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Abstract

Because of its importance in various aspects of everyday life, silica is a material that has been
the subject of extensive research. Studies on its amorphous phase have particularly benefited
from the contribution of atomistic simulations to understand the close relationships between
its structure and properties. In this context, the main difficulty lies in the compromise that
had to be made between the precision of the interactions that need to be computed at an ab
initio level and the important statistics required to describe disorder. With the advent of
machine learning approaches, it is now possible to couple accuracy and statistics by using
interatomic potentials trained on ab initio databases. This opens up unprecedented prospects
for studies where calculation accuracy, system size and trajectory length are critical. In this
work, we propose a machine learning potential for silica obtained from a neural network
trained on a database consisting of a few hundred configurations extracted from an ab initio
molecular dynamics trajectory at the Density Functional Theory (DFT) level of a silica
liquid at high temperature and under pressure. We show that this potential is sufficiently
accurate to describe the liquid and amorphous phases of silica, and that it is also transferable
to glasses under moderate pressure and, more surprisingly, to certain crystalline phases.
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1. Introduction

Silica is a material that can be found in
various aspects of daily life, including win-
dow glass and electronic devices, but is also a
major component of the glass utilized for nu-
clear waste storage [1] and of zeolites which
are of paramount interest for catalysis and
storage [2]. It also plays a fundamental role
in the composition of volcanic magmas [3].
The phase diagram of silica is notably ex-
tensive, featuring numerous crystalline struc-
tures, most of them being composed of tetra-
hedrally coordinated Si atoms as building
blocks [4].

Due to its importance, extensive research
has been conducted on silica, particularly
in its amorphous state, to gain a deeper
understanding of the intricate relationships
between its complex and disordered struc-
ture and its properties. Numerous atomistic-
level numerical studies have specifically fo-
cused on these aspects [5–7]. However, this
task is made difficult due to the complex-
ity of the phase diagram and to the repre-
sentation of the amorphous state. In the
latter case, because of the structural disor-
der, previous studies either provided high ac-
curacy in energy description (ab initio) but
lacked statistical representation [5, 8–12], or
offered statistical representation but lacked
accuracy[13–17].

Nevertheless, over the past two decades,
efforts have been dedicated to developing
new interatomic potentials by fitting ab ini-
tio data, able to properly describe the differ-
ent phases of silica [18–21]. These advance-
ments have resulted in an increasingly accu-

rate depiction of silica’s microscopic proper-
ties and hence enabling a better understand-
ing of mechanisms responsible for its behav-
ior during indentation, fracture, varying tem-
perature or pressure [22–26]. Furthermore,
the precise derivation of a potential for sil-
ica marks the first stage in the development
of potentials for silicates incorporating other
elements, bringing us closer to modelling in-
creasingly realistic glasses [27–30]. However,
despite these significant progresses, these po-
tentials still possess several limitations, par-
ticularly in their ability to accurately de-
scribe vibrational modes, among other fac-
tors [15, 19, 27, 31].
In the pursuit of more accurate potentials,

the emergence of machine learning techniques
presents an opportunity to take a significant
leap forward. Several attempts can be found
in the literature, each of which has yielded
highly promising results in this regard. In
Ref. [31], the authors have used a database
made of PBE-DFT calculations of crystalline
polymorphs and of snapshots of amorphous
samples at several temperatures yielding to a
total of 39390 configurations (867 986 atomic
environments). After a thorough analysis of
the descriptors space, they trained a non-
linear model consisting in 3 layers of 10, 20,
30 or 40 neurons. The obtained root mean
square error (RMSE) for the forces lies be-
tween 0.38 and 0.22 eV/ Å depending on
their parameters. The interaction potential
is tested on structure and vibrations of amor-
phous silica samples and gives good compari-
son with density functional theory (DFT) cal-
culations. In 2020, Balyakin et al. [32] pro-
posed an interaction potential for silica gener-
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ated using the DeepMD-kit package [33] with
3 neural networks (NN), two made of 3 lay-
ers for the angular and radial filters and one
made of 3 layers for the fitting. The database
was constructed using 2 sets of ab initio
molecular dynamics (AIMD) trajectories car-
ried out in the PBE-DFT framework at sev-
eral temperatures: a 96-atom one and a 216-
atom one, yielding to a total of 380 000 con-
figurations (more than 40 millions atomic en-
vironments). No RMSE was given. The au-
thors demonstrated the ability of the poten-
tial to reproduce the structural and dynami-
cal properties of liquid silica with respect to
DFT. More recently, the study presented in
[34] focused on a potential trained using the
GAP procedure on a DFT database originally
obtained with the PBEsol functional then re-
fined with the SCAN one. The configurations
were obtained from single-point DFT calcu-
lations on snapshots extracted from classi-
cal MD simulations using empirical poten-
tials. Besides liquids and amorphous struc-
tures, the database also comprised crystalline
structures at equilibrium and under strain
and small clusters, yielding to a total of 3074
configurations. The RMSE were of the or-
der of 0.01 eV/atom for the energies and of
0.3 eV/Å for the forces in the liquid state,
less for crystals. The interatomic potential
was able to well reproduce the elastic proper-
ties of the crystals and the phonon bands of
α-quartz, as well as the pressure-density evo-
lution in SiO2 glasses up to 40 GPa. How-
ever no information were provided about the
vibrations in the glass. In 2023, Qi et al.
[35] published a NN potential obtained also
with DeepMD-kit using two 3-layers NN, one

for the descriptors (3 layers of 25, 50 and
100 neurons) and one for the fitting (3 lay-
ers of 240 neurons each). The NN was fitted
on energies, forces and stress extracted from
AIMD simulations of silica glass carried out
at 300K and 1000K using two different ex-
change and correlations functionals, PBE and
AM05 with Grimme dispersion corrections.
The results show good structural properties
of silica glass at ambient pressure but the sys-
tems behave strangely under pressure with a
very high proportion of 5-fold coordinated Si
atoms from 8 GPa and important finite size
effects.

In this context, we present a simple pro-
tocol for developing a robust and precise
machine learning model using a moderately
sized database consisting exclusively of high-
temperature and compressed liquid configu-
rations. We demonstrate that a compact neu-
ral network can effectively generate accurate
machine learning potentials when trained
on a reduced database consisting of DFT
energies and forces of snapshots extracted
from MD trajectories at high temperature
and pressure, allowing for an extensive ex-
ploration of the potential energy landscape.
Once validated, the potential is initially em-
ployed to investigate the effects of simulation
conditions, such as quench rate and system
size, on the structural and dynamic proper-
ties of amorphous silica. Subsequently, the
transferability of the model is tested on sil-
ica crystals and compressed glasses, and com-
pared to experimental data, thereby confirm-
ing the validity of the proposed approach and
assessing its limits.
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2. Computational details

The machine learning potential for silica
was developed using a neural network trained
on a database of atomic configurations ob-
tained from AIMD simulations. All AIMD
simulations were carried out using the DFT
code VASP with PAW pseudopotentials for O
and Si atoms. We used the PBEsol exchange
and correlation functional, which has been
demonstrated to yield accurate structural
properties for silica in relation to experimen-
tal data and an energy cutoff of 600 eV [27].
For validation of the potential and data

production, the LAMMPS package [36] was
used to perform MD simulations. Simula-
tions were performed in the NVT or NPT
ensemble, with a time step equal to 1 fs.
The temperature was controlled by a Nose-
Hoover thermostat, whose damping parame-
ter was set to 100 fs. For NPT simulations,
the pressure was controlled by a barostat with
a damping parameter equal to 1000 fs.

2.1. Development of the potential

In the following, the technical details for
the database generation, for the training and
validity tests are given.

2.1.1. Database

To generate the training set, we conducted
AIMD simulations on a 384-atom system con-
sisting of 128 SiO2 units in a cubic box of side
17.96285 Å at 3600 K for 9.2 ps and at 6000
K for 2.0 ps. The data at 3600K are the ones
used to optimize the SHIK potential for silica
[27].
To construct the database, we selected 600

snapshots at regular intervals from the two

liquid trajectories, along with compressed
configurations of SiO2. These compressed
configurations were obtained by reducing the
size of the simulation box for some selected
liquid snapshots, while scaling the atomic co-
ordinates accordingly. We compressed the
box length by 15%, 22%, 29%, 32%, 34.5%,
37%, 39%, and 42% and we included in the
database the configurations taken along the
relaxations of the atomic positions after com-
pression (120 configurations in total). While
the smallest volumes are highly unrealistic,
they are necessary to explore the potential
energy surface at very small interatomic dis-
tances. Overall, the database includes 720
configurations of 128 SiO2 units, i.e. 276 480
atomic environments. Attempts of training
the neural network with larger datasets were
carried out but did not lead to drastic im-
provements of the RMSE.
We note that our database is much smaller

and simpler than what was proposed in previ-
ous attempts for silica [31? –34]. In particu-
lar, we used a small number of structures and
did not include any crystalline structures. In
the following, we will demonstrate that this
choice towards a less rich database did not
impede the quality of our model.

2.1.2. Neural network training

To train the Neural Network Poten-
tial (NNP), we used the neural network-
based code N2P2 and Behler-Parrinello (BP)
symmetry functions for the description of
the atomic environments [37]. The neu-
ral network comprises two layers of 30
neurons each and we used 39 BP ra-
dial functions and 57 BP angular functions
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as descriptors [38]. For the radial func-
tions, the values of η and rs were set to
{0.001, 0.01, 0.03, 0.06, 0.15, 0.3, 0.6, 1.5} Å−2

and {0, 1, 2} Å, respectively. For the angular
functions, the values of η, λ and ζ were set to
{0.001, 0.003, 0.007, 0.01, 0.03, 0.07, 0.2} Å−2,
{−1, 1} and {1, 4}, respectively. The cutoff
was set to 6 Å and the activation function is
a hyperbolic tangent.
The training was carried out on all energies

and on 10% of the forces. The database was
divided into a training set (90%) and a test
set (10%). With these parameters, the low-
est RMSE is 0.004 eV/atom for energy and
0.289 eV.Å−1 for the forces.
When comparing to previous neural net-

work architecture and in particular to deep
neural network approaches, we used a smaller
number of neurons which appear to be suffi-
cient for obtaining a highly accurate machine-
learning potential.

2.1.3. Validity tests

Validation of the NNP was obtained by
comparing the structure of liquid silica at
3600 K obtained from AIMD with that of
two systems obtained from molecular dynam-
ics simulations at the same temperature with
the NNP: one of 384 atoms and one of 3072
atoms.

2.2. Generation of the glass samples

Silica glasses were obtained using quenches
from liquids equilibrated at 3400 K and atmo-
spheric pressure in the NPT ensemble with
the LAMMPS code at zero pressure. A two-
step quench procedure was used: (i) a slow
quench from the liquid at 3400 K down to

1500 K during N steps and (ii) a fast quench
from 1500 K down to 300 K during 100 000
steps, corresponding to a quench rate of 1.2
1013 K/ps. The use of this two-stage quench-
ing protocol is justified by the fact that below
1500K, no significant relaxation takes place in
our systems within the considered simulation
times. Rapid quenching from this tempera-
ture onward enables us to reduce computing
times without altering the quality of the final
result. The values of the quench rates given
hereafter correspond to the first stage. The
effects of quench rate (from 3.8 1010 K/s to
3.8 1013 K/s) and of system size (from 384
to 12000 atoms) on the structural and vibra-
tional properties of the obtained glasses were
investigated. For each quench rate and size, 5
independent samples were generated and the
results were averaged over the 5 samples.
Then, a 3000-atom system was used to

study the effect of hydrostatic pressure at
room temperature by applying a barostat to
the simulation box, by steps of 2 GPa. For
each step, the pressure was increased linearly
during 100 ps then the system was relaxed at
the target pressure in the NPT ensemble for
100 ps. Then the thermostat and barostat
were released and the system was relaxed in
the NVE ensemble for 100 ps during which
the structural and vibrational properties were
computed.

2.3. Calculations of the crystals

DFT calculations of crystalline poly-
morphs were performed on a primitive cell,
with the PBEsol exchange and correlation
functional, a plane-wave energy cutoff of 600
eV, and a convergence threshold of 0.001
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eV/Å for the forces. The k-point grid used
was set to 6×6×3 for cristobalite, 6×6×5
for quartz, 6×5×6 for coesite, 7×7×7 for
stishovite and 1×1×2 for silicalite.

The NNP calculations of crystalline poly-
morphs were performed using supercells to
ensure a half-length of the simulation box
larger than the NNP cutoff radius (4×4×3
for cristobalite, 5×4×5 for quartz, 3×2×3 for
coesite, 5×5×8 for stishovite and 1×1×1 for
silicalite).

For computing the vibrational density of
states (VDOS), the second order derivatives
of the total energy with respect to the ions
positions were calculated using a finite differ-
ences approach.

To obtain accurate phonon dispersion,
VDOS DFT calculations were performed
on larger supercells (2×2×2 for cristobalite,
2×2×2 for quartz, 2×1×2 for coesite, 3×3×4
for stishovite and 1×1×1 for silicalite), and
the k-point grid used was set to 1×1×1. The
VDOS NNP calculations were performed us-
ing the PHONON package of LAMMPS.

3. Results and discussion

The obtained NNP for silica was first
tested on the structural properties of a sil-
ica liquid. Afterwards, the NNP was used
to study the effects of quench rate and sim-
ulation box size on the structural and vibra-
tional properties of amorphous silica. Finally,
the transferability of the NNP was investi-
gated on some of the most common crys-
talline phases of silica and on amorphous sil-
ica under pressure up to 14 GPa.

3.1. Liquids

For each system, the initial structure was
obtained by randomly distribute atomic posi-
tions in a cubic box for the experimental glass
density. Then the system was first minimized
before being equilibrated in the NVT ensem-
ble at 5000 K for 5 ps and then at 3600K for
0.5 ns.
First, the NNP accuracy was tested by

comparing energies and forces to DFT ones
on some randomly selected snapshots from
the liquid trajectory at 3600K. The results
presented on Fig. 1(a) and (b) for energies
and forces, respectively, show an almost per-
fect correlation.

Figure 1: (a) Energies computed with the NNP vs en-
ergies computed by DFT for selected snapshots along
the 3600K liquid trajectory. (b) Corresponding forces
components NNP vs DFT.
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Figure 2: Characteristics of two SiO2 NNP liquids of 384 and 3072 atoms at 3600 K and comparison with
a 384-atom liquid obtained from AIMD: pair correlation functions (a) Si-Si, (b) Si-O, (c) O-O, angular
distributions (d) O-Si-O, (e) Si-O-Si, (f) mean square displacement, (g) rings statistics, and (h) structure
factor.

Snapshots were extracted from the trajec-
tory every 5 ps to study the structural prop-
erties and compare them with the DFT ref-
erence. The pair correlation functions (PCF)
and the Si-O-Si and O-Si-O bond angle dis-
tributions (BAD) were computed (Fig. 2).

The partial PCFs obtained with the NNP
are in excellent agreement with the DFT ref-
erence. The results are similar for both sys-
tem sizes, meaning that size effects are neg-

ligible. The partial BADs (for Si-O-Si and
O-Si-O angles) present small discrepancies:
The O-Si-O BAD is slightly narrower and
higher in the case of DFT (Fig.2(d)) and the
NNP Si-O-Si BAD exhibits a higher shoul-
der around 90◦ than the DFT one (Fig.2(e)).
These discrepancies can be attributed to the
presence of a larger number of defects in the
NNP liquid with respect to the DFT one, in-
cluding edge-sharing tetrahedra that give rise
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to the shoulder at 90◦ in the Si-O-Si distribu-
tion.
Another important characteristic of liq-

uid and amorphous silica is the distribu-
tion of the rings size. It has been com-
puted using the R.I.N.G.S. code [39] with
the Guttman’s method and is presented in
Fig. 2(g) for the three systems. The two
NNP distributions are very similar, showing
that there are no size effects on the structure
of the liquids. However with respect to the
DFT distribution, there is a larger propor-
tion of 2-membered rings (edge-sharing tetra-
hedra) which is consistent with the shoulder
in the Si-O-Si distribution, but also less 4-
membered rings and more 8-membered rings.
Finally, the structure factors S(q) of the

three systems are compared in Fig.2(h). One
can observe again that there are no size ef-
fects and that the agreement between the
NNP liquid and the DFT one is very good.
Regarding dynamical properties, by com-

paring the mean square displacement (MSD)
of the different liquids (Fig.2(f)), one can see
a fairly good agreement between the NNP
and DFT results. For the 384-atom liquid,
the diffusion constants can be estimated to ≈
8.0 10−6 cm2/s for Si and ≈ 12.0 10−6 cm2/s
for O with DFT, and to ≈ 5.2 10−6 cm2/s for
Si and ≈ 9.0 10−6 cm2/s for O with the NNP.
For the 3072-atom system, the diffusion co-
efficients are ≈ 8.2 10−6 cm2/s for Si and ≈
12.8 10−6 cm2/s for O with the NNP. These
values are in the range of order of the values
of the literature [19, 40–42]. The slower dif-
fusion observed for the smallest system size
might be due to finite size effects as reported
in Ref. [43].

Overall, the structural and dynamics prop-
erties of the silica liquid obtained using the
NNP are in very good agreement with that
of the DFT one, validating our training.

3.2. Glasses

Following our validation of the potential on
liquid properties, we will now focus on the
glassy phase. We would like to raise here
that our DFT database did not include any
structures in this phase. Thus, such a test is
certainly a challenge for NNP models which
are normally considered to be poorly trans-
ferable.

3.2.1. Quench rate

Figure 3 presents the main structural and
dynamical characteristics of a 384-atom SiO2

glass obtained using NNP from the melt
quenched at different rates ranging from 3.8×
1013 K/s to 3.8× 1010 K/s, and compared to
that of a 384-atom glass obtained using com-
bined classical and AIMD simulations (for de-
tails see Ref. [27]). In this procedure, the liq-
uid equilibration and the quench are carried
out using an empirical potential and the fi-
nal glass structure is used as initial state for
an AIMD simulation at 300 K. It has been
shown that this procedure can be used to cor-
rect the deficiencies of empirical potentials in
terms of local structure, but cannot be used
to correct medium-range order, such as ring
size distributions [10].
In Fig. 3(a), (b) and (c), the PCFs for Si-Si,

Si-O and O-O are shown, respectively. The
NNP Si-O and O-O PCFs look close to the
DFT ones, whereas the Si-Si PCFs exhibit
some discrepancies with respect to the DFT
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Figure 3: Characteristics of a 384-atom SiO2 glass obtained using different quench rates: pair correlation
functions (a) Si-Si, (b) Si-O, (c) O-O, angular distributions (d) O-Si-O, (e) Si-O-Si, (f) rings statistics,
(g) vibrational density of states, (h) structure factor and (i) density (the dashed line corresponds to the
experimental value).

ones. First, a small peak around 2.4 Å is
present for the highest quench rates but is
absent for the lowest quench rates and for
the DFT Si-Si PCF. Second, the peak at
≈ 3.1. Å is slightly shifted towards smaller
distances in NNP with respect to DFT and
is smaller. This discrepancy is more pro-
nounced the larger the quench rate. Finally,
the peak around 5 Å for NNP is also differ-
ent from the DFT one but does not exhibit

strong quench rate effects.

Regarding the BADs (Fig. 3(d) and (e)),
one can observe a slight effect of the quench
rate on the O-Si-O one and a stronger ef-
fect on the Si-O-Si one. The O-Si-O BAD is
slightly larger and less peaked for NNP with
the highest quench rate than for DFT.

For what concerns the Si-O-Si BAD, the
difference between the DFT and the NNP
curves is more striking. First, there is a small
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peak around 90◦ in the NNP case for almost
all quench rates except the two lowest ones
whereas it is absent in the DFT case. This
peak corresponds to the presence of edge-
sharing tetrahedra in the system. Then, the
main peak maximum is located around 130◦

for NNP whereas it is around 140◦ for DFT.
The position of the peak maximum slightly
shifts from ≈ 126◦ to ≈ 132◦ with decreasing
quench rates but this shift is not in itself suf-
ficient to explain the difference between NNP
and DFT. However there might be a residual
stress in the DFT calculations since, in that
case, the simulations were carried out in the
NVT ensemble whereas in the NPP case, the
quenches were performed in the NPT ensem-
ble.
Figure 3(f) shows the evolution of the num-

ber of rings of different size with the quench
rate. It is interesting to note that these num-
bers seem to converge toward a stable value
for quench rates lower than ≈ 2 × 1012 K/s.
For higher quench rates, a significant evo-
lution with the quench rate can be observe
on the number of 2-membered rings (edge-
sharing tetrahedra) which increases with in-
creasing quench rate. One can also ob-
serve a concomitant increase of the 4- and
7-membered rings and a decrease of the 5-
and 6-membered rings. These evolutions re-
flect a broadening of the ring size distribution
when the quench rate increases.
The neutron structure factors for all

quench rates are shown in Fig. 3(h) together
with the DFT one. The quench rate effects
are not significant on this quantity and the
agreement with DFT is very good on the po-
sitions as well as on the height of the peaks.

The vibrational density of states (VDOS)
was also computed for all quench rates
(Fig. 3(g)) and compared them to the DFT
one. The results show no significant quench
rate effects except for the two highest ones
for which the VDOS exhibits a smaller peak
at 24 THz and a higher peak at 27 THz. For
all other quench rates, the VDOS are in good
agreement with the DFT ones. Some discrep-
ancies can still be observed on the positions
of the 24 THz and 17 THz (D2 line) peaks
and on the heights of the 12 THz band and
those of the double high-frequency peak.
Finally, the densities of the glass sam-

ples at the end of the quench are shown in
Fig. 3(i) for all the quench rates. All sam-
ples have a density ranging from 2.19 g/cm3

to 2.21 g/cm3, in agreement with the experi-
mental value (2.2 g/cm3), and although den-
sity seems to increase slightly with quench
rate, this trend is not significant given the
error bars.
Altogether, we show that our NNP, when

asked to extrapolate towards glassy systems,
is able to retrieve most of the properties ob-
tained in DFT. Furthermore, we also show
that using the NNP model allows us to
reach quenching rates two order of magnitude
slower and to demonstrate that the quench-
ing rate starts to affect the glassy structural
properties for values larger than 1013 K/s.

3.2.2. System size

As for the effects of quench rate, that of
the system size on the structural and vibra-
tional properties of the obtained glass were
investigated. To this aim, silica liquids of
384, 1200, 1800, 2400, 3000, 6000 and 12 000
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Figure 4: Characteristics of SiO2 glasses of different sizes obtained using a quench rate of 3.8× 1011 K.s−1:
pair correlation functions (a) Si-Si, (b) Si-O, (c) O-O, angular distributions (d) O-Si-O, (e) Si-O-Si, (f) rings
statistics, (g) vibrational density of states, Experimental data from [44], (h) structure factor, experimental
data from [45] and (i) density (the dashed line corresponds to the experimental value).

atoms were cooled down at a quench rate of
3.8 × 1011 K/s at which we do not observe
quench rate effects anymore. For each size,
five independent samples were produced and
the results are obtained by averaging over the
samples.

Figure 4 presents the structural and vibra-
tional characteristics of the glasses for all in-
vestigated sizes, compared to that of the 384-
atom silica glass computed using AIMD. The

density of the samples (Fig. 4(i)) ranges be-
tween 2.21 g/cm3 and 2.23 g/cm3 which is
slightly higher than the experimental den-
sity of 2.2 g/cm3. This effect may be due
to the quenching rate, which may be too
high to achieve convergence of this quantity.
Note, however, that there is a trend towards
smaller fluctuations and convergence of the
value around 2.22 with size.

However, there is no visible size effects on
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the PCFs (Fig.4(a), (b) and (c)), neither on
the VDOS (Fig. 4(g)) and on the the struc-
ture factors (Fig.4(h)). On the BADs (Fig.
4(d) and (e)), we can observe a few differ-
ences, but these are more related to statistics
than to a size effect. The Si-O-Si BADs ex-
hibit a small peak around 90◦, evidencing the
presence of edge-sharing tetrahedra in some
of the glass samples. For the smallest sys-
tem (384 atoms), one can observe differences
on the ring size distribution (Fig.4(f)) with a
larger number of 3-, 4- and 6-membered rings
and less 5-membered rings than for the other
sizes.

Comparison with the experimental struc-
ture factor can be found in Fig.4(h) and
shows a very good agreement for what con-
cerns the peak positions and their ampli-
tudes. Only the second peak seems to be
slightly shifted towards lower values of q but
this is the case in both DFT and NNP calcu-
lations.

In Fig.4(g), the VDOS have been compared
to that obtained from DFT and show very
good agreement. No size effects are visible
on this quantity.

In order to compare the VDOS with experi-
ments, it is necessary to compute the effective
VDOS which enables to connect the true vi-
brational density of states with that derived
from inelastic neutron scattering [46]. This is
obtained by computing the partial contribu-
tion coming from atoms of each species α for
a given mode p:

gα (ωp) =
Nα∑
I=1

3∑
k=1

|eI,k (ωp) |2 (1)

where eI,k (ωp) are the 3-components of the
eigenvector e(ωp) with the displacement of
the particle I. The partial contribution of
mode p to the effective VDOS is then:

geff (ωp) = A
∑
α

b2α
mα

gα (ωp) (2)

where

A =

∑
αNαmα∑
αNαb2α

(3)

with Nα, mα and bα are the number, mass
and neutron scattering lengths (4.1491 fm for
Si and 5.803 fm for O) of atoms of species α.
The total effective VDOS is then:

Geff (ω) =
3N∑
p=4

geff (ωp) δ (ω − ωp) (4)

The effective VDOS have been computed for
all sizes and the results for the 3000-atom sys-
tem are compared to experiments in Fig. 5
[44, 47–49]. Note that the different exper-
iments were done at different neutron inci-
dent energies, therefore they probe different
ranges of frequencies. The computed effec-
tive VDOS show very good agreement with
the experimental ones for the peak positions
and amplitudes below 30 Thz. The doublet
at ∼32 THz and ∼ 35 THz is slightly shifted
to lower frequency compared to experiments
but this is a well-known functional effect in
the DFT calculations which is reproduced by
the NNP.
Overall, the generated NNP potential gives

good results compared with the ab initio
data and also compared with the experimen-
tal data. The structural characteristics of
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Figure 5: Effective neutron VDOS computed with
the NNP on a 2400-atom system and compared to
the one computed with DFT on a 384-atom system
and to experiments from [44, 47–49].

the glasses obtained by the slowest quench-
ing are comparable to those obtained with the
best potentials in literature [21, 27] and with
those obtained using the most recent machine
learning potentials [31, 32, 34]. What is more
remarkable is the excellent reproduction of
the vibrational data obtained with this po-
tential. No ’classical’ empirical potential has
so far been able to provide a good VDOS.
Only machine learning potentials such as this
one or the NNP of Li and Ando [31] have been
able to do so.

3.3. Transferability of the potential

The results obtained on the structural and
dynamic properties of liquids and glasses
demonstrate that the NNP potential is suf-
ficiently accurate to reproduce these charac-
teristics at the same DFT level as that used

to build the training database. Since the con-
figurations stored in the database represent
snapshots of liquids at elevated temperatures,
it is reasonable to expect that the adjusted
potential would provide a suitable description
for both liquids and amorphous materials. It
is therefore interesting to check whether such
a potential is capable of correctly describing
structures further away from those included
in the fitting process, such as the crystalline
polymorphs of silica. Another valuable as-
sessment of its transferability involves sub-
jecting the glasses to compression and ana-
lyzing their response to pressure.

3.3.1. Crystals

Structural properties. The transferability of
the NNP was tested on systems not included
in the training database : α-cristobalite, α-
quartz, coesite, stishovite and silicalite silica
crystals. The structures of each polymorph
were relaxed using the NNP, and compared to
DFT minimizations. During the relaxations,
the atomic positions, the volume and the
shape of the simulation cells were allowed to
change. The errors made by the NNP model
with respect to the DFT reference are shown
in Fig. 6 for lattice parameters, average Si-
O bond lengths and average Si-O-Si angles
for all relaxed structures. Overall, we obtain
good results, especially for quartz and coesite
whose relative errors with respect to the DFT
are lower than 1%. However, the results are
less good for the stishovite, with a relative er-
ror exceeding 5% for two of the lattice param-
eters. The basic structural unit of stishovite
being an octahedron SiO6, unlike other silica
polymorphs in which silicon adopts a tetra-
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hedral coordination geometry, we can assume
that the NNP is not able to reproduce a per-
fect octahedral arrangement. This might be
due to the fact that the database contains
mainly 4-fold coordinated Si atoms, even if
a non negligible proportion of 5- and 6-fold
coordinated Si atoms might be present in the
AIMD liquid at high temperature.

Figure 6: Errors made by the NNP model for the pre-
diction of the lattice parameters, average Si-O bond
lengths and average Si-O-Si angles of each relaxed
structure, relative to the DFT reference values for
silica polymorphs: α-cristobalite, α-quartz, coesite,
stishovite, and silicalite.

The volume of each relaxed crystal struc-
ture was calculated : errors made by the NNP
relative to the DFT are respectively equal to
7.81% , 0.97%, 0.28%, 9.91% and 5.41% for α-
cristobalite, α-quartz, coesite, stishovite and
silicalite. The ML potential developed by Er-
hard et al. [34] gives much better results, with
errors not exceeding 0.6% for the volume of
these same structures. Other structural and
elastic properties of theses polymorphs are
also predicted with excellent accuracy, but
this is consistent with the fact that they in-

cluded crystalline structures in the reference
database.

Vibrational properties. The vibrational den-
sity of states (VDOS) were computed for each
relaxed crystal structure, and compared to
the DFT ones (Fig. 7). The results ob-
served are similar to those obtained for the
lattice parameters : the agreement with DFT
is good, except for the stishovite whose prop-
erties are once again not accurately repro-
duced by the NNP. This is consistent with
the assumption that the NNP is not able
to reproduce octahedral silica-based systems.
For all other silica polymorphs, we can note
that the position and the height of the dou-
ble high-frequency peak are reproduced with
very good accuracy.
The 24 THz peaks are also in good agree-

ment with the DFT ones, especially for
quartz and coesite. For the lower frequen-
cies, some discrepancies can be observed on
the position and the height of the peaks, par-
ticularly for cristobalite and quartz.
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Figure 7: Comparison of vibrational density of states (VDOS) between DFT and NNP, for (a) α-cristobalite,
(b) α-quartz, (c) coesite, (d) stishovite, and (e) silicalite silica polymorphs.
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3.3.2. Glasses under pressure

The structural and dynamic properties of
silica glasses are well reproduced compared
to DFT and behave correctly with respect to
simulation parameters such as quenching rate
and simulation box size. Therefore, it is in-
teresting to test the transferability limits of
such a potential by examining how it behaves
when the glass is subjected to pressure. For
this purpose, we chose to apply hydrostatic
pressure in steps of 2 GPa from 0 to 14 GPa
to the 3000-atom glass samples obtained at
300K using a 3.8 1011 K/s quench rate.

The obtained results are presented in
Fig. 8. First of all, the Si-O bond length ap-
pears to be quite resistant to pressure changes
up to 14 GPa and only the second peak of
the Si-O PCF is slightly affected by pres-
sure (Fig.8(b)). In contrast, the first and
second peaks of the Si-Si PCFs (Fig. 8(a))
exhibit notable shifts in position and inten-
sity, as well as the second peak in the O-
O PCFs (Fig. 8(c)), indicating that iso-
static pressure primarily influences the in-
terconnection of SiO4 tetrahedra. This ef-
fect is particularly pronounced in the Si-Si
PCF, where all the peaks experience a sig-
nificant shift towards shorter distances under
pressure. This observation is closely associ-
ated with the changing Si-O-Si angles (Fig.
8(e)), which gradually decrease as compres-
sion is applied, causing the tetrahedra to
come closer together whereas the tetrahedral
angle O-Si-O peak is not shifted but only
enlarged (Fig. 8(d)). Note moreover that
the proportion of defects such as edge-sharing
tetrahedra increases with pressure. The evo-

lution of 4- and 5-fold coordinated Si atoms
(resp. Si4 and Si5) and of 3-fold coordinated
O atoms (O3) as a function of pressure are
depicted in Fig. 9. From 8 GPa, one can
observe the occurrence of Si5 and O3 which
proportion increases to ∼ 6 % and ∼ 3 %,
respectively at 14 GPa. This is in very good
agreement with recent experiments [50, 51]
and with previous molecular dynamics sim-
ulations [27, 52]. However our results differ
strongly from those of Ref. [35] which found
almost 100 % of Si5 at 9 GPa and important
finite size effects on their systems subject to
pressure.
Figure 8(f) presents the evolution of the

rings size with pressure. Up to 8 GPa,
no noticeable change can be observed. At
higher pressure, the proportion of 2-, 3-
, 4- and 5-membered rings increases sub-
stantially whereas that of the 6-membered
rings remains constant and the number of 7-
membered rings decreases. This result is con-
sistent with the emergence of defects in the
connectivity of the tetrahedra as suggested
by the evolution of the angular distributions
with pressure.
In summary, the connectivity between the

tetrahedra evolves towards smaller angles and
we observe the apparition of smaller rings,
and of 5-fold coordinated Si atoms and 3-fold
coordinated O atoms from 8 GPa.
This leads to an evolution of the medium-

range order with pressure that is better seen
on the structure factor S(q) in Fig. 8(h):
the first peak (First Sharp Diffraction Peak,
FSDP) is shifted towards larger q-vector and
its intensity decreases. This evolution of the
FSDP with pressure is experimentally ob-
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Figure 8: Characteristics of a 3000-atom SiO2 glass obtained using a quench rate of 3.8 1011 K.s−1 at
different pressures: pair correlation functions (a) Si-Si, (b) Si-O, (c) O-O, angular distributions (d) O-Si-O,
(e) Si-O-Si, (f) rings statistics, (g) vibrational density of states, (h) structure factor and (i) density.

served and its position as a function of pres-
sure has been measured [51, 53–56]. It is de-
picted in Fig. 10 together with the position
of the FDSP obtained using the NNP. The
agreement is particularly good with most of
the experimental data. Some discrepancies
can be observed in particular with the open
squares extracted from the publication of In-
amura et al. in 2004. However these points
correspond to data acquired over long times,
during which the samples heated up, causing

the FSDP to drift [53].

The VDOS were computed at the differ-
ent investigated pressures (Fig. 8(g)) and
exhibit significant modifications under com-
pression: (i) the peak around 3 THz shifts
towards higher frequency and the one arund
11 THz towards lower frequency inducing a
flattening of the main low frequency band,
(ii) the 17 THz and 24 Thz peaks are shifted
towards higher frequencies and (ii) the high-
frequency double-peak merges into a single
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Figure 9: Evolution of the percentage of (a) 5-fold
coordinated Si atoms (Si5), (b) 4-fold coordinated Si
atoms (Si4) and (c) 3-fold coordinated O atoms (O3)
as a function of pressure.

peak. The evolution of the 11 THz, 17 THz
and 24 Thz peaks as a function of pressure
are depicted in Fig. 11. The peak around
11 THz is attributed mainly to vibrational
modes involving oxygen atoms (it is different
from the breathing mode of the 4-membered
rings around 15 THz which is only visible in
the Raman spectra) [57]. Those modes are
related to large rings that become less stiff
with pressure (Fig. 11(a)). The 17 THz peak
is attributed to the breathing modes of 3-
membered rings (D2 line) which experimental
frequency is around 18 THz. Upon compres-
sion these modes are shifted to higher fre-
quencies corresponding to a stiffening of the
rings, and then seem to saturate to a value
of ≈ 19.5 THz from 10 GPa (Fig. 11(b)).
The D2 line shift to higher frequency under
pressure has already been observed experi-
mentally [57, 58] and theoretically in ab initio

Figure 10: Pressure dependence of the FSDP posi-
tion (red circles) compared to data extracted from
the literature [51, 53–56].

simulations[9, 59]. The band at 24 THz cor-
responds to bending of the Si-O-Si angle in
the plane [11]. Its evolution is similar to that
of the D2 line with an increase up to 10 GPa
followed by a stagnation (Fig. 11(c)).
Finally, one important feature of silica is

the evolution of its density upon isostatic
compression. Figure 8(i) shows this evolu-
tion as obtained with the NNP potential and
compared with experimental results [54]. The
agreement is very good showing the validity
of our potential on this range of pressures.

4. Conclusion

Using AIMD trajectories of liquid silica at
high temperature and pressure, we built a
database composed of a limited number of
configurations that was used to train a neural
network interatomic potential with Behler-
Parrinello descriptors. This potential was
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Figure 11: Evolution of the frequency peak around
≈ 11 THz (a), ≈ 17 THz (b) and ≈ 24 THz (c) as a
function of isostatic pressure.

first validated by performing MD simulations
for liquid silica and for two different sizes.
The structural and dynamic properties were
in agreement with the DFT results, with the
caveat of a slightly too high edge sharing
number in NNP. Afterwards, the NNP was
used to generate silica glass samples while
testing parameters such as the quench rate
and the system size. If the latter seems to
have little impact on the structural and vibra-
tional properties of the glass, except for the
smallest size, a too high quench rate (≳ 1012

K/s) induces structural defects such as edge-
sharing tetrahedra and a modification of the
medium-range order.

The transferability of NNP was then tested
on crystals, on the one hand, and on glass
under isostatic pressure, on the other. In
the former case, lattice parameters and struc-

tural features were obtained with less than
5% error from DFT, with surprisingly good
agreement for quartz and coesite. As far
as vibrational properties are concerned, the
main features of the vibrational spectra were
found with very good agreement for peak po-
sitions and amplitudes for quartz and coesite,
while slight shifts are observed in the spec-
tra of cristobalite and silicalite. In the case
of stishovite, the main band is shifted and
agreement with DFT is poor, which can be
attributed to the fact that the database does
not contain data on perfect octahedral order,
even if a non negligible proportion of 5- and 6-
fold coordinated Si atoms might be present in
the AIMD liquid at high temperature. Over-
all, the NNP gives surprisingly good results
for silica crystals, given that none of these
structures were included in the database. In
Ref. [60], the authors also explored the ex-
tent to which a database consisting exclu-
sively of liquid configurations would be suf-
ficient to develop a NN potential transferable
to crystalline structures. Their conclusions
are very similar to ours, and they also show
that including data from very high-pressure
liquids could improve transferability. In ad-
dition, including the crystalline structures in
the database will more likely improve the
agreement with DFT.
For glass under isostatic pressure, agree-

ment with the DFT is very good up to 14
GPa, and also satisfactory compared with ex-
perimental results. NNP exhibits good struc-
tural and vibrational properties, which leads
us to believe that it could be successfully used
for applications such as indentation and frac-
ture studies, once its ability to reproduce me-
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chanical properties has been verified.
We have proposed an approach able to gen-

erate a very good quality potential for de-
scribing silica liquid and glass. Our aim
was not to provide a potential that can be
transferred to all silica phases, but rather to
demonstrate that the use of a well-chosen
database and a not-too-big neural network
can be sufficient to provide a potential suited
to a specific study. This approach may be
of interest for methods such as active learn-
ing, where the potential is readjusted dur-
ing dynamics when the NNP forces deviate
too far from the DFT reference or for multi-
scale simulations, such as in the work of Wak-
abayashi et al. [61]. It is also a step in line
with the desire to move towards frugal arti-
ficial intelligence, enabling the use of fewer
resources for an equivalent result. In this di-
rection, it is possible to further reduce the
computational cost by generating molecular
dynamics trajectories using a classical poten-
tial, from which only the configurations in-
cluded in the database are calculated at an ab
initio level. The importance of this search for
efficient and less computationally demanding
machine learning is reflected in current devel-
opments, such as those aimed at generating
potentials from equivariant graph neural net-
works [62, 63]. Note added in proof. Note
that during the achievement of this work,
Kobayashi et al. have published results in
line with the output of the present paper[64].
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