error without emphasizing outliers. MFE can range
from 0 (best score) to 200 %. FGE represents a measure of
the estimation bias error that allows symmetric analysis of
overestimation or underestimation by the model relative to
observations. The maximum and minimum values of FGE
are +200 % and −200 %, respectively, and 0 is the best
value. IOA represents a standard measure of the degree of

model accuracy and it ranges from 0 to 1 (perfect agreement)
(Willmott, 1981).

2.6.2 Trend analysis and stepwise MLR model

Long-term trend analysis of the AOD from MERRA-2,
MODIS/Terra and MISR was performed on monthly time
series data, using ordinary least-squares linear regression –
a technique widely employed for trend analysis of aerosol
data (Hsu et al., 2012; Pozzer et al., 2015; Klingmüller et al.,
2016; Ma et al., 2016; Hammer et al., 2018). Prior to regres-
sion, these data were first deseasonalized by subtracting the
monthly mean for different study periods for each grid cell
to eliminate the large influence of the annual cycle. To bet-
ter compare the results of the trend analysis, the MERRA-2
and MISR datasets at high spatial resolution (0.5◦× 0.625◦

and 0.5◦× 0.5◦, respectively) were bilinear interpolation to
the MODIS/Terra resolution of 1◦× 1◦ (see Fig. 2b for the
whole procedure). Incomplete sampling from the satellite in-
struments may introduce biases in long-term trend analysis.
Thus, to ensure the reliability of the trend analysis, each grid
cell for the MISR and MODIS/Terra AODs was required to
have valid data for at least 60 % of the time period before
regression was performed. Two-tailed Student’s t tests were
used to assess the robustness of each trend estimate, and the
criterion for statistical significance was set at the 95 % confi-
dence level.

Pearson’s R was used to measure the strength of the re-
lationship between AOD, anthropogenic emissions and me-
teorological parameters. MLR models of monthly MERRA-
2 AODs were built for the 12 ROIs using emission factors,
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meteorological parameters or both as predictors. A total of
4 emission factors and 32 meteorological parameters were
considered in the MLR models (Table 1). For each ROI, the
MLR model could be expressed as

y = β0+

n∑
i=1

βixi + ε, (8)

where y is the standardized monthly AOD and (x1, . . . , xn) is
the ensemble of standardized monthly explanatory variables.
The standardized regression coefficient βi was determined
by the least-squares method, and ε is an error term.

In each step of the MLR model, a variable is considered
to be moved or removed from the set of explanatory vari-
ables using the stepwise regression method to obtain the
best model fit. In other words, for each step the model adds
a significant (P < 0.05) explanatory variable to the model,
it can be removed only if it is insignificant (P > 0.1) af-
ter adding or removing another variable. A similar model
has been widely used to investigate the relationship between
aerosols and meteorology (e.g., Yang et al., 2016; Lu et al.,
2016; Zhai et al., 2019; Tai et al., 2010).

Although the most important explanatory variables were
obtained via the above stepwise MLR model, there might be
multiple collinearities among different explanatory variables.
In that situation, the standardized regression coefficient as an
explanation of relative importance is unstable and mislead-
ing. To eliminate the influence of multi-collinearity, the vari-
ance inflation factor (VIF) (Altland et al., 2006) was used to
test whether there was a multi-collinearity problem among
the variables. VIF is often regarded as a measure of collinear-
ity between each variable and another variable in the model.
VIF can be calculated from the following relationship:

VIF=
1

1−R2
i

, (9)

where R2
i is the coefficient of determination of linear regres-

sion between the ith independent variable and other indepen-
dent variables in the model. The present study used a VIF
threshold of 10, as is widely recommended in the literature
(e.g., Hair et al., 2007; Barnett et al., 2006; Field, 2005), to
represent the maximum acceptability of collinearity.

Finally, to better quantify the relative contributions of each
independent explanatory variable, which were obtained from
the stepwise MLR model, to AOD variability, the LMG
method (Bi, 2012; Grömping, 2006; Lindeman et al., 2014)
was applied. This approach is one of the most advanced
methods for determining the relative importance of explana-
tory variables in a linear model and provides a decomposition
of the fraction of model-explained contributions (i.e., R2)
into nonnegative contributions using semi-partial R values.
The LMG measure for the ith regressor xi can be expressed
as

LMG(xi)=
1
p!

∑
r permutation

seqR2({xi} |r), (10)

Figure 3. Evaluation of the 3-hourly MERRA-2 AOD against the
(a) AERONET and (b) CARSNET AODs. The color-coded dots
indicate the number of samples. The solid red line is the line of
best fit and the dashed black line is the 1 : 1 line. For descriptions of
statistical metrics, see the comparison methods section.

where r represents the rth permutation (r = 1, 2, . . . , p!) and
seqR2({xi} |r) represents the sequential sum of squares for
the regressor xi in the ordering of the regressors in the rth
permutation.

For a detailed introduction to and description of the cal-
culation process of the LMG measure, refer to Grömp-
ing (2006). For all variables (including the AODs from
MERRA-2, MISR, and MODIS/Terra; the meteorological
variables from MERRA-2; and the emission estimates from
PKU), the regional mean was calculated by averaging valid
variable values over all grids within the 12 ROIs. For
the seasonal analysis, the four seasons were considered as
follows: spring (March–April–May), summer (June–July–
August), autumn (September–October–November) and win-
ter (December–January–February).

3 Results and discussion

3.1 Assessing the performance of the MERRA-2 AOD
datasets on the global scale

Although the official documentation points out that a large
number of AOD observations have been assimilated into
the system (Buchard et al., 2017), the global performance
of MERRA-2 AOD is still unknown. In addition, since
MERRA-2 assimilates a variety of AOD datasets from dif-
ferent observation periods (such as AVHRR before 1999,
AERONET since 1999 and Earth Observing System (EOS)
era satellites after 2000) (Buchard et al., 2017), it is diffi-
cult to disentangle the influence of each assimilated dataset
alone on the overall accuracy of MERRA-2. Strictly speak-
ing, we need to point out that MERRA-2 and AERONET are
not independent of each other (after 1999). Nevertheless, we
hope that this assessment will still provide some reference
for other studies using the MERRA-2 AOD dataset. There-
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Figure 4. Comparison of the 3-hourly MERRA-2 AOD datasets with AOD observations of 468 AERONET sites worldwide and 37
CARSNET sites in China: site performance maps for the (a) correlation coefficient (R), (b) mean absolute error (MAE), root-mean-square
error (RMSE), (c) relative mean bias (RMB), (d) mean fractional error (MFE), (e) fractional gross error (FGE), and (f) the index of agree-
ment (IOA) between MERRA-2 AOD and ground-based AOD observations. The size of the circles in (b) represents the RMSE and their
inner color represents the MAE. The bars in the lower-left inset in each panel represent the frequency distribution histograms for the R,
MAE, RMSE, RMB, MFE, FGE and IOA between MERRA-2 and all ground-based observations incorporating AERONET and CARSNET,
respectively. Note that all sites within each region of interest (ROI) are integrated to assess the accuracy of the MERRA-2 AOD dataset in
that area. The performance of the MERRA-2 AOD dataset in each ROI is illustrated in Figs. S2 and S3.

fore, we first use AERONET to evaluate the overall perfor-
mance of MERRA-2 AOD on the global scale and then use
CARSNET to independently examine the performance of the
MERRA-2 analyzed AOD field in China.

3.1.1 MERRA-2 vs. AERONET

Using all of the collected AERONET observations, the
overall performance of the MERRA-2 AOD on a global
scale was validated first. The results showed significant spa-
tial agreement between MERRA-2 and ground-based AOD
on the global scale, with an acceptable bias (r = 0.85,
RMSE= 0.12, MAE= 0.06 and MFE= 38.73 %) (Fig. 3a).
Moreover, Fig. 4 shows site-to-site comparisons of the 3-
hourly MERRA-2 AOD at 550 nm and the collocated
AERONET AOD observations, and a statistical summary of
the comparison and the location information for each site are
given in Table S4. Globally, the MERRA-2 AOD datasets
exhibited high R values against ground-based observations:
over 83.3 %, 59.0 % and 28.0 % of sites had anR greater than
0.6, 0.7 and 0.8, respectively; 95.9 % and 87.6 % of sites had
an IOA greater than 0.8 and 0.9, respectively; 85.3 % and

50.4 % of sites had an MAE lower than 0.1 and 0.05, re-
spectively; 22.6 % and 59.8 % of sites had an MFE lower
than 30 % and 40 %, respectively; and more than 69.9 %
and 89.3 % of sites had an RMSE less than 0.1 and 0.2, re-
spectively. These results indicated that, although MERRA-2
does not perform well in some individual regions, it does
not affect the global accuracy of MERRA-2 as the latest
global aerosol reanalysis dataset, especially in comparison
with other satellite datasets. In addition, the obvious regional
differences in the global performance of MERRA-2 AOD
should not be overlooked. According to Fig. 4c and e, the
RMB was greater than 1 and FGE was greater than 0 % in
the United States, southern South America and Australia,
which indicates that MERRA-2 overestimates the AOD in
these regions. This overestimation may be attributed to the
bias of MISR AOD in these areas (not shown here) and the
fact that AERONET was not assimilated in MERRA-2 un-
til 1999 (Buchard et al., 2017). In contrast, clear underes-
timation was found in other regions, such as the Amazon
Basin, southern Europe, SA and SEA. This apparent under-
estimation (FGE=−23.9 %; see Fig. S2b) in NC was fur-
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Table 2. Statistical measures of the 3-hourly MERRA-2 AOD vs. AERONET and CARSNET AODs over the 12 regions of interest.

ROIs Number of sites Number of collocations R MAE RMSE RMB MFE (%) FGE (%) IOA

NEA 13 35 066 0.79 0.10 0.16 0.93 33.18 −2.65 0.92
NC 3 16 782 0.80 0.25 0.42 0.71 45.44 −23.85 0.78
SC 2 3616 0.87 0.08 0.13 1.01 24.73 5.25 0.95
SEA 17 32 112 0.79 0.12 0.24 0.84 31.26 −8.52 0.86
NWC 1 4633 0.85 0.03 0.05 1.01 30.74 1.98 0.98
SA 13 33 385 0.84 0.11 0.18 0.87 34.54 −8.06 0.93
ME 10 34 312 0.95 0.04 0.07 1.02 12.89 4.13 0.98
WEU 81 252 767 0.79 0.04 0.07 0.95 32.91 2.01 0.97
SD 14 69 982 0.81 0.14 0.20 0.97 33.22 4.40 0.91
CF 5 12 380 0.83 0.08 0.14 0.75 35.78 −22.96 0.93
EUS 38 105 577 0.70 0.07 0.11 1.11 42.28 17.82 0.94
AMZ 8 21 105 0.82 0.08 0.19 0.84 35.84 −1.73 0.89
NC∗ 12 27 508 0.70 0.23 0.33 0.71 47.31 −35.45 0.81
SC∗ 2 2346 0.74 0.15 0.21 0.92 30.85 −8.01 0.90
NWC∗ 3 10 103 0.67 0.20 0.33 0.69 45.17 −26.00 0.78

∗ Indicates the statistical results for CARSNET sites.

ther confirmed using additional ground-based AOD obser-
vations from CARSNET (reported in the following section).
Notably, this underestimation seems to be systematic, as neg-
ative RMB and FGE were found in most parts of the North-
ern Hemisphere, except the United States. Such systematic
underestimation over these regions is likely due to the lack
of nitrate aerosols in the GOCART model (Buchard et al.,
2017). Furthermore, the underestimation seems to be more
prominent in high nitrate emission areas such as NC and SA.

To ensure the accuracy of interannual variations in AODs
over different ROIs (as defined in Fig. 1), the regional perfor-
mance of MERRA-2 AOD was evaluated by integrating all
sites within each ROI (Table 2 and Fig. S2). Regionally, R
ranged from 0.7 to 0.95 among the 12 ROIs, with the high-
est R (0.95) occurring in the ME and the lowest (0.7) in the
EUS. Similar to the site-to-site FGE distribution, the FGE
presented a systematic overestimation in the EUS of around
17.82 %. In contrast, the FGE showed significant systematic
underestimation in NC, SA, CF and SEA, with the degree of
underestimation being 23.9 %, 8.1 %, 23.0 % and 8.5 %, re-
spectively. Significant differences in these regions were also
supported by small RMBs of 0.71, 0.87, 0.75 and 0.84, re-
spectively.

The MERRA-2 AOD datasets performed better over SA
than over NC, which is one of the most polluted areas in
the world, in terms of a smaller MAE (0.11) and RMSE
(0.18) (Fig. S2f). The better performance over SA is likely
due to more AOD observations having been assimilated in
MERRA-2 compared to over NC (Buchard et al., 2017). For
NEA, SC and WEU, MERRA-2 AOD generally compared
well to AERONET AOD, with the MAE being less than
0.1, MFE less than 35 % and RMB greater than 0.93. For
the SD, results were relatively poor in that the MAE was
greater than 0.1 and the RMSE greater than 0.2. Besides, al-

though MERRA-2 performed well in NWC when only one
AERONET site was used, after using additional CARSNET
ground-based observations it was found that the MERRA-2
AOD performance in NWC needs to be improved (Fig. S3c).
Notably, MERRA-2 was found to produce lower AOD than
AERONET and the bias between them was more obvious for
high AERONET AODs. For instance, the MERRA-2 AODs
over most polluted areas (such as the anthropogenic-aerosol-
dominant regions of NC and SA and the biomass-burning-
dominant regions of SEA and South America) were almost
always lower than those of AERONET when the AERONET
AOD was greater than 1.5. This indicated that MERRA-2
does not capture all high AOD events well (such as serious
haze events over NC and SA and frequent biomass-burning
events over SEA), due to the following three reasons: (1) a
relatively low quantity of ground-based-observed aerosol
data that can be used for assimilation, (2) the MERRA-2 sys-
tem model lacks an adequate source of anthropogenic emis-
sions with high temporal resolution and (3) a lack of nitrate
aerosols in the GOCART model (Chin et al., 2002; Colarco
et al., 2010; Buchard et al., 2017).

3.1.2 MERRA-2 vs. CARSNET

Since CARSNET is not assimilated in MERRA-2, it is
considered for independent verification. Using all of the
collected CARSNET observations, the performance of the
MERRA-2 AOD in China was validated. Statistical measures
for MERRA-2 AOD at each CARSNET site are shown in
Fig. 4 and Table S5, and those for regional performance (i.e.,
NEC, NC and SC) are shown in Table 2 and Fig. S3. In gen-
eral, the comparison results using CARSNET as reference
showed that the performance of MERRA-2 AOD in China
(r = 0.70, RMSE= 0.33, MAE= 0.22 and MFE= 46.63 %)

www.atmos-chem-phys.net/19/10497/2019/ Atmos. Chem. Phys., 19, 10497–10523, 2019



10506 H. Che et al.: Large contribution of meteorological factors to inter-decadal changes

is much worse than that of MERRA-2 AOD on a global scale
(Fig. 3a). Regionally, compared with the results from using
three AERONET sites as a comparison, the results compar-
ing CARSNET and MERRA-2 AOD showed a similar pat-
tern – that is, the underestimation of MERRA-2 AOD over
NC is universal. MERRA-2 underestimated the AOD at al-
most all CARSNET sites (Fig. 4e and Table S5), with an
overall MAE of 0.23, RMSE of 0.33, MFE of 47.3 % and
underestimation of∼ 35.5 % (Fig. S3a). Similar results based
on CARSNET observations in China have also been reported
in the literature (Song et al., 2018; Qin et al., 2018). Specif-
ically, there was higher agreement over SC compared with
NC (Fig. S3b), mainly because nitrate aerosols in China are
mainly concentrated in industrially intensive areas such as
Henan, Shandong, Hebei and the Sichuan Basin (Zhang et
al., 2012). The lack of a nitrate module in the GOCART
model will cause further AOD uncertainty in these above ar-
eas, which is the main reason behind the relatively low per-
formance of MERRA-2 AOD in these areas.

The purpose of this work was to study the interannual or
inter-decadal variations in AOD in different regions. There-
fore, taking MODIS/Terra and MISR AOD as a reference,
the accuracy of MERRA-2 annual-mean AOD was evalu-
ated at global and regional scales (Figs. S4 and S5). Glob-
ally, the overall spatial correlations between the MERRA-
2 AOD and MODIS/Terra and MISR AOD datasets was
found to be quite acceptable, with no apparent disagreements
in the annual AOD variations during 2001–2016 (Fig. S5).
Besides, although an offset was found between MERRA-2,
MODIS/Terra and MISR in terms of absolute values of AOD
in some ROIs, the short-term tendency during the overlap-
ping period was similar among the three datasets (Fig. S4).
Because the aerosol retrieval algorithm based on satellite ob-
servation does not work well under cloudy conditions or for
bright surfaces, there are always numerous missing values in
satellite-retrieved AOD datasets. In contrast, not only is the
accuracy of the MERRA-2 AOD dataset comparable with
satellite observations (Fig. S4), it also provides a complete
AOD record from 1980 to the present day. These reasons
give confidence that the MERRA-2 aerosol dataset is suit-
able for analysis of the variations in AOD. Thus, the AOD
values from MERRA-2’s aerosol analysis fields, in combi-
nation with the AOD datasets derived from two satellite sen-
sors, were used to comprehensively analyze the spatiotempo-
ral variability of aerosols at global and regional scales.

3.1.3 Global AOD distribution and interannual
evolution of regional AOD

Figure S6 shows the global annual- and seasonal-mean AOD
distribution calculated from the MERRA-2 AOD products
during 1980–2016. Furthermore, the distributional charac-
teristics of the global annual-mean AOD from MERRA-2,
MODIS and MISR during the same period (2001–2016) are
also compared in the figure. The comparison shows that,

although MISR underestimated the AOD (e.g., in SA and
eastern China), as expected because of insufficient sampling
(Mehta et al., 2016; Kahn et al., 2009), the three AOD prod-
ucts were generally closely consistent on the global scale
(also see Fig. S5). Generally, high AOD loading was mainly
observed in areas of high anthropogenic and industrial emis-
sions, such as in eastern China and India, and major source
areas of natural mineral dust – particularly the Saharan, Ara-
bian and Taklimakan deserts.

Due to the seasonal variation in the atmospheric circula-
tion driven by solar radiation and the intensity of human ac-
tivities in different regions, the global distribution of AOD
also shows obvious seasonal differences, with global aerosol
loading reaching its maximum in spring and summer. On the
one hand, this can mainly be attributed to the enhanced cir-
culation in spring and summer, which increases the likeli-
hood of natural mineral dust from several major dust sources
in the Northern Hemisphere (i.e., the Sahara and Sahel, the
Arabian Peninsula, Central Asia, and the Taklimakan and
Gobi deserts) being brought into the atmosphere; addition-
ally, along the westerly belt airflow dust can be transmit-
ted to surrounding sea areas (such as the strip of the north-
ern tropical Atlantic stretching between West Africa and the
Caribbean, the Caribbean, the Arabian Sea, and the Bay of
Bengal) and more remote areas (such as South America; the
Indo-Gangetic Plain; and the eastern coastal areas of China,
Korea, and Japan) (Mao et al., 2014). On the other hand,
higher temperatures and damp air in summer can create fa-
vorable conditions for the hygroscopic growth and secondary
formation of aerosols (Minguillón et al., 2015; Zhao et al.,
2018), which raises the AOD in some areas, such as NC and
northern India, dominated by anthropogenic aerosol emis-
sions in summer. Moreover, frequent local biomass-burning
aerosol emissions in central Africa during summer are the
main cause of high AOD in the region (Tummon et al., 2010).

In contrast, global aerosol loading is relatively low in au-
tumn and winter. The atmosphere in autumn and winter is
generally more stable and vertical mixing is weaker, and thus
it is difficult for more aerosols – particularly natural min-
eral dust – to be brought into the atmosphere, which leads to
lower AOD in autumn and winter (Zhao et al., 2018). Never-
theless, the AOD in autumn in South America, SEA, SC and
CF is clearly high, which is mainly attributable to the emis-
sion of large amounts of fine aerosol particles (i.e., BC and
OC) from frequent biomass burning in these regions (Thorn-
hill et al., 2018; Ikemori et al., 2018; Chen et al., 2017).
Notably, fine particulate matter composed of sulfate–nitrate–
ammonium aerosols, which is produced by high-intensity an-
thropogenic activities in autumn and winter, is still the main
contributor to high AOD in eastern China and India (Gao et
al., 2018; David et al., 2018).

To better characterize the temporal evolution of regional
AOD, the monthly mean AODs over the 12 ROIs from 1980
to 2016 were calculated. As illustrated in Fig. 5, the monthly
regional AOD had large seasonal variability, in addition to
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Figure 5. Temporal evolution of regional monthly averaged AOD for the 12 regions of interest. Each year is represented by an irregular ring
with 12 directions. Each direction of the ring represents a specific month, the distance from the center of the ring represents the regional
monthly mean AOD value and the color of the ring represents the year. A special cyan-colored ring represents the monthly mean AOD for
the period 1980–2016.

varying degrees of fluctuation in different periods. In areas
dominated by smoke aerosols from biomass burning (i.e.,
AMZ, CF and SEA), biomass-burning events tend to oc-
cur in the warm season (May–October), leading to a more
prominent monthly AOD at this time of the year compared
with the cold season (November–April). It is noteworthy
that MERRA-2 also captured several well-known forest-fire
events, such as those in Indonesia in 1983 and 1997, which
have been proven to be mainly related to climatic drying
caused by El Niño and large-scale deforestation (Page et
al., 2002; Goldammer, 2007). In the CF region, the monthly
mean maximum AOD experienced a transformation process
– that is, the monthly maximum AOD often occurred in June
and July before 2000, whereas after 2000 it occurred more
frequently in August and September. This shift may be at-
tributed to the fact that MERRA-2 did not assimilate any

land-based AOD observations before 1999, which made it
difficult for the model to simulate the monthly variation in
regional AOD (Gelaro et al., 2017; Buchard et al., 2017). In
the AMZ and SEA regions, September and October seem to
be the two most frequent months for the occurrence of high
AOD values, but the magnitude of AOD values has decreased
in recent years, which may be related to changes in meteoro-
logical conditions (Torres et al., 2010).

In areas dominated by natural mineral dust aerosol (i.e.,
the SD, the ME and NWC), the monthly maximum AOD
mainly occurred in March–August. Before 2000, there were
many anomalies in the AOD monthly maximum, which also
implied frequent sandstorms. In contrast, the frequency of
monthly AOD anomalies decreased after 2000, which may be
attributable to the reduced surface wind speed and increased
vegetation cover (Kim et al., 2017; Wang et al., 2018; An et
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Figure 6. Spatial distributions of the linear trends in annual and seasonal MERRA-2 AOD calculated from the time series value of the
deseasonalized monthly anomaly during (a) 1980–2016, (b) 1980–1997 and (c) 1998–2016. Only trend values with statistical significance at
the 95 % confidence level are shown.

al., 2018). Compared with the areas dominated by smoke and
dust aerosols, the seasonal differences of AOD in the areas
dominated by anthropogenic aerosol emissions appear to be
smaller, but their temporal evolution is more pronounced. In
NEA, the monthly maximum AOD often occurred in March–
June, possibly related to the long-distance transportation of
sand and dust in the China–Mongolia deserts (Taklimakan
and Gobi). However, as the frequency of sandstorms has de-
creased in the past 10 years (An et al., 2018), the monthly
maximum AOD has also shown a downward trend. In NC
and SA, the monthly AOD has gradually expanded outward
since 1980, indicating that AOD has experienced a gradual
increase. Monthly AOD had large seasonal variability in the
SC region, reaching its maximum in February–April. The in-
creased aerosol emissions from biomass burning in spring
seem to be one of the main reasons for high AOD in the SC
region (Chen et al., 2017). For the EUS and WEU regions,
the characteristics of the monthly variation in AOD were sim-
ilar, i.e., large values of AOD occurred in summer. With time,
the monthly AOD showed a tendency to gradually shrink in-
wards, suggesting AOD has experienced a significant decline
over the past few decades in the EUS and WEU. The main
drivers of the interannual variability of AOD over each ROI
are discussed in detail in Sect. 3.5 and 3.6.

3.2 Global AOD trend maps

Annual and seasonal linear trends of the MERRA-2 AOD
anomaly were separately calculated for each 1◦×1◦ grid cell

for the whole of 1980–2016 period (period 1) and for the
first 18 years (1980–1997, period 2) and last 19 years (1998–
2016, period 3). Figure 6 shows the spatial distribution of
these trends on the global scale. Throughout period 1, the re-
gions where annual AOD showed a significant upward trend
(p < 0.05) were mainly located in eastern China, SA, the
ME, northern South America and the southern coastal areas
of Africa, whereas some significant downward trends were
observed in the whole of Europe and the EUS. However,
compared with the annual trends, the seasonal AOD trends
had obvious regional differences in terms of their spatial dis-
tribution. For instance, a strong positive trend throughout
East Asia, including Korea and Japan, was found in spring. In
summer, there was a significant upward and downward AOD
trend in Siberia (and other areas of Asian Russia) and the
Amazon basin, respectively. In contrast, winter AOD had a
significant downward trend in the area north of 40◦ N. These
differences in seasonal trends are closely related to the sea-
sonal variations in anthropogenic aerosols generated by local
emissions and natural aerosols driven by meteorological con-
ditions (De Meij et al., 2012; Chin et al., 2014).

In the two different historical periods (i.e., period 2 and 3),
these trends seem to have experienced a remarkable shift.
During period 2, the annual AOD had a significant upward
trend throughout the Southern Hemisphere, and similar up-
ward trends also existed in eastern and northwestern China.
This upward trend in the Southern Hemisphere, which was
most likely associated with two giant volcano eruption events
in the early 1980s (El Chichón, Hofmann and Rosen, 1983)
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Figure 7. Spatial distributions of annual and seasonal trends in AOD calculated from the time series value of the deseasonalized monthly
anomaly from (a) MERRA-2, (b) MODIS/Terra, and (c) MISR between 2001 and 2016. Only trend values with statistical significance at the
95 % confidence level are shown.

and early 1990s (Pinatubo volcanoes, Stenchikov et al., 1998;
Bluth et al., 1992; Kirchner et al., 1999), is also reflected in
the regional annual mean AOD time series shown in Fig. S4.
The eruptions led to a strong increase in volcanic ash and
SO2 emissions, consequently increasing AODs from place to
place via airflow transport, which was captured accurately
by MERRA-2. Meanwhile, AOD had a significant down-
ward trend throughout Europe and the EUS, which appears
to be related to the reduction of TSP and SO2 emissions (see
Sect. 3.5). Seasonally, a significant upward trend seems to be
prevalent in all seasons in the Southern Hemisphere. Com-
pared with other seasons, the decline of AOD was more ob-
vious in Europe and America. In winter, except for the posi-
tive trend that still existed in the marine area of the Southern
Hemisphere, the fluctuations in other regions were smaller
and relatively stable.

During period 3, AOD began to show a significant upward
trend in most regions, especially in SA, SEA, the ME, central
Russia, the western United States and northern South Amer-
ica, while still maintaining an upward trend in eastern China
with greater intensity. These upward trends over SA, the ME
and eastern China are in good agreement with the results of
Hsu et al. (2012), who used SeaWiFS AOD records from
1997 to 2010. It is worth noting that the trends for the whole

of Europe shifted from significantly positive to statistically
insignificant, while the region that had shown a significant
downward trend before 1997 in the EUS was also shrinking.
Furthermore, the region showing a positive trend, prevailing
in the Southern Hemisphere, shrunk dramatically. Similarly,
the spatial distribution of the trend also had significant differ-
ences in different seasons of this period. In spring and winter,
only significant upward trends could be observed on a global
scale, mainly in eastern China, SA, the ME and South Amer-
ica. Conversely, significant downward trends were apparent
in the EUS, northwestern Africa and central South America
in summer. Additionally, it was also found that the region
with a significant downward trend in Africa shifted from the
northwest in summer to the southwest in autumn. The joint
effect of the changes in local emissions and meteorologi-
cal conditions determined these trends in these regions. See
Sect. 3.5 for a more detailed explanation.

Ensuring the accuracy of AOD trends calculated by
MERRA-2 is critical for quantifying the contribution of lo-
cal emissions and meteorological factors to the inter-decadal
variation in AOD in different regions. For comparison,
the resulting annual and seasonal trends of the MERRA-
2, MODIS/Terra and MISR AOD anomaly over the whole
globe were derived, using the same method, between 2001
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Figure 8. Intercomparisons of global and regional annual trends in AOD calculated from the time series value of the deseasonalized monthly
anomaly of MERRA-2, MODIS/Terra and MISR, during the four periods of 1980–2016, 1980–1997, 1998–2016 and 2001–2016. Error bars
represent the uncertainty associated with the calculated trend. The hatched trend bars indicate statistical significance at the 95 % confidence
level.

and 2016; the results are shown in Fig. 7. This comparison
shows that the AOD trends during 2001–2016 calculated by
MERRA-2 in most regions of the world agreed well with
the results of MODIS and MISR, on both annual and sea-
sonal timescales. Although MERRA-2 assimilates MODIS
and MISR at the same time, the relatively small difference
between MERRA-2 and MISR may be mainly due to the
insufficient sample size of MISR (MODIS produces 3 to 4
times more data than MISR) (De Meij et al., 2012).

For the annual trend, the significant upward trend observed
by MODIS/Terra and MISR in SA and the ME and the signif-
icant downward trend observed in the EUS, WEU and cen-
tral South America were consistent with the results of the
MERRA-2 trend. Similar trends were reported in a previ-
ous study based on 14 years (2001–2014) of observational
records (Mehta et al., 2016). Similarly, upward trends also
existed in spring, autumn and winter, while downward trends
were also apparent in spring, summer and autumn. It should
be noted that the trend signals calculated from MERRA-
2 and MODIS/Terra were opposite in SC. The difference
in sign associated with trends during 2001–2016 could
mainly be due to the larger deviation between MERRA-2
and MODIS/Terra between 2001 and 2004 (Fig. S4c). The
large deviation directly led to a reversal of trend throughout
the period 2001–2016. This deviation may be related to the
use of different versions of MODIS data: in the MERRA-
2 AOD observing system, MERRA-2 assimilated the bias-
corrected AOD derived from MODIS radiances, Collection 5
(C5; Buchard et al., 2017), and the MODIS data used in this
study was the latest collection (Collection 6.1, C6). Different
versions mean differences in algorithms (Fan et al., 2017),
which may affect the statistical error.

3.3 Regional AOD trends

To examine the spatial and temporal changes in more detail,
the annual trend over the globe and in the 12 ROIs, derived

based on MERRA-2 during periods 1, 2 and 3, were cal-
culated. In addition, for comparison purposes, the regional
trends in AODs from MERRA-2, MODIS and MISR dur-
ing 2001–2016 were also estimated. It should be noted that
different datasets may have a certain effect on global and re-
gional trend assessment due to their own uncertainties. Nev-
ertheless, we include them for completeness but exercise cau-
tion when interpreting the differences in trend values be-
tween different datasets. The comparisons of the magnitudes
of global annual trends with these regional trends are summa-
rized in Fig. 8 and Table S1. In general, the annual trends de-
rived from different datasets were small on the global scale.
As indicated by the results in Fig. 8 and Table S1, the trend
values were −0.00068 yr−1 for the globe during period 1,
with statistical significance at the 95 % confidence level. In
contrast, no statistically significant trend was detected at the
global scale for period 2 (0.00050 yr−1) or 3 (0.00038 yr−1).
Analyzing the global AOD trends during 2001–2016 from
MERRA-2 and the two satellite datasets, it was found that the
MERRA-2 trends were negligible, whereas significant posi-
tive (negative) trends were found for MODIS (MISR).

However, the trends could be considerable on re-
gional scales. For example, over the anthropogenic-aerosol-
dominant regions for periods 1, 2 and 3, strong positive
trends were apparent over NEA, NC, SC and SA, while
strong and statistically significant negative trends were found
over WEU and EUS. For biomass-burning regions (SEA,
CF and AMZ but not CF, which had a negligible and in-
significant trend), there was a positive trend during periods
1, 2 and 3. For the mineral-dust-dominant regions, although
there seemed to be an upward trend over the ME, the esti-
mated trends were not statistically significant for other ar-
eas, such as NWC and the SD. During 2001–2016, the esti-
mated MERRA-2 AOD trend in most ROIs (i.e., NEA, SA,
ME, WEU, EUS and AMZ) was comparable to and had the
same sign as the trend from both the MODIS and MISR sen-
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sors. However, it was opposite in sign to the MISR data over
NC, NWC and the SD and to the MODIS data over SC, SEA
and CF during overlapping years. These differences in global
trends between MERRA-2 and satellites may be related to
several aspects, including the difference in sample number,
data accuracy, different measurement methods, etc. (De Meij
et al., 2012).

In addition to the annual trend, the seasonal trend of AOD
for different datasets in different ROIs and different histori-
cal periods was also studied (Fig. S7 and Table S1). Globally,
negative trends were observed throughout the four seasons
during period 1, especially during summer, autumn and win-
ter (−0.00078, −0.00092 and −0.00097 yr−1, respectively;
statistically significant at the 95 % confidence level). In con-
trast, there was a negative trend in period 2, although it was
not significant. In the subsequent period, period 3, the trend
values shifted from negative to positive. The positive trend
was more significant in spring and autumn (0.00053 and
0.00070 yr−1). Regionally, strong positive trends were appar-
ent over both NC and SC throughout the four seasons during
periods 1, 2 and 3. Strong upward trends were also found
over SA. These upward trends were most likely associated
with an increase in urban and industrial pollution in China
and India. Meanwhile, some similar but relatively moderate
upward trends also existed over NEA in spring. In contrast,
strong negative trends were observed over the WEU and EUS
regions, especially during spring, summer and autumn. The
negative trends over WEU and the EUS may partly have been
due to a decrease in polluting aerosols associated with emis-
sion control measures (De Meij et al., 2012; Li et al., 2014).
A statistically significant upward trend was also found over
the SD, NWC and the ME in spring during periods 1, 2 and
3 (0.00252, 0.00300 and 0.00463 yr−1), respectively. In con-
trast to the strong downward trends over AMZ in summer
during periods 1, 2 and 3, there appeared to be upward trends
in spring over AMZ and in winter over CF and AMZ. When
compared with the regional trends during 2001–2016 calcu-
lated by the two satellite datasets, we found that the seasonal
trends of MERRA-2 were highly consistent with the satellite
results in almost all regions, especially in spring and autumn.
It is worth noting that the trend differences among the three
different datasets in all four seasons still existed in NC and
SC, and the differences had different seasonal characteris-
tics. For example, over NC, the most significant difference
occurred in spring and summer, whereas it occurred in sum-
mer and winter over SC. Seasonal differences in trends are
mainly due to insufficient accuracy of MERRA-2 in China
(see Sect. 3.1.2).

Since the sign of a trend value often varies with the span of
the calculation period, it was necessary to evaluate the slid-
ing trend of different periods to help examine the time node
of the changes more precisely. Therefore, sliding trend anal-
yses were used to present a more comprehensive analysis of
annual trends over the 12 ROIs during different historical pe-
riods (Fig. 9). These trends were calculated for all periods,

starting each year from 1980 to 2007 and ending in 2016
with increments of at least 10 years. As shown in Fig. 9, in
the EUS and WEU the AOD experienced a large decline up
until the 1981–1990 period, then the trend reversed moder-
ately from 1984 to 1986, declined sharply from 1989 after
a short increase from 1996 to 1999 and sustained a moder-
ate downward trend in the last 17 years. A similar pattern
was found for NWC, the SD and AMZ, although there was a
stronger upward trend and relatively weaker downward trend
in the corresponding period. In SC and NC, the AOD experi-
enced a slight increase in the 1980s and a short-term decline
around the 1990s, and then showed its largest positive trend
since 1995, before reversing sharply over the last 10 years
(Sun et al., 2019). A similar evolution also existed in NEA
and the ME, although the intensities of the trends were rel-
atively weak. In addition to the negligible downward trend
in the 1980s and 1990s, SA showed overall positive trends
throughout the period, corresponding to increasing anthro-
pogenic emissions (Fig. 11). Furthermore, in CF, a moderate
increasing trend was detected from 1983 to 1985 and then
again in 1990, and the trends became relatively stable but
unexpectedly showed sharp increases after 1993, followed
by a significant decline in the 2000s and reversal in the last
10 years. The trends for SEA were much smaller and rela-
tively stable. Also, note that around 1985 and 1990 two dis-
tinct opposite trend signs were found in all regions. These
two unexpected trends indicated that large volcanic eruptions
not only greatly affect short-term changes in local aerosols
but also impose different degrees of disturbance in long-term
trends of aerosols in different regions of the world (Hofmann
and Rosen, 1983; Stenchikov et al., 1998; Kirchner et al.,
1999).

Furthermore, considering that aerosol concentration and
composition usually have strong seasonal cycles (Li et al.,
2018), the trends for each season were also calculated sep-
arately and compared with the MODIS and MISR trends in
the period of overlap (2001–2016). Note that Fig. 10 only
shows the evolution of seasonal and annual trends for ev-
ery 10-year period starting from 1980 to 2007 for MERRA-
2 and from 2001 to 2007 for MODIS and MISR; refer to
Figs. S8–11 for a fuller presentation of the regional seasonal
trend. For all regions, the trends for all seasons, except au-
tumn in SEA, CF and AMZ and spring in the SD, were in
phase with the annual trend (also see Fig. S12). In general,
autumn trends over SEA, CF and AMZ were larger and of-
ten out of phase, possibly attributable to the sudden increase
in aerosol concentration caused by biomass-burning events.
Similarly, the spring trend over the SD was also larger and
more asynchronous than in other seasons. This phenomenon
can mainly be attributed to active spring dust events (Liu et
al., 2001). In addition, compared with the annual and sea-
sonal regional trends during 2001–2016 (Figs. 8 and S7), the
decadal trends of MERRA-2 agreed better with the trend re-
sults from MODIS and MISR. This implies that the trends
can change relatively quickly with time (Li et al., 2018). Sup-
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Figure 9. Sliding-window trend analyses of the annual mean MERRA-2 AOD from 1980 to 2016 over the 12 ROIs (see Fig. 1 for names and
locations of regions), with at least 10 years used to calculate trends. The x axis and y axis indicate the start year and the length of the time
series to calculate the trend, respectively. The colors of the rectangles represent the intensity of the trend (units: yr−1) and those with black
“x” signs indicate linear trends above the 95 % significance level.

porting evidence was also found from the strongest trends on
both annual and seasonal scales being mostly concentrated in
the lower y axis values (Figs. 9 and S8–S11). These results
also highlight the importance of evaluating temporal shifts or
decadal AOD trends.

3.4 Response of inter-decadal variation in regional
AOD to local emissions and meteorological
parameters

Previous studies have shown that the interannual variations in
regional AOD are mainly controlled by changes in emissions
and meteorological factors (De Meij et al., 2012; Pozzer et
al., 2015; Itahashi et al., 2012; Zhao et al., 2017; Lee et al.,
2016; Chin et al., 2014). First, the trends of the four emission
factors (i.e., TSP, SO2, BC and OC) and their correlations
with AOD were calculated for the whole study period (1980–
2014), as well as for two individual periods (i.e., 1980–1997
and 1998–2014). Note that the PKU global emissions in-
ventories were only available for 1980–2014, which limited
our research to a relatively short period. Figures 11 and S13
show the linear trends in emissions and their relationships
with MERRA-2 AOD during 1980–2014, respectively. The
decreasing AOD trends over Europe and the EUS (see Fig. 6)

coincided with substantial reductions in the emissions of pri-
mary anthropogenic aerosols (TSP and BC) and precursor
gases (SO2), corresponding to pollution controls (Hammer et
al., 2018; De Meij et al., 2012). This was also supported by
significant positive correlation between AOD and emissions
in most regions of Europe and the EUS (Fig. S13).

Positive trends in TSP and SO2 were present over India
and eastern China, which explained the significant upward
trend of AOD in these two regions. In addition, eastern China
and India experienced a shift in the emissions trend during
the two periods (Figs. S14 and S16). In 1980–1997, a sig-
nificant upward trend existed in both regions (Huang et al.,
2014). In contrast, in 1998–2014, India at least maintained
this upward trend for all four emission factors, with it some-
times being even stronger, while the positive trends in emis-
sions of TSP and SO2 over eastern China were interspersed
with negative trends. More importantly, the trend of BC and
OC in eastern China reversed completely. The shift in these
emission trends in eastern China can mainly be attributed to
the implementation of multiple emission reduction policies
(Zheng et al., 2018). The reductions in emissions were at
least partly responsible for the decreasing trend of AOD in
the NC and SC regions in the last 10 years (see Fig. 9). The
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Figure 10. Temporal evolution of sliding decadal trends in the annual and seasonal mean AOD from MERRA-2, MODIS/Terra and MISR
over the 12 ROIs. The trends were calculated for each 10-year interval from 1980 to 2007 for MERRA-2 and from 2001 to 2007 for
MODIS/Terra and MISR. The colors of the rectangles represent the intensity of the decadal trend (units: yr−1) and those with black “x”
signs indicate linear trends above the 95 % significance level.

trends in primary BC emissions followed a similar pattern to
the trends in OC emissions, except there were positive trends
over northeastern China and the positive (negative) trends
over CF, AMZ and SEA (WEU and SC) were lower in mag-
nitude, reflecting regional changes in fire activity. There were
positive AOD trends in areas dominated by biomass burning
(especially in CF and SEA), in response to increased BC and
OC emissions. Because human activities are scarce in desert
areas, there was no direct relationship between AOD and
emissions, as expected. Therefore, this highlights the impor-
tance of studying how natural factors (here, this refers to me-
teorological parameters) control the interannual variation in
AOD in different desert areas. Furthermore, it is worth noting
that in the two short periods (especially 1998–2014), these
regions with significant positive correlation shrunk and were
no longer significant (Figs. S15 and S17), suggesting other
factors such as meteorological parameters might be driving
the interannual trend of regional AOD.

To investigate the roles of meteorological parameters in
the decadal variation in AOD, Pearson’s R values between
AOD and meteorological parameters (a total of 32; see Ta-
ble 1) and over the 12 ROIs for the three periods (i.e., 1980–
2014, 1980–1997 and 1998–2014) were calculated. Some of
these meteorological variables, such as surface precipitation,
surface wind speed, wind velocity, RH and surface wetness,
have been shown before to be correlated with regional AOD
(Klingmüller et al., 2016; Pozzer et al., 2015; Chin et al.,
2014; He et al., 2016). Correlation analysis showed similar
correlation patterns between AOD and meteorological pa-
rameters for the three different periods over all ROIs. During
the period 1998–2014, the correlation was generally stronger
than in the other two periods (see Fig. S18), suggesting me-
teorological factors may have played a more important role
in this period. In addition, these correlations seemed to be
similar in regions dominated by the same aerosol type. For
example, in the mineral-dust-dominated regions (i.e., NWC,
the ME and the SD), AOD had a significant positive (neg-
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Figure 11. Spatial distributions of linear trends (units: kg km−2 yr−1) in total anthropogenic emissions of total suspended particles (TSP),
SO2, black carbon (BC) and organic carbon (OC) during 1980–2014 derived from the Peking University emissions inventory (http://inventory.
pku.edu.cn/, last access: 31 March 2019) (Huang et al., 2014). Only linear trend values with statistical significance at the 95 % confidence
level are shown.

ative) correlation with near-surface wind speed (soil mois-
ture), suggesting that surface wind speed and soil moisture
may be the main factors controlling the dust cycle, which
is consistent with previous studies in the ME (Klingmüller
et al., 2016). In the biomass-burning-dominated regions (i.e.,
SEA, CF and AMZ), AOD had a significant negative correla-
tion with humidity-related meteorological parameters (such
as surface precipitation, RH and soil moisture), implying that
ambient humidity (including the atmosphere and soil) may
be a direct correlation factor in controlling the frequency of
biomass-burning events (Torres et al., 2010). In contrast, in
the regions dominated by anthropogenic aerosols, the corre-
lation was regionally dependent and their signs differed from
place to place.

Correlation analysis cannot directly identify the main fac-
tors affecting the inter-decadal change of AOD in differ-
ent regions. Here, MLR models were used to diagnose the
influences of local anthropogenic emissions and other me-
teorological parameters on the inter-decadal variation in
AOD over the 12 ROIs. Figure 12 shows the time series of
monthly mean MERRA-2 and MLR model-predicted nor-
malized AOD anomalies, which used the emission factors,
meteorological parameters or both as input predictors over
the 12 ROIs for the whole study period (1980–2014). Similar
comparisons for the two individual periods (i.e., 1980–1997
and 1998–2014) are also presented in Figs. S19 and S20, re-
spectively. Table S2 summarizes the predictors included in
the MLR models and their performance for the three differ-
ent periods over each ROI. The MLR models with both emis-
sions and meteorological parameters as predictors generally
reproduced the AOD values in most regions during 1980–
2014, except for high AOD values (Fig. 12), which are dis-
cussed below. For all the ROIs, the MLR models explained

most of the MERRA-2 AOD variability (R2
= 0.42–0.76).

However, when meteorology and emissions alone were used
as predictors, there were considerable differences in different
ROIs. When emission factors alone were used as the predic-
tor, it could account for more than 35 % of the AOD vari-
ability in regions dominated by anthropogenic aerosols and
biomass burning (except NEA, 14 %), with the largest expla-
nation occurring in NC (58 %). In contrast, in the mineral-
dust-dominated regions (the SD and ME), emission fac-
tors contributed little (< 0.05 %) to the interannual varia-
tion in AOD (Fig. 11g and i). Moreover, emission factors
contributed 37 % of the AOD variability in NWC, which is
mainly because of the strong anthropogenic emission sources
in northern Xinjiang (mainly encompassing Ürümqi, Korla,
Kashgar, etc.). However, compared with meteorological fac-
tors, emissions were not the main factors driving the interan-
nual change of AOD (Fig. 12e).

On the other hand, when meteorological factors were used
as predictors in the MLR models, it was surprising that they
explained a larger proportion of the AOD changes in all ROIs
except NC and SEA, where emission factors accounted for
slightly lower AOD changes of 42 % and 33 %, respectively.
Further analysis indicated that this difference in contribution
between emissions and meteorology seemed to be greater for
the two shorter periods of 1980–1997 and 1998–2017 (see
Figs. S19 and S20). Besides, it should also be noted that the
total explained variances of the MLR model for 1980–1997
were generally lower than those of the MLR model for 1998–
2014, in all ROIs. The difference can be explained by two
reasons: (1) a greater number of high AOD anomaly values
occurred during the period 1980–1997 (Figs. 12 and S19), es-
pecially in relation to the two volcanic eruption events in the
1980s and 1990s, which directly reduced the total explained
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Figure 12. Time series of MERRA-2 (in black) and modeled AOD monthly normalized anomalies from 1980 to 2014 over the 12 regions of
interest. The coefficient of determination (R2) of the regression fit of the stepwise MLR model with emission factors (in blue), meteorology
(in green), and both emissions and meteorology (in red) as predictors are given in the top-right of each panel.
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Figure 13. The LMG method-estimated relative contributions (%)
of total variances in the stepwise MLR model explained by the lo-
cal emission factors (left-hand bars) and meteorological variables
(right-hand bars) over the 12 regions of interest during three pe-
riods: (a) 1980–1997, (b) 1998–2014 and (c) 1980–2014. Note
that meteorological parameters were combined as follows: tem-
perature, T (Ts, T850, T700, T500, dT900−s, dT850−s); geopotential
height, GH (GH850, GH700, GH500); relative humidity, RH (RHs,
RH850, RH700, RH500); vertical velocity, Ome (Ome850, Ome700,
Ome500); and wind speed, WS (U850, U700, U500, V850, V700,
V500, WSs, WS850, WS700, WS500, VWS500−850). Refer to Ta-
ble S3 for the detailed relative contributions of each variable in the
stepwise MLR models.

variances of the MLR model, because the model only consid-
ers the inter-decadal variations in local emissions and mete-
orological factors and the large-scale transport of pollutants
is not considered, and (2) meteorology and emissions were
confirmed to explain more AOD changes during the period
1998–2014.

3.5 Relative contributions of local emissions and
meteorological parameters to inter-decadal
variations in regional AOD

Application of the LMG method (see Sect. 2) to the MLR
model allowed the relative contributions of each anthro-
pogenic emission type and meteorological factor to the inter-
decadal variations or trend of regional AOD to be quanti-
fied. Figure 13 shows the relative contributions of the lo-
cal emissions and meteorological factors to the changes in
regional AOD for the period 1980–2014, as well as for
1980–1997 and 1998–2014, using both emissions and me-
teorology as predictors in the MLR model. During the pe-

riod 1980–2014, over the anthropogenic-aerosol-dominant
regions, SO2 was the dominant emissions-driving factor, ex-
plaining 24.9 %, 15.2 %, 32.6 %, 21.7 % and 12.7 % of the
variance of AOD over NC, SC, SA, WEU and the EUS, re-
spectively (also see Table S3). The above results also confirm
that particulate sulfate is the main contributor to fine-mode
AOD in anthropogenic-aerosol-dominant regions (Itahashi et
al., 2012; David et al., 2018). Meanwhile, wind speed (in-
cluding surface and upper wind speed) was the dominant
meteorological driving factor, explaining 11.4 %, 14.2 % and
17.9 % of the variance of AOD over NC, SC and the EUS, re-
spectively. In addition, planetary boundary layer height, tem-
perature (including surface temperature, upper temperature,
and the temperature difference between the surface and up-
per atmosphere) and RH (including surface and upper RH)
were the strongest meteorological driving factors over NEA,
SA and WEU, contributing 30.2 %, 15.9 % and 21.5 %, re-
spectively.

In contrast, over the biomass-burning-dominant regions,
BC (OC) was the dominant emissions-driving factor over
SEA (AMZ), explaining 27.7 % (24.0 %) of the variance of
AOD. Meanwhile, soil moisture and RH were the top meteo-
rological driving factors over SEA, AMZ and CF, contribut-
ing 11.7 %, 35.5 % and 28.5 %, respectively. Furthermore,
over the dust-dominant regions, wind speed was the strongest
meteorological driving factor, explaining 30.3 % and 29.8 %
of the variance in AOD over NWC and the SD, respectively.
In contrast to wind speed being the primary meteorological
driving factor over NWC and the SD, it was the second-most
important factor over the ME, while sea level pressure was
the primary driving factor, accounting for 60.9 % of the varia-
tion in AOD. This large variance, explained by sea level pres-
sure and significant anticorrelations of the AOD with it (see
Fig. S18c), further confirms the previous studies’ findings
that frequent sandstorms over the ME often correspond to a
large horizontal pressure gradient differences caused by the
enhanced high-pressure system across the eastern Mediter-
ranean Sea and the enhanced low-pressure system across Iran
and Afghanistan (Hamidi et al., 2013; Yu et al., 2016).

By comparing the estimated results of the two independent
study periods (i.e., 1980–1997 and 1998–2014), it was found
that in almost all ROIs (except NC and AMZ), meteorologi-
cal factors contributed a larger explained proportion of AOD
changes during 1998–2014, which indicates that meteorolog-
ical factors seem to be becoming increasingly more impor-
tant in dominating the inter-decadal change of regional AOD.
It is worth noting that, in addition to the increased explained
proportion of SO2 and BC, among these meteorological fac-
tors, the role of diffusion-related parameters (such as hori-
zontal and vertical wind speed, representing horizontal and
vertical diffusion, respectively) seems to be the most promi-
nent. This is consistent with the findings of Gui et al. (2019),
who found wind speed to be the dominant meteorological
driver for decadal changes in fine particulate matter over SC,
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based on a 19-year record of satellite-retrieved fine particu-
late matter data (1998–2016).

4 Conclusions and implications

This paper presents a comprehensive assessment of the
global and regional AOD trends over the past 37 years (1980–
2016), based on the reanalysis MERRA-2 AOD dataset.
AOD observations from both AERONET and CARSNET
stations were used to assess the performance of the MERRA-
2 AOD dataset on global and regional scales prior to calcu-
lating the global and regional AOD trends. Satellite retrievals
from MODIS/Terra and MISR were then used to estimate
the AOD annual and seasonal trends and compare them with
the MERRA-2 results. Finally, the stepwise MLR and LMG
methods were jointly applied to quantify the influences of
emission factors and meteorological parameters on the inter-
decadal changes in AOD over 12 ROIs during the three peri-
ods of 1980–2014, 1980–1997 and 1998–2014.

Results showed that the MERRA-2 AOD was compara-
ble in accuracy to the satellite-retrieved AOD, albeit there
was slight overestimation in the United States, southern
South America and Australia and underestimation in the
NC, SA, CF and SEA when compared with the ground-
based AERONET and CARSNET AOD. MERRA-2 was
proven to be capable of estimating the long-term variabil-
ity and trend of AOD, owing to its good accuracy and con-
tinuous and complete spatiotemporal resolution. It was re-
vealed that, in general, MERRA-2 was able to quantitatively
reproduce the AOD annual and seasonal trends (especially
decadal trends) during the overlapping years (2001–2016),
as observed by the MODIS/Terra, albeit some discrepancies
(caused by the insufficient sample size) were found when
compared to MISR. The resulting trend analyses based on the
MERRA-2 data from 1980 to 2016 showed that the global
annual trend of AOD during this period, although signifi-
cantly (p < 0.05) weakly negative (i.e.,−0.00068 yr−1), was
essentially negligible when compared to the magnitudes of
regional AOD trends. On regional scales, sliding trend anal-
yses suggested that the inter-decadal trends of AOD in dif-
ferent periods could be significantly different. It was noted
that during the entire study period (1980–2016), the EUS and
WEU showed a non-monotonous decreasing trend accompa-
nied by occasional fluctuations in the 1980s and 1990s, re-
sponding to the decrease in pollutant emissions, but the in-
tensity of this downward tendency has slowed over the re-
cent decade. In contrast, AODs in NC and SC experienced
a sustained and significant upward trend before ∼ 2006, and
then the trend shifted from upward to downward due to the
Chinese government’s emissions-reduction policy. In addi-
tion to the negligible downward trend in the 1980s and 1990s,
SA showed overall significant positive trends throughout the
study period. Moreover, the two large volcanic eruptions that
occurred in the 1980s and 1990s not only greatly affected

the short-term changes in local aerosol loading but also im-
pacted significantly on the inter-annual trend of the regional
AOD around the world. This highlights the importance of
examining the effects of trans-regional pollutant transport on
decadal or temporal shifts in local AOD trends.

To diagnose the influences of local anthropogenic emis-
sions and other meteorological parameters on the inter-
decadal variation in regional AODs, statistical MLR mod-
els that estimated AOD monthly values over each ROI as
a function of local emissions factors and various meteoro-
logical variables were developed. The modeled AODs using
emission factors, meteorological parameters or both as input
predictors in the MLR models were compared during three
individual periods (i.e., 1980–2014, 1980–1997 and 1998–
2014). In general, the MLR models with both emissions and
meteorological parameters as predictors could account for
42 %–76 % of the variability of the MERRA-2 AOD, de-
pending on the ROI. However, when meteorology and emis-
sions alone were used as predictors, there were considerable
differences in different ROIs. During 1980–2014, compared
with the emission factors (0 %–56 %), it was found that me-
teorological parameters explained a larger proportion of the
AOD changes (20.4 %–72.8 %) over all ROIs (except NC and
SEA). Besides, further analysis also showed that this domi-
nant driving role of meteorological parameters was stronger
during the other two periods.

The LMG method for MLR models suggested that
SO2 was the dominant emissions-driving factor, explaining
24.9 %, 15.2 %, 32.6 %, 21.7 % and 12.7 % of the variance of
AOD over NC, SC, SA, WEU and the EUS, respectively. In
contrast, BC (OC) was the dominant emissions-driving factor
over SEA (AMZ), explaining 27.7 % (24.0 %) of the variance
of AOD. For meteorological driving factors over the mineral-
dust-dominant regions, wind speed was the top driving fac-
tor, explaining 30.3 % and 29.8 % of the variance of AOD
over NWC and the SD. Meanwhile, soil moisture and RH
were the strongest meteorological driving factors over SEA,
AMZ and CF, contributing 11.7 %, 35.5 % and 28.5 %, re-
spectively. Notably, the performance of the MLR model in
1980–1997 was significantly worse than that in 1998–2014,
which can mainly be attributed to the fact that the statisti-
cal model used in this study did not take into account the
impact of trans-regional transport. Consequently, the model
failed to capture the abnormally high values of regional AOD
caused by trans-regional transport during 1980–1997. Fi-
nally, deeper insight into the influence of emissions, meteoro-
logical factors and atmospheric transport on the inter-decadal
change in regional AOD will be provided in future modeling
studies.

Code and data availability. The CARSNET AOD dataset used in
the study can be requested by contacting the corresponding author.

www.atmos-chem-phys.net/19/10497/2019/ Atmos. Chem. Phys., 19, 10497–10523, 2019
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MERRA-2 aerosol reanalysis data are available at https://disc.
gsfc.nasa.gov/daac-bin/FTPSubset2.pl (last access: 31 March 2019,
NASA, 2019).

Data from PKU emissions inventory research group are available
at http://inventory.pku.edu.cn/home.html (last access: 31 March
2019, Peking University, 2019) and data from AERONET networks
are available at https://aeronet.gsfc.nasa.gov/ (last access: 31 March
2019). Gridded AOD products of MODIS and MISR are avail-
able through the Giovanni website (https://giovanni.gsfc.nasa.gov/
giovanni/, last access: 31 March 2019).

All figures in this study were produced by the open-source soft-
ware of MeteoInfoLab from Meteoinfo (Wang, 2019, http://www.
meteothink.org/index.html, last access: 31 March 2019).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/acp-19-10497-2019-supplement.
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