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Abstract: The first 1000 days of life is a critical period that contributes significantly to the program-
ming of an individual’s future health. Among the many changes that occur during this period early
in life, there is growing evidence that the establishment of healthy gut microbiota plays an important
role in the prevention of both short- and long-term health problems. Numerous publications suggest
that the quality of the gut microbiota colonisation depends on several dietary factors, including
breastfeeding. In this respect, a relationship between breastfeeding and the risk of inflammatory
bowel disease (IBD) has been suggested. IBDs are chronic intestinal diseases, and perinatal factors
may be partly responsible for their onset. We review the existence of links between breastfeeding and
IBD based on experimental and clinical studies. Overall, despite encouraging experimental data in
rodents, the association between breastfeeding and the development of IBD remains controversial
in humans, partly due to the considerable heterogeneity between clinical studies. The duration of
exclusive breastfeeding is probably decisive for its lasting effect on IBD. Thus, specific improvements
in our knowledge could support dietary interventions targeting the gut microbiome, such as the early
use of prebiotics, probiotics or postbiotics, in order to prevent the disease.
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1. Introduction

The risk of chronic disease in adulthood is associated with environmental events
during perinatal life and early childhood in a period known as the first 1000 days of life,
from conception to the age of two years. According to this paradigm, environmental factors
and dietary habits early in life are determinants of individual development and subsequent
health, particularly for non-communicable diseases. Since Barker’s first observations in
the late 1980s, the early postnatal period has been shown to be associated with the risk
of long-term cardiovascular diseases [1]. Epidemiological studies have subsequently con-
firmed Barker’s work and suggested a role for the early environment in the occurrence of
neurological, metabolic or cardiovascular disorders later in life [2–6]. The food restrictions
during the 1944 famine in the Netherlands led to an increase in chronic pathologies, includ-
ing further obesity among the generations born at that time [7], with persistent effects for
the following generations [8]. Consequently, this work also highlights the fact that maternal
malnutrition during gestation impedes the normal development of placentation, with
subsequent consequences for the risk of chronic degenerative disorders [9] or inflammatory
bowel disease (IBD) [10].

All these prior observations were of growing interest to the scientific community and
led to the paradigm of the developmental origin of health and disease (DOHaD) [11,12].
Epigenetics, which modulates the expressions of genes without modifying their sequences,
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is one of the biological components of the calibration and perpetuation of early environ-
mental events that influence an individual’s health [13,14]. For instance, genetic inheritance
and/or epigenetics can partly predict risks of metabolic disorders [14]. The microbes that
colonise the neonatal gut immediately following birth and shape the host immunity [15] are
able to regulate the chemical phenomena of histone acetylation and DNA methylation via
the metabolites it produces, such as short-chain fatty acids (SCFAs) [16]. Breastfeeding by
modulating the development of the child’s microbiota could also participate in epigenetic
modifications [17–19].

Early parent–child interactions, educational factors (sleep, exposure to screens), the
parental lifestyle (diet, exposure to psycho-social stressors, physical activity) and exposure
to toxic substances are all environmental factors with likelihoods of leaving lasting imprints
on a child’s health [5,20–22]. Environmental stressors, including exposure to environmental
xenobiotics and poor nutritional status, like inadequate fat or carbohydrate intake, can have
multiple consequences for placental functions, with consequences for future health [23,24].
Other epidemiological studies in humans have highlighted the many perinatal factors,
such as the mode of delivery, type of infant feeding, antibiotic therapy or tobacco exposure
during the first months of life, which can have determining influences on the subsequent
risk of chronic intestinal diseases, such as celiac disease or IBD, including ulcerative colitis
(UC) and Crohn’s disease (CD) [25].

2. Breastfeeding
2.1. General

Exclusive breastfeeding for at least the first 6 months is the benchmark for optimal
infant growth [26]. This recommendation is based on evidence that the composition of
breastmilk and its energy intake are perfectly suited to the child’s needs [27,28], with
beneficial effects depending on the duration of breastfeeding and the age of complementary
feedings [29]. The most obvious benefits of breastfeeding include neurodevelopment in
preterm infants and the prevention of respiratory and gastrointestinal infections and aller-
gies in children [30,31]. It is also well known that breastfed preterm infants present a lower
risk of necrotising enterocolitis (NEC) [32]. As an example, the PROBIT (Promotion of
Breastfeeding Intervention Trial) interventional study, previously implemented in Byelorus-
sia, which was specifically aimed at promoting breastfeeding, showed a health benefit by
decreasing the risk of gastrointestinal-tract infections and atopic eczema at one year of age,
but with no change in the prevalence of respiratory-tract infection [33]. However, while the
positive influence of breastfeeding seems to be most evident in low-income countries, a
more moderate effect is observed in developed countries where health and social security
are better developed [31]. Furthermore, a relationship between breastfeeding and the risk
of long-term health outcomes has also been widely emphasised, with sometimes contra-
dictory findings, showing, in particular, a likely effect of breastfeeding on reducing early
adiposity rebound, obesity and type 2 diabetes [31,34]. These observations are supported by
several works that have suggested that the early disruption of the gut microbiota increases
the propensity for later metabolic deregulation [35]. These vulnerabilities manifest as
long-lasting endocrine, metabolic and inflammatory effects on the offspring [6]. Breastfeed-
ing has been involved in the protection against various immune-mediated diseases [36],
although this is still a matter of debate [31].

2.2. Immune and Gut Microbiota Maturation

The epithelial barrier and microbiota together contribute to immune homeostasis
and the acquisition of tolerance to commensal bacteria and dietary antigens during the
early postnatal period. Numerous studies indicate that early feeding, and particularly
breastmilk, influences the development of the gut barrier and microbiota colonisation
and enhances the maturation of the immune system [27,37]. The beneficial influence of
breastmilk can be directly attributed to its bioactive components (macronutrients and
micronutrients, oligosaccharides, immunoglobulins, cytokines, leukocytes as well as viable
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microbiota) [37,38]. In particular, lactoferrin is an iron-binding protein that plays an im-
portant role in protection against microbial infections. Lactoferrin also exhibits properties
that modulate the host immune defence in the intestine [39]. Moreover, the microbiota in
human milk may play a defensive role against gastrointestinal infections by participating in
the early colonisation of the gut in newborns, contributing to the maturation of the immune
system [39]. Interestingly, studies have unravelled the immune development driven by gut
microbiota in newborns and its postnatal adaptation to environmental insults [40,41]. In
this vein, it has been suggested that the duration of breastfeeding has a greater impact on
the intestinal microbial diversity of infants born via caesarean section than that of infants
born vaginally [42]. The role of breastfeeding on the immunological status of the child is
actually evident in the first months of life [38]: the production of secretory immunoglobulin
A (sIgA), detectable in the stool, is increased early in life in breastfed children compared
to children receiving infant formula [43,44]. sIgA is involved in intestinal homeostasis by
regulating the expressions of genes involved in inflammation, modulating the diversity of
the gut microbiota and protecting against infections [45–47]. The gut microbiota in early
life undergoes a progressive increase in α-diversity and is shaped mainly by the child’s
diet, as shown in Figure 1 [48–54]. In fact, the composition of the gut microbiota differs
significantly between breastfed infants and those receiving infant formula (higher propor-
tions of bifidobacteria and lactobacilli, which are overall beneficial for health in breastfed
infants) [15,55,56]. Otherwise, in formula-fed infants, the gut microbiome is usually domi-
nated by an increased abundance of Enterococcus or Streptococcus [54,57]. The cessation of
breastfeeding, more than the introduction of solid foods, is the main driver in the dynamics
of microbiota development during the first year of life [52,58]. The impact of the weaning
stage on microbiota development has been poorly investigated but is thought to contribute
to gut microbiota alpha diversity [15]. At weaning, increased abundances of the adult-type
microorganisms Bacteroides, Prevotella, Clostridium, Ruminococcaceae or Veillonella occur, with
decreases in Bifidobacterium, Enterobacteriaceae and Streptococcaeae [37,59]. Surprisingly, other
studies indicate that the alpha diversity was even lower in preschoolers than in adults, but
the long-term influence of early dietary habits on the transition to a mature microbiota in
children remains poorly characterised [60]. A growing body of literature points to changes
in the gut microbiota as the source of an early immune imprint that may influence long-term
health [40,61].

Human milk is composed of diverse non-digestible oligosaccharides (human milk
oligosaccharides (HMOs)) that enable the early growth of bifidobacteria, which encode HMO-
utilising genes and are predominant during the first months of life [62]. By metabolising
HMOs, bifidobacteria promote the release of SCFAs, which improve the epithelial barrier
integrity or immune regulatory response by reducing Th2 and Th17 cytokines through inter-
action with G-protein-coupled receptors, such as GPR43, GPR41 and GPR109A expressed
by epithelial and immune cells [40,63]. Beyond this, recent studies using selected HMOs
in adult mice have shown that these prebiotics are able to reduce fat mass development,
insulin resistance and hepatic steatosis [64,65], suggesting a therapeutic application of
HMOs against the metabolic syndrome through the probable involvement of the release of
numerous specific microbial metabolites.

Moreover, recent data have demonstrated that microbial metabolites largely mediate
the impact of the microbiome on the host physiology [66,67]. Most of the metabolites
generated by microbiota metabolism (e.g., SCFAs, such as acetate, propionate and butyrate,
or other common metabolites, such as trimethylamine N-oxide (TMAO) or tryptophan
derivates) may play a role in the induction of immune tolerance, the intestinal barrier
function, signalling or epigenetic modulation that can determine the increased likelihood
of developing immune-mediated diseases and systemic effects on health [27,68,69]. For
instance, breastfeeding may promote Bifidobacterium species to convert tryptophane into
metabolite derivatives, notably kynurenine and indole, which activate the aryl-hydrocarbon
receptor (AhR). The AhR is associated with the expansion of type 3 innate lymphocytes
(ILC3) and IL-22 production and regulates regulatory T-cell differentiation [70–72]. In turn,
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IL-22 signalling may influence the composition and function of the gut microbiota [72]. It is
worth noting that a reduction in AhR ligand production and, consequently, IL-22 activation
has been observed in IBD patients [73]. Although research in this field is presently sparse,
this converging evidence suggests that microbial-derived metabolites can strongly influence
developmental programming in breastfed infants [67]. Moreover, it can also be postulated
that these compounds may also have potential impacts on intestinal and metabolic health
as new “postbiotic” therapeutics to treat microbiome-related non-communicable diseases
(NCDs) in infants and adults.
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Figure 1. Composition of gut microbiota in early life in relation to child’s diet. Bifidobacterium
predominates in exclusively breastfed infants, while, in formulae-fed infants, the composition is
less uniform and notably enriched with Bacteroides, Streptococcus or Clostridium. The introduction
of solid foods leads to a wider range of microorganisms with greater microbial α-diversity and
abundance. The establishment of interactions between the host immunity and the microbiota may
result in susceptibility to or protection against the onset of IBD later in life. It is relevant to consider
the first months of life as a window of opportunity for preventive dietary intervention to promote
early protective effects.

3. Breastfeeding and Risk of IBD

IBDs are chronic intestinal diseases, and perinatal factors may be partly responsible
for their onset, although there is little evidence to suggest this [74]. Given that human
milk can shape the gut immune response and microbiota with long-term benefits against
immune-related diseases [36], the role of breastfeeding on the subsequent risk of CD and
UC has been extensively examined. We propose to review the existence of a link between
breastfeeding and IBD from experimental and clinical studies.
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3.1. IBD Presentation

CD and UC are the two main clinical forms of IBD. Defined empirically on the basis
of clinical, endoscopic and radiological criteria, they are characterised by the chronic and
recurrent inflammation of the intestinal wall. Although the exact origin of IBD remains
unknown, the current hypothesis is that it is a complex, multifactorial disease, occurring
in genetically predisposed individuals and resulting in an abnormal mucosal immune
response to intestinal microflora [75]. Over the past 20 years, more than 200 susceptibil-
ity genes associated with IBD have been identified [76–78]. To date, only smoking and
appendectomy are environmental factors recognised as being linked to IBD, even if their
mechanisms have not yet been clarified. The impact of current smoking on the IBD course
has been studied extensively; smoking is deleterious in CD and beneficial in UC [75,79].

Of note, the incidence and prevalence of IBD, and particularly in paediatric onset,
are increasing, with a key role played by environmental risk factors [80,81]. In detail, the
epidemiology of IBD is evolving steadily worldwide: the prevalence continues to rise in
Western countries (Europe, North America), reaching over 0.3%, while the incidence is
increasing rapidly in newly industrialised countries in Africa, Asia and South America [82].
Particular attention needs to be paid to the increase in IBDs in children and adolescents
because of the impact that these diseases can have on their quality of life, such as stunted
growth, school absenteeism and the psychological effect of a chronic disease on the patient
and family [80]. Except for enteral nutrition, there are only limited data regarding the
impact of diet on the disease course either considering adults [83,84] or children [85].
It should be noted that there is growing evidence of the role of the Western diet in the
increasing prevalence of IBD worldwide [75,82,86].

3.2. Milk Components and Gut Inflammation: What Does an Experimental Model of Colitis
Tell Us?

Over the last 30 years, numerous experimental models of colitis have been developed
in rodents to decipher the underlying mechanisms of the IBD pathophysiology, identify
molecular targets and evaluate new therapeutic strategies [87]. Among these different
models of colitis, the most widespread are those induced by chemical compounds such as
dextran sulphate sodium (DSS) or 2,4,6-trinitrobenzene sulphonic acid (TNBS), which are
reputed to have many similarities with human UC and CD, respectively [88,89]. Genetic
models built on the basis of susceptibility genes identified in IBD are also available but are
less frequently used [90]. The potentially beneficial effects of breastmilk in these experi-
mental models of gut inflammation have been tested by various teams, with a particular
focus on milk-derived oligosaccharides and extracellular vesicles (EVs). In an initial study
in 2002, Madsen et al. used interleukin-10-deficient mice, which developed spontaneous
colitis, to study the role of breastfeeding on the progression of intestinal inflammation.
They observed that breastfeeding had a beneficial effect on reducing the histological inflam-
mation of the colon, as well as the circulating levels of TNF and IFNγ [91]. Subsequently, it
was demonstrated that a rodent diet enriched with goat’s milk oligosaccharides (GMOs),
administered in a preventive manner seven days before the induction of colitis, was able to
reduce the acute intestinal inflammation induced by DSS in rats [92]. In control animals
that did not receive DSS, the GMO diet caused a modification of the colonic microbiota
with an enrichment in lactobacilli and bifidobacteria. At the same time, the preventive and
anti-inflammatory effect of GMOs was also demonstrated in a TNBS rat model [93]. Fuhrer
et al. used a different and original approach to investigate the role of the sialylated milk
oligosaccharides in mucosal immunity [94]. In order to identify the respective roles of
α2,3-sialyllactose (3′-SL) and α2,6-sialyllactose (6′-SL) on gut immunity, these authors used
2,3- and 2,6-sialylltransferase-deficient mice (St3gal4−/− and St6gal1−/− mice, respectively)
and applied a cross-breeding protocol in which wild-type and knock-out neonates were
exchanged at birth and fed either normal milk or milk deficient in 3′-SL or 6′-SL. At seven
weeks of age, the animals were exposed to DSS for five days. Surprisingly, the St3gal4-
deficient mice or wild-type mice fed with 3′-SL-deficient milk from St3gal4 knock-out mice
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were more resistant to DSS-induced colitis than the wild-type mice and St3gal4 knock-out
mice fed with normal milk. An analysis of the gut microbiota showed different colonisation
profiles depending on the presence or absence of 3′-SL in the milk. The presence of 3′-SL
was associated with an enrichment in bacterial species belonging to the Ruminococcaceae
family. The reconstitution of germ-free mice with gut microbiota isolated from St3gal4
knock-out mice demonstrated that these reconstituted mice exhibited the same sensitivity
to DSS as their microbiota donor animals. Cross-breeding experiments with normal and
6′-SL-deficient milk showed no impact on the susceptibility to DSS-induced acute colitis.
This elegant study clearly demonstrates the role of breastmilk oligosaccharides in shap-
ing the intestinal flora and promoting a healthy gut immune system in adulthood. It is
particularly interesting because of its experimental design, which respects the temporality
and mode of the administration of breastmilk and makes it possible to study the impact of
breastfeeding in adult individuals. However, sialylated oligosaccharides are not the major
sugars found in human breastmilk, which contains mainly fucosylated oligosaccharides, of
which 2′-fucosyl lactose (2′-FL) is the most abundant [95]. 2′-FL is not detected in mouse
milk [96]. Interestingly, almost 30 years ago, a transgenic mouse model was constructed
with the human gene encoding α1,2-fucosyltransferase and enabling the synthesis of 2′-FL.
The expression of this gene in the mouse mammary gland promoted the significant pro-
duction of 2′-FL in the milk of transgenic animals, up to a level representing 45% of the
total oligosaccharides [96]. Unfortunately, to the best of our knowledge, this model has not
been used to study the contribution of 2′-FL during breastfeeding on the physiology of the
intestinal mucosal immunity in adulthood.

More recently, the respective role of HMOs containing fucosyl and sialyl residues
on the development of gut inflammation in rodent models has been studied in a more
traditional way via the oral supplementation of these oligosaccharides after weaning or in
adult animals. Different models of acute or chronic colitis were used (DSS- or IL-10-deficient
mice), and different doses of HMOs, alone or mixed, were administered, either preventively
or curatively. It is therefore difficult to compare these different data. Nevertheless, all
these studies clearly suggest that the administration of specific HMOs (mainly 2′-FL)
after weaning can modify the composition of the gut microbiota in order to reduce the
acute or chronic inflammation observed in the various mouse models, supporting HMO
intervention as a strategy against IBD [97–101].

In addition to HMOs, milk also contains EVs, which are small lipid membrane vesicles
that carry bioactive factors such as proteins or RNA. The oral administration of purified
EVs from commercial cow’s milk for 6 days after the induction of acute colitis with DSS in
C57BL/6 mice attenuated the gut inflammation and restored the gut barrier more rapidly
compared to untreated animals [102]. Similar results were obtained in Balb/c mice, with
a more pronounced beneficial effect of EVs purified from cow’s milk compared with
those from human milk [103]. In order to assess the influence of EVs derived from cow’s
milk on the composition of the gut microbiota, Zhou et al. studied two groups of mice:
one fed with a diet supplemented with cow’s milk (exosome-/RNA-sufficient diet), and
the other one fed with a diet supplemented with ultrasonicated cow’s milk (exosome-
/RNA-depleted diet) [104]. Feeding was started at 3 weeks of age, and the intestinal
content (cecum) was collected at ages 7, 15 and 47 weeks. At ages 15 and 47 weeks, the
gut bacterial communities between both groups of mice turned out to be different and
showed characteristics associated with certain pathologies, such as IBD, as evidenced by
the decrease in the relative abundance of the Lachnospiraceae family in mice fed the exosome-
/RNA-sufficient diet. This alteration in the gut microbiota by bovine-milk-derived EVs has
been confirmed by others [105]. The same group has also recently shown and confirmed
that bovine-milk-derived EVs, administered preventively, displayed a protective effect
on DSS-induced colitis (acute and chronic) by suppressing intestinal inflammation and
improving the gut barrier integrity [106,107]. Altogether, these results strongly suggest a
beneficial immunomodulatory role for milk-derived EVs during intestinal physiology and
mucosal homeostasis. However, no early conclusions should be drawn, as there are still
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major methodological differences between studies, particularly regarding the purification
and analysis of EVs, making it impossible to compare the available data rigorously. In
addition, the quantities of EVs administered are regularly supra-physiological and do not
allow conclusions to be drawn about the role that they play at the doses found in breastmilk.

3.3. The Role of Breastfeeding in the Development of Human IBDs: Clinical Evidence

We herein propose a review of publications investigating an association between
breastfeeding and the risk of developing IBD in humans (summaries of the studies can be
found in Tables 1 and 2). For this review, references published in English were obtained
from a search of the PUBMED electronic database until June 2023 using combinations
of the English search terms “Early nutrition”, “Early diet”, “Breastfeeding”, “Human
milk”, “Inflammatory Bowel diseases”, “Crohn’s disease”, “Ulcerative colitis” and “gut
health”. We identified fifty-three publications between 1979 and 2023, the majority of
which relied on case–control studies (n = 40). Some of these studies included a broad
range of predictor variables, like the environment, parental health, diet, early antibiotic
usage, smoking or life-type behaviours, education and mode of delivery, that we will not
be discussing in detail in this review. Most of the case–control studies analysed possible
association between breastfeeding by using multivariate analysis and the diagnosis of
either CD or UC as the outcome (n = 29): seven only had CD as the main outcome, and
four only had UC as the main outcome. Five prospective cohort studies [74,108–111], seven
systemic review or meta-analyses [112–117] and one recent Mendelian randomisation anal-
ysis [118] were also conducted. Among the case–control studies, nine were carried out
in Asia/Pacific or Iran [119–127], seven in North America [128–134], one in Brazil [135]
and twenty-two in Europe [136–155] and Israel [156,157], while one international study
was conducted [158]. Thirteen case–control studies found that breastfeeding could have
a marked protective effect on the development of IBD in adults [121,127,140,143,144,149]
or paediatric IBD [120,125,130,148,152]. It is worth mentioning that having ever been
breastfed has been associated with a differential relationship with CD or UC with a
separate preventive effect [119,128,129,136,137,145,154]. Conversely, it is also commonly
reported that there is no positive link between being breastfed and the occurrence of
IBD [74,110,122–124,126,131–135,138,141,142,150,151,153,155–158]. Of note, it has been sug-
gested that breastfeeding is associated with a higher risk of developing CD [139,147] or
UC [144]. Overall, the literature remains inconsistent and does not support a clear asso-
ciation between breastfeeding and IBD. This level of great heterogeneity across studies
emerged in systematic reviews [113,115,116,159] and was reported in diverse geographical
areas and ethnic groups [115,159]. Concerning the latter points, it has been underlined that
the magnitude of protection in individuals who were breastfed during infancy appeared
higher in Asian populations compared with Caucasian people [115].

Among the case–control studies and prospective studies, 29 out of 45 analyses did
consider the breastfeeding duration. Despite the considerable heterogeneity that remains
in the literature regarding the interval of receiving breastfeeding, numerous studies have
observed that a prolonged duration of breastfeeding could reduce the odds of having UC
or CD [119,121,125,127,130,140,148,149,152,155]. Other findings have reported that a short
duration of breastfeeding provides substantial protection against CD or UC [136,137,154].
Therefore, shortly after birth, breastfeeding might reduce the risk, although there is con-
trasting evidence that suggests that initiating breastfeeding is actually not sufficient to
confer a protective effect [133]. There are population-based studies that contrast with these
observations, as they did not observe associations between the length of breastfeeding
and UC and/or CD diagnosis [110,124,128,129,132,136,141,142]. Few studies apart from
Lopez-Serrano and Lindoso [108,145] have shown a link between exclusive breastfeeding
and a change in the risk of IBD incidence [134,138,147,151] or severe illness [109]. It is worth
pointing out that Lindoso et al., in their prospective study, did not reveal any association
between the duration of exclusive breastfeeding and complicated disease at diagnosis [108].
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Generally, the meta-analyses tended to conclude that breastfed infants are less suscep-
tible to developing adult and paediatric-onset IBD [116,117], and that longer durations of
human milk exposure increase the risk of developing IBD, although the level of evidence is
low [112,113]. However, the authors acknowledged that numerous studies were of poor
quality and were not strictly designed for analysing breastfeeding effects, with a lack of
information on the quality and duration of breastfeeding. Failure in a proper definition
of breastfeeding, the absence of a well-documented history of breastfeeding, such as inac-
curate reporting of weaning, and the biased recall of whether a child was breastfed or for
how long in cohort studies can lead to misinterpretations and preclude a clear conclusion
of a direct link between breastfeeding and IBD. Therefore, it is still difficult to state with
certainty that well-established breastfeeding prevents the onset of IBD. In fact, a spectrum
of risk may cluster with breastmilk to influence early programming, including the timing of
introducing different types of foods. Key variants include not only the use of bottle feeding
versus exclusively breastfeeding, caesarean delivery, exposure to antibiotics or tobacco and
physical activity, but also the type of IBD outcome (incidence or severity), age at diagnosis
or community control design [118,159]. In addition, the paradigm that a Western lifestyle
and diet [160,161] may play a key role in the development of IBD and the possibility that the
strongest effect of breastfeeding on the subsequent risk of IBD was observed in Asian stud-
ies [115] fit well with the major role of the exposome in the dependent early-life effect [162].
In this case, a changing diet, socio-economic conditions of life or even improved hygiene
and infection outcomes all represent relevant confounders that could underpower studies.
Finally, Decker et al. pointed out that children born between 1995 and 2006 were breastfed
significantly longer than children born between 1992 and 1994 [148], while Piovani et al.
highlighted that the protective influence of being breastfed was higher before 2000 (OR:
0.58; 0.46–0.74) than after 2000 (OR: 0.82; 0.71–0.94) [159]. These observations have raised
critical ambiguities in the overall interpretation and comparison between analyses since
the 1980s in the sense that, over time, studies can differ according to the quality of the
breastfeeding promotion in maternity wards and the overall improvement in the duration
of breastfeeding, particularly exclusive breastfeeding.

In conclusion, despite the heterogeneity across studies, there is a trend that suggests
that breastfeeding may imprint the risk of IBD. There are actually many biological plau-
sibilities, such as microbiota development and inflammatory priming, that, under the
influence of genetic predisposition [75,160], including the genetic predisposition to breast-
feeding [118] or environmental exposures, make a complex interplay between breastfeeding
and IBD credible.
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Table 1. Summary of case–control/prospective studies on the association between breastfeeding and IBD.

Design Place Sample Size Breastfeeding
Associated with IBD Specific Comments Breastfeeding

Duration Main Outcome Publication
Date Reference

Case–control
study UK

57 CD patients and
114 controls; 51 UC

patients and
102 controls

Yes/No
Adults.

Never breastfed was a risk factor
for UC but not for CD.

No association when
breastfeeding was at

least 2 weeks
CD, UC 1979 Whorwell et al. [154]

Case–control
study Sweden 308 matched-pair

patients and controls Yes

Adults.
There were more individuals with

no or very short periods of
breastfeeding among patients with

Crohn’s disease than among the
controls. CD overrepresented

among those with no or very short
periods of breastfeeding. The mean
length of the breastfeeding period
was 4.59 months among patients
and 5.76 months among controls.

Lengths of
breastfeeding collected CD 1983 Bergstrand

et al. [140]

Case–control
study

International
(USA, Canada,
UK, Sweden,
Denmark, the
Netherlands,

France,
Italy, Israel)

302 CD patients,
197 UC patients and

998 sex- and
age-matched (within
1 year) controls were

studied for
each patient

No
Patients whose disease started

before 20 years and under study
<25 years old.

Not reported CD, UC 1987 Gilat et al. [158]

Case–control
study Canada

114 families included
with one child with
CD, 180 unaffected
siblings as controls

Yes

Adolescents.
Lack of breastfeeding was a risk

factor associated with the
development of CD during
childhood and adolescence.

No effect of length of
breastfeeding CD 1989 Koletzko et al. [129]

Case–control
study Sweden

93 CD patients,
164 UC patients and

514 controls
No

Adults.
Exclusive breastfeeding (breastfed

only) or not. The comparison
between cases and controls could
be somewhat misleading in this

study, as subsequent changes in the
breastfeeding status after the

mothers left the maternity ward
were not recorded.

Not reported CD, UC 1990 Ekbom et al. [138]
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Table 1. Cont.

Design Place Sample Size Breastfeeding
Associated with IBD Specific Comments Breastfeeding

Duration Main Outcome Publication
Date Reference

Case–control
study Canada

93 families included
with one child with

UC and
138 unaffected

siblings

No

Adolescents.
The lack of breastfeeding and

formula feeding were not identified
as risk factors during childhood.

No influence of
breastfeeding duration UC 1991 Koletzko et al. [128]

Case–control
study Sweden 167 UC patients and

167 controls No
Adults.

No difference as to how soon the
patients were weaned.

Weaning < 14 days UC 1991 Samuelsson
et al. [141]

Case–control
study Sweden

152 CD patients,
135 UC patients,

305 controls
No

Adolescents and adults.
Analysis did not support increased
risk of IBD among individuals with

no or only short durations
of breastfeeding.

<2 months CD, UC 1993 Persson et al. [142]

Case–control
study USA

68 CD patients,
39 UC patients and

202 controls
Yes

Children and adolescents.
Breastfeeding was negatively

associated with CD and UC, with
evidence of

duration-dependent trends.

≤5 months
6–11 months
≥12 months

CD, UC 1993 Rigas et al. [130]

Case–control
study USA 54 CD patients and

90 controls No <22 years Not reported CD 1996 Gruber et al. [131]

Case–control
study Italy

225 CD and 594 UC
patients with

age–sex-matched
paired controls

Yes

Adults.
Lack of breastfeeding was

associated with an increased risk of
CD and UC.

<4 months CD, UC 1998 Corrao et al. [143]

Case–control
study Israel

33 CD and 55 UC
patients, in
76 matched

population controls
and 68 clinic controls

No Adults Not reported CD, UC 1998 Klein et al. [156]

Case–control
study Netherlands

290 CD patients,
398 UC patients and

616 controls
No

Adults.
Breastfeeding was not associated

with IBD in adults; however, a
positive association was observed

with pancolitis.

Not reported CD, UC 1998 Russel et al. [146]
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Table 1. Cont.

Design Place Sample Size Breastfeeding
Associated with IBD Specific Comments Breastfeeding

Duration Main Outcome Publication
Date Reference

Case–control
study Japan

42 CD patients with
126 controls and

133 UC patients with
266 controls

Yes

<15 years.
Comparison between the group fed

exclusively breastmilk or mixed
and the group fed by artificial
(bottle) feeding alone for the

development of inflammatory
bowel disease. Breastfeeding

during infancy until postnatal 4
months might decrease the

development of chronic
inflammatory bowel disease.

Not reported CD 1999 Urashima et al. [120]

Case–control
study UK

26 CD and 29 UC
patients and

matched controls
(eight controls for

each case)

Yes

Adults.
A trend for breastfed infants to

have a lower risk of developing CD
but a higher risk of developing UC.

Not reported CD, UC 2000 Thompson
et al. [144]

Case–control
study France

222 CD and 60 UC
patients matched

with controls
Yes

Before 17 years of age.
Increased risk of CD development

when there was exclusive or partial
breastfeeding during infancy. Data

not reported for UC in relation
to breastfeeding.

Not reported CD, UC 2005 Baron et al. [147]

Case–control
study Canada 194 CD patients and

194 controls No

Less than 20 years.
The proportion of case mothers

who breastfed their children was
similar to that of the control group.

Breastfeeding < 6 months,
between 7 and

12 months,
>1 year

CD 2006 Amre et al. [132]

Case–control
study China

177 UC patients and
177 age-matched and
sex-matched controls

No Adults Not reported UC 2007 Jiang et al. [122]

Case–control
study Germany

444 CD patients,
304 UC patients and

1481 controls
No

Adolescents (median age:
11 years old).

Association between nutrition other
than breastmilk at 5 months and
reduced risk of both CD and UC.

Exclusive
breastfeeding < 5 months

versus ≥5 months
CD, UC 2007 Radon et al. [151]
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Table 1. Cont.

Design Place Sample Size Breastfeeding
Associated with IBD Specific Comments Breastfeeding

Duration Main Outcome Publication
Date Reference

Case–control
study Germany

1096 CD and 763 UC
patients,

878 healthy controls
No Adults

1 month
1–3 months
3–6 months
6 months

CD, UC 2007 Sonntag et al. [150]

Case–control
study Germany 374 CD and 169 UC

patients, 743 controls Yes

Children and young adolescents.
Time of breastfeeding was not

associated with CD or UC.
Significantly shorter time of

breastfeeding compared with the
control group was found in patients

with UC and CD.

The duration of
breastfeeding was

recorded. The average
duration was 4.8 months.

CD, UC 2010 Decker et al. [148]

Case–control
study New Zealand

638 CD and 653 UC
patients,

600 matched controls
Yes

Adults.
Breastfeeding was protective at

>3 months.

0–2 months
3–6 months

6–12 months
More than 12 months

CD, UC 2010 Gearry et al. [121]

Case–control
study New Zealand

197 CD patients and
290 controls

(informed about
breastfeeding

during infancy)

No

Age range between 5 and 86 years
for the complete cohort.

Being breastfed in infancy was not
associated with an increased or a

decreased risk of having CD.

Not reported CD 2010 Han et al. [123]

Case–control
study Spain

124 CD patients and
235 matched

controls, 146 UC
patients and

278 matched controls

Yes/no

Adults.
Breastfeeding, either partial or

exclusive, was a protective factor
for CD but not for UC in the

univariate analysis.

Not reported CD, UC 2010 Lopez-Serrano
et al. [145]

Case–control
study Denmark 123 CD and 144 UC

patients, 267 controls Yes

Adults.
Breastfeeding more than 6 months
decreased the odds of IBD, whereas

no effect of having ever been
breastfed was observed.

Ever breastfed or >6
months CD, UC 2011 Hansen et al. [149]

Prospective
cohort UK

114 CD and 66 UC
patients,

248,479 controls
No Children and early adults.

Artificial versus breastfed. Not reported UC, CD 2011 Roberts et al. [74]
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Table 1. Cont.

Design Place Sample Size Breastfeeding
Associated with IBD Specific Comments Breastfeeding

Duration Main Outcome Publication
Date Reference

Case–control
study Iran

95 CD and 163 UC
patients, 285 and

489 age- and
sex-matched

controls, respectively

No

Adults.
No difference between breastfed
infants and non-breastfed infants.
No difference in mean duration of
breastfeeding between IBD patients

and controls (children were
breastfed until almost 18 months in

all groups).

Mean duration of
breastfeeding reported CD, UC 2011 Vahedi et al. [124]

Case–control
study Italy

567 CD and 428 UC
patients,

562 healthy controls
No Adults Not reported CD, UC 2012 Castiglione

et al. [153]

Case–control
study USA

89 IBD cases and
3080 age-and
membership-

matched controls

No

Paediatric (<18 years).
Neither exposure was associated
with paediatric-onset IBD in the
fully adjusted model (formula
versus exclusive breastfeeding

or missing).

Exclusive breastfeeding,
formula feeding with or
without breastfeeding or
missing recorded data.

CD, UC 2012 Hutfless et al. [134]

Case–control
study Slovakia

129 CD patients,
96 UC patients,

293 controls
No

Adults.
Risk of CD and UC associated with

breastfeeding < 6 months.

0–5 months
6–12 months

More than 12 months
CD, UC 2013 Hlavaty et al. [155]

Case–control
study Denmark

59 CD and 56 UC
patients,

477 healthy controls
Yes

Children < 15 years.
Breastfeeding more than 3 months
was associated with a reduced risk

of IBD.

>3 months as a variable
in a multivariate

analysis.
CD, UC 2013 Jakobsen et al. [152]

Prospective
cohort USA

146,681
248 incident cases of
CD and 304 incident

cases of UC

No
Adult women.

No association with
breastfeeding duration.

≤3 months
4–8 months
≥9 months

UC, CD 2013 Khalili et al. [110]

Case–control
study China 1308 UC patients and

matched controls No Adults Not reported UC 2013 Wang et al. [126]

Prospective
cohort USA 333 CD and

270 UC patients Yes/No

Adult patients.
Breastfeeding was statistically

significant in its inverse
relationships with CD-related
surgery; no association with

UC-related surgery.

Not reported
UC, CD

(IBD-related
surgery)

2014 Guo et al. [109]
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Table 1. Cont.

Design Place Sample Size Breastfeeding
Associated with IBD Specific Comments Breastfeeding

Duration Main Outcome Publication
Date Reference

Case–control
study Australia

154 MEM (Middle
Eastern migrant in

Australia) cases
(75 CD patients;
79 UC patients),

153 MEM controls,
162 Caucasian cases

(85 CD patients;
77 UC patients),
173 Caucasian

controls, 153 controls
in Lebanon

Yes

Adults.
Declined risk of CD if breastfeeding
≥ 3 months and decreased risk of
UC if breastfeeding ≥ 6 months.

Breastfeeding duration
effects investigated CD, UC 2015 Ko et al. [127]

Case–control
study

Asia-Pacific
(China, Hong

Kong, Indonesia,
Sri Lanka,

Macau,
Malaysia,
Singapore,
Thailand

and Australia)

442 cases and
940 controls Yes

Childhood.
Breastfeeding > 12 months reduced

the risk of IBD.

0–6 months
7–12 months

More than 12 months
CD, UC 2015 Ng et al. [125]

Case–control
study Canada

973 CD and 698 UC
patients,

10,488 controls
No

Childhood and adolescence
between 0 and 20 years old.

No association between initiating
breastfeeding at the time of birth or,

alternatively, not initiating
breastfeeding and being diagnosed
with IBD later in life. The authors

could not know how long
breastfeeding was maintained

after discharge.

Not reported CD, UC 2016 Bernstein et al. [133]

Prospective
cohort Australia 81 CD and 51 UC

patients, 103 controls No Adults Not reported CD, UC 2016 Niewiadomski
et al. [111]

Case–control
study Brazil 145 CD patients and

163 controls No Adults Not reported CD 2017 Salgado et al. [135]
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Table 1. Cont.

Design Place Sample Size Breastfeeding
Associated with IBD Specific Comments Breastfeeding

Duration Main Outcome Publication
Date Reference

Case–control
study Italy 102 CD and 162 UC

patients, 103 controls Yes/No

From early childhood to
adolescence (between 1 and

18 years).
No association reported between

breastfeeding and UC.
Breastfeeding > 3 months was
associated with higher risk of

developing CD.

Breastfeeding > 3 months
(as a variable in the

multivariate analysis).
CD, UC 2017 Strisciuglio

et al. [139]

Prospective
cohort

North America
(USA

and Canada)

1119 patients
with CD Yes

Paediatric cohort.
Exclusive breastfeeding inversely

correlated with complicated
paediatric CD. No difference

according to exclusive
breastfeeding duration

(dichotomised < 3 months to
>3 months).

Breastfeeding exposure
was initially analysed as
any duration of exclusive

breastfeeding (of these
breastfed patients,
104 (13.4%) were

exclusively breastfed for
less than 1 month,

170 (21.8%) for
1–3 months, 170 (21.8%)

for 3–6 months and
302 (38.8%)). Subsequent

analysis stratified by
duration of breastfeeding

and compared with
never breastfed, those

with 1–3 months of
exclusive breastfeeding,

and children with
>3 months of exclusive

breastfeeding.

Complicated CD,
need for

CD-related
hospitalisation

and surgery

2018 Lindoso et al. [108]

Case–control
study Switzerland

617 CD patients,
494 UC patients and

352 controls
Yes/No

Adults.
No association with the risk of IBD

or CD. A shorter duration
(<6 months) was protective for UC.

<6 months vs. 6 months CD, UC 2020 Lautenschlager
et al. [136]

Case–control
study Netherlands

323 CD and 321 UC
patients,

1348 controls
Yes/no

Adults.
A protective effect was described

when breastfeeding < 3 months for
CD but not for UC.

<3 months vs. >3 months CD, UC 2020 Van der Sloot
et al. [162]
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Table 1. Cont.

Design Place Sample Size Breastfeeding
Associated with IBD Specific Comments Breastfeeding

Duration Main Outcome Publication
Date Reference

Case–control
study

Southeast Asia
(Malaysia)

38 CD and 32 UC
patients, 140 healthy
controls matched by

gender, age
and ethnicity

Yes/No
Children/adolescents (<18 years).

Breastfed ≥ 6 months was
protective for UC but not CD.

Duration of
breastfeeding considered CD, UC 2022 Lee et al. [119]

Case–control
study Israel

405 CD and 341 UC
patients,

2043 controls
No Adults in a population with a

follow-up of 50 years. Not reported CD, UC 2022 Velosa et al. [157]

Table 2. Summary of published reviews and meta-analyses on the association between breastfeeding and IBD.

Design Place Sample Size
Breastfeeding

Associated
with IBD

Specific Comments Breastfeeding
Duration

Main
Outcome

Publication
Date Reference

Meta-analysis International
A total of 17 published studies,
5 of which were graded to be of

high quality
Yes

This meta-analysis demonstrates that
breastfeeding has a statistically

significant protective role against UC
and an even greater role against CD.

Duration of
breastfeeding was

sought and documented
UC, CD 2004 Klement

et al. [117]

Systematic
review International Seven studies that included

patients with early-onset IBD Yes

Breastmilk exposure had a significant
protective effect against developing
early-onset IBD. A non-significant
difference was demonstrated for

ulcerative colitis and Crohn’s
disease individually.

Not reported IBD 2009 Barclay et al. [116]

Meta-analysis International

A total of 35 studies including
7536patients with CD,

7353 patients with UC and
330,222 controls

Yes

Magnitude of protection higher in
Asian population.

Similar magnitude of lower
susceptibility in paediatric and

adult-onset disease.

Stronger decreased risk
when breastfeeding

> 12 months as
compared with
3 or 6 months.

UC, CD 2017 Xu et al. [115]

Systematic
review China

Totals of 8 full texts with
epidemiological data, 25 with
risk factor data in Chinese and

7 full texts with epidemio-
logical data and 12 with risk
factor data in English were

included for analysis.

Yes
Two references underlined a

protective effect in China for UC. Not
reported for CD.

Not reported IBD 2018 Cui et al. [114]
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Table 2. Cont.

Design Place Sample Size
Breastfeeding

Associated
with IBD

Specific Comments Breastfeeding
Duration

Main
Outcome

Publication
Date Reference

Systematic
review International

A total of 2 of the 17 articles
included for the infant

milk-feeding practices and IBD
examined shorter versus longer
durations of exclusive human

milk feeding, and none
examined the intensity,

proportion, or amount of
human milk fed to mixed-fed

infants. Thirteen articles
examined the relationship

between never fed human milk
versus having ever been fed
human milk and IBD. Nine

articles examined the
relationship between shorter

versus longer durations of any
human milk feeding and IBD.

Yes/No

The relationship between never
breastfed versus having ever been
breastfed human milk and the IBD
risk was inconclusive. This review

includes two articles, which provided
insufficient evidence to draw

conclusions about the relationship
between the duration of exclusive

breastfeeding and IBD. Having been
fed human milk for short durations

or not at all is associated with a
higher risk of diagnosed IBD.

Shorter versus longer
durations of any human

milk feeding are
associated with a higher

risk of IBD.

IBD 2019 Güngor et al. [113]

Umbrella
review of

meta-analyses
International

A total of 53 eligible
publications included with

71 reported risk factors for IBD.
Yes

Longer exposures were associated
with decreased risk. The protective
effect was greater in Asian than in

Caucasian individuals (and in studies
conducted before 2000).

Discussed UC, CD 2019 Piovani et al. [159]

Meta-analysis International Two cohort studies and forty
case–control studies. Yes

Breastfeeding, especially of longer
durations, was protective against

IBD development.
Discussed UC, CD 2021 Agrawal

et al. [112]

Mendelian
randomisation

analysis
Europe 458,109 participants Yes

Relationships between colitis and
both physical activity and

breastfeeding; breastfeeding
decreased the risk of CD (in the

univariate models) and UC (in the
multivariate model). Genetically

predicted breastfeeding was assoc-
iated with lower risk of UC and CD.

Not reported UC, CD 2023 Saadh et al. [118]
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4. Early Determinants of Microbiota and Colitis Trajectories
4.1. General

It is now well established that the gut microbiota is a major contributor to the patho-
geneses of IBDs in adults [163]. However, in addition to the genetic determinants of IBD,
the exact environmental causes of microbial dysbiosis and the timeframe of the acquisition
of a pre-dysbiotic state early in life to further predispose to IBD is far from elucidated.
Whether the pathogens identified in adults are inherited directly from vertical transfer
from the mother or secondarily is still unclear. Consequently, the question of the maternal
transmission of beneficial bacteria that are likely to colonise the infant’s gut on a long-term
basis and prevent the resilience of adult intestinal homeostasis is still being debated [164].
Lastly, the inflammatory context, possibly induced by C-section compared with vaginal
delivery [165], and an inappropriate diet(s) or subsequent environmental factors may both
favour pathobiont colonisation and the expansion and limit abundance of symbionts.

4.2. Maternal IBD and Gut Microbiota

While women with IBD maintain an intestinal dysbiosis during pregnancy, charac-
terised by an increase in gamma-proteobacteria and a decrease in bacteroidetes, babies born
to these mothers with IBD show reduced diversity and lower counts of bifidobacteria [166].
Of note, the biomarker of gut inflammation, faecal calprotectin, assessed in IBD mothers
during pregnancy and babies, was correlated to their respective gut microbiome composi-
tions [167]. In addition, the IBD status of mothers is a predictor of higher calprotectin levels
in babies. This suggests the influence of early inflammation and the role of both maternal
diseases as well as maternal microbiota on the development of further dysbiotic infant gut
microbiota, regardless of genetic factors. However, obviously all babies from IBD mothers
will not develop IBD, and the functional redundancy among microbes may compensate for
the possible lacks.

4.3. Gut Microbiota and IBD: A Possible Intervention?

Defining the microbial markers of dysbiosis and what constitutes a healthy micro-
biota in adults is already a challenge, although many bacterial genera and even species
have been clearly identified as symbionts or pathobionts. Thus, attributing specific anti-
inflammatory roles and functionalities of bacteria in the early-life “unstable” microbiota
is quite tricky [168]. The development of the human gut microbiome, along with dis-
tinct diets, corresponds to complex and individual dynamics comprising early and late
colonisers [15,169,170]. Among these species, dominant and less abundant taxa have
shown overall anti-inflammatory potential, such as species from the Bifidobacterium and
Bacteroidetes genera, and, to a lesser extent, Lactobacillus spp. In line, other anaerobic bac-
teria, like Akkermansia and Faecalibacterium prausnitzii, have also demonstrated regulatory
functions that contribute to homeostasis and lower inflammation. In contrast, colitogenic
properties have been attributed to taxa such as Enterococcus and Clostridium spp. repre-
sentatives together with an abundance of Gamma-Proteobacteria like E. coli [164]. A higher
occurrence of adherent-invasive E. coli (AIEC) has been fully demonstrated in adult IBD
patients [171] as well as in paediatric CD patients [172], but, to the best of our knowledge,
there is no evidence on an early asymptomatic carriage of AIEC in neonates that could in-
fluence the onset of colitis and inflammatory symptoms. The vertical transmission of AIEC
was reported in mice [173], but more consistent and reliable clinical studies are actively
needed. Lastly, the breastmilk route of such a possible mother-to-infant transmission, as
reported for intestinal obligate anaerobic species like Bifidobacteria, Bacteroides and Clostridia,
should be addressed in depth [174,175].

Experimental studies have clearly demonstrated that specific dietary habits have an
impact on the development of the intestinal barrier and the composition of the neonatal
microbiota, with a possible influence on overall health [176] and the long-term susceptibility
to chronic diseases, including inflammatory colitis [177–179]. During the last decades,
preclinical and clinical nutritional interventions have shown great potential to address IBDs
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by targeting adult microbiota with either prebiotics, probiotics, synbiotics or postbiotics,
based on key microbial-derived metabolites [180]. For example, a promising effect of a
symbiotic preparation has been shown in reducing symptoms of paediatric IBD with a
mean age of 12.6 years old [181]. Only a few trials on children have reported changes
in microbiota that normalise or lower some dysbiotic-associated bacterial species [182].
However, clear data in humans are scarce, as no longitudinal clinical studies address the
early microbiota composition or nutritional- and microbiota-targeting interventions with
further follow-up of the onset and development of IBD.

Recently, Guo and colleagues [183] reviewed the early microbial imprinting of neonates
that could define and possibly modulate either resilience against or susceptibility to IBD
(see also Figure 1). They finally proposed the design of “tailored interventions” based on
prebiotics or probiotics, depending on the distinct mother influence types. Of note, the
timing of such interventions has to be clearly defined. Indeed, the introduction of solid
foods at 3 months of age, for instance, increased the short-chain fatty acids but appeared
detrimental for the gut microbiota [51]. Dosing also has to be taken into account. Barone
and colleagues, in attempts to decipher the role of C-section-induced dysbiosis in gut barrier
dysfunction and the associated inflammation in mice, found that an excessive exposure to
very diverse microbiota too early in life was harmful, sustaining the too much too early
principle [165]. In line, the mechanisms involved the “weaning reaction” occurring within
a specific time window to prevent susceptibility to inflammatory diseases in the adult and
to promote regulatory T-cell-mediated protection [184].

5. Conclusions

Most of the current recommendations for pregnant women and young children do not
always consider the long-term health consequences of nutrition. Implementing optimal
nutrition programs from the very beginning of life is crucial to improving child develop-
ment and the well-being of populations for sustainable health. In a context in which the
promotion of breastfeeding is a global priority, the focus on the benefits of breastfeeding in
modifying the risk of chronic non-communicable diseases is a priority for the development
of preventive strategies to promote long-term health. In this review, we summarise the
evidence concerning the link between breastfeeding and the reduced risk of IBD. Overall,
the data remain uncertain, partly due to the considerable heterogeneity and lack of stan-
dardisation between studies. The duration of exclusive breastfeeding is probably decisive
for its lasting effect on inflammatory-mediated diseases. The microbial development origin
of diseases suggests that the colonisation of the microbiota regulates immune development
and may program susceptibility to hyperinflammation later in life [185]. Indeed, even an
early transient dysbiosis could determine a health outcome. The composition of breast-
milk (i.e., the maternal microbiome or HMOs, for example), the quality of complementary
feedings, the use of antibiotics and the place of residence are all variable factors that can
promote or disrupt the process of a child’s gut microbiota colonisation and pathological im-
printing [184,186–189]. It is therefore difficult to identify the exact role of breastfeeding and
the gut microbiome in the onset of IBD. A more holistic approach is needed to examine the
impact of breastfeeding on later life events. A key question is how to translate nutritional
factors into biomarkers of interest, with systemic biology as a strategic tool to characterise
the molecular/biological alterations leading to IBD. As such, specific improvements in our
knowledge could support interventions targeting the gut microbiome, such as prebiotics,
probiotics or postbiotics, that could be used to treat or prevent diseases in a precision
medicine framework.
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