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A B S T R A C T   

Anti-Saccharomyces cerevisiae antibodies (ASCA) are human antibodies that can be detected using an enzyme- 
linked immunosorbent assay involving a mannose polymer (mannan) extracted from the cell wall of the yeast 
S. cerevisiae. The ASCA test was developed in 1993 with the aim of differentiating the serological response in two 
forms of inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis. The test, which is based on the 
detection of anti-oligomannosidic antibodies, has been extensively performed worldwide and there have been 
hundreds of publications on ASCA. The earlier studies concerned the initial diagnostic indications of ASCA and 
investigations then extended to many human diseases, generally in association with studies on intestinal mi-
croorganisms and the interaction of the micro-mycobiome with the immune system. The more information ac-
cumulates, the more the mystery of the meaning of ASCA deepens. Many fundamental questions remain 
unanswered. These questions concern the heterogeneity of ASCA, the mechanisms of their generation and 
persistence, the existence of self-antigens, and the relationship between ASCA and inflammation and autoim-
munity. This review aims to discuss the gray areas concerning the origin of ASCA from an analysis of the 
literature. Structured around glycobiology and the mannosylated antigens of S. cerevisiae and Candida albicans, 
this review will address these questions and will try to clarify some lines of thought. The importance of the 
questions relating to the pathophysiological significance of ASCA goes far beyond IBD, even though these dis-
eases remain the preferred models for their understanding.   

1. Introduction 

Among the biological tests that have contributed to the diagnosis of 
inflammatory bowel diseases (IBD), the enzyme-linked immunosorbent 
assay (ELISA) developed by us in 1993 [1] and published in 1996 [2], 
and named ASCA (anti-Saccharomyces cerevisiae antibodies) in 1999 [3], 
was a pioneer. For the past 30 years, it has remained a robust test as a 
marker of Crohn's disease (CD) in terms of prediction and prognosis. 

Historically, this test was derived from pioneering observations 
made after immunofluorescence studies on different strains of 
S. cerevisiae by Mckenzie et al., and then by us [2,4]. Its transition to an 
automatable ELISA format, which is adaptable [2] to a large number of 
patients, has generated significant medical and commercial interest 
[5–7]. On a fundamental level, the demonstration of the existence of 

anti-yeast antibodies that are markers of IBD opened up investigations 
into the role of the mycobiota in human disease [8–11]. Our early 
studies incriminated the yeast Candida albicans, which is a major 
component of the mycobiota, capable of colonizing all segments of the 
human digestive tract, as well as a major opportunistic pathogen whose 
dissemination from the gut is a regular cause of fatal invasive fungal 
infections [12]. 

The current review was carried out for three main reasons: (i) ASCA 
have now been detected in a large number of human diseases; (ii) studies 
on the mycobiota have increased considerably and have been refined, 
resulting in them becoming more in line with traditional methods of 
microbiology; (iii) fundamental studies on the interactions between 
C. albicans and the digestive tract have reached an unparalleled level of 
scientific quality. 
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In this review, we discuss the main findings of this vast amount of 
research, which raises the question of the origin of ASCA, the regulation 
of ASCA synthesis, and ultimately, the meaning of ASCA in human 
health. 

2. ASCA test for Crohn's disease 

2.1. Initial contribution to the differential diagnosis of IBD, to patient 
stratification, and prognosis 

This area of research originated from a gastroenterologist commu-
nity who was interested in ASCA as a biomarker of CD. Thirty years later, 
ASCA remain the strongest and most studied biomarker in this setting. 
At the beginning of this review on the meaning of ASCA, we first need to 
briefly address the clinico-epidemiological framework established about 
ASCA i.e., the differential diagnosis of IBD, patient stratification, prog-
nosis, and prediction of CD. We do not intend to be exhaustive as this has 
already been the subject of excellent reviews and meta-analyses [13,14]. 

ASCA first contributed to IBD management by differentiating CD 
from ulcerative colitis (UC). Assays for ASCA in CD patients show a 
prevalence ranging from 50 to 60% depending on the geographic and 
ethnic origin of the patients, in contrast to 0–6% in the general popu-
lation [15,16]. The combined detection of ASCA and perinuclear- 
antineutrophil cytoplasmic antibodies (pANCA) differentiates CD from 
UC [3,17–19], with a sensitivity ranging from 30 to 64%, a specificity of 
>90%, and positive predictive value ranging from 77 to 96% [20]. This 
discrimination was shown to extend to indeterminate colitis [21]. Sub-
sequently, additional fungal biomarkers including antilaminaribioside 
antibodies (ALCA) and antichitobioside antibodies (ACCA) were shown 
to be positive in 26% of ASCA-negative CD patients [20]. 

It was also discovered that ASCA positivity relates to early CD 
development and concerns ileal forms requiring surgery [3,22–24]. 
Similarly, single or multiple detection of antimicrobial antibody markers 
including ASCA, as well as the amplitude of the antibody response, were 
independently linked to a severe disease phenotype [14,25–30]. This 
was confirmed by Vasiliauskas et al. using multiple regression analyses, 
notably for fibro-stenosing and internal penetrating disease behaviors 
[24–26,31]. Other studies have reported that CD patients with sero-
logical positivity for ASCA more frequently present with an ileal or ileo- 
colonic location [29], but these antibodies do not differentiate stric-
turing and non-stricturing forms [32]. In a meta-analysis, Ricciuto et al. 
reported that 5/8 studies showed a significant association between 
ASCA status and surgery. The pooled Odds ratios (OR) for the five 
studies was 2.31, while the pooled hazard ratio (HR) for four of these 
studies also showed a significantly increased risk of surgery (HR = 2.59) 
[33]. 

In agreement with the association between ASCA and the early 
development of CD, the sensitivity of ASCA is higher (50–86%) in pe-
diatric patients with suspected IBD, with good specificity (85–95%), 
making ASCA more useful for the screening of CD in this patient sub-
group [17,34–36]. Consistent with their profile in adults, ASCA have 
been shown to be independently associated with a complicated pheno-
type, ileal involvement, and the need for surgical resection [27]. 

With the advent of “biologics” it became obvious that as ASCA were 
associated with severe forms of CD, the detection of ASCA should initiate 
their early use. A prospective study in a newly-diagnosed, treatment- 
naive cohort showed that if ASCA were positive at baseline, CD patients 
had an almost 9-times higher odds of receiving early TNF blocker 
treatment compared to those who were ASCA negative, with a proba-
bility of 70% (OR = 8.8 [95%CI: 2.0–37.7]; p < 0.01) [37]. Another 
study reported more aggressive features in seropositive patients, such as 
more extensive involvement and moderate to severe disease [38]; 
interestingly, these severe ASCA-positive forms had comparatively 
lower relapse rates than patients with negative ASCA titers when anti- 
TNF biological therapy was introduced early. 

In addition to their contribution to the clinical management of CD, 

ASCA have contributed to unravelling epidemiological clues about the 
disease. The first is familial aggregation. In our initial CD family study, 
ASCA were detected in 35/51 (69%) patients with CD and in 13/66 
(20%) of healthy relatives vs. 1/63 controls (p < 0.001) [16]. The 
presence of ASCA in healthy relatives was observed in 12/20 families 
and was not restricted to a few particular multiplex families [15]. The 
prevalence of ASCA in relatives did not depend on the ASCA status of 
affected members. These findings were confirmed by Seibold et al., who 
found ASCA in 48 (25%) of 193 healthy first-degree relatives [39] as 
well as in a large series of Belgian families having one or more than two 
affected members [40]. Moreover, a study focusing on 98 twin pairs 
with IBD showed a high degree of concordance between ASCA titers in 
monozygotic twin pairs with CD suggesting that the level of increase is 
genetically determined [41]. 

In parallel, a large number of studies have revealed a unique char-
acteristic of ASCA positivity in CD, namely their life-long stability. 
ASCA-positive levels appear to be stable in CD patients irrespective of 
medical or surgical treatment [3,26,40,42,43]. This characteristic is 
discussed further below. 

In the line with these characteristics, another significant finding was 
that ASCA pre-existed the development of CD. This fact was established 
after investigations on serum repositories from conscripts archived 
before a diagnosis of IBD. They demonstrated that ASCA pre-exist CD for 
as long as 3–5 years before clinical diagnosis of the disease [44,45]. 

In conclusion, although the ASCA test is not recognized as a diag-
nostic test for CD by some gastroenterologists, who point to its non- 
optimal sensitivity, its contribution to the early diagnosis of CD should 
not be overlooked insofar as a recent meta-analysis showed that all 
complications arise from the late diagnosis of CD [46]. 

3. The basic question of the ASCA epitope(s) 

In contrast to the thousands of papers concerning the meaning of 
ASCA, little attention has been paid to the nature of the epitope(s) 
recognized by these antibodies, a basic question which, if unsolved, 
precludes any rational interpretation. 

3.1. Preliminary identification of the major ASCA epitope 

Following the early development of an ELISA test to detect human 
antibodies directed against S. cerevisiae mannan [2] (later designated the 
ASCA test [3]), we identified a tetramannoside composed of α-1,2 linked 
mannose with an α-1,3 mannose at the non-reducing end among the 
complex S. cerevisiae mannan repertoire as the major epitope supporting 
the human response during CD (see Fig. 1). This identification was 
confirmed unambiguously by another independent study ascribing the 
antigenic activity of the original high molecular weight mannan to 
terminal Man α-1,3 Man α-1,2 [47]. Subsequent studies using synthetic 
analogues of the tri- and tetramannoside epitopes showed that such 
constructions were able to detect antibodies in patients with CD [48,49] 
and conversely to elicit animal antibodies reacting with the ASCA test 
[50]. 

3.2. The question is much more complex 

At the start of the investigations on anti-yeast antibodies in CD [51], 
the methods used consisted of the detection of antibodies against whole 
yeast cells by immunofluorescence, agglutination, or after direct coating 
on microtiter plates. In a remarkable pioneering study, McKenzie et al. 
showed that all S. cerevisiae and C. albicans strains tested varied in their 
ability to bind patients' antibodies and confirmed this antigenic het-
erogeneity by cross-absorption experiments [4]. Later molecular in-
vestigations on yeast mannan antigens mainly concerned S. cerevisiae 
strains whose cells were selected for being the most reactive against 
patients' sera (i.e., Su1 strain for our study [2] and Sc500 strain for the 
study of Barnes et al. [47] in which the ASCA major epitope was over- 
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represented). 
Other investigations on S. cerevisiae antigens revealed reactivity with 

the carbohydrate moiety of a 200 kDa mannoprotein of S. cerevisiae, but 
the existence of the major mannan ASCA epitope on this antigen was not 
determined. This would have made sense bearing in mind the ability of 
yeasts to express a given epitope on the carbohydrate moieties of 
different molecules, either glycoproteins or even glycolipids [52–54]. A 
monoclonal antibody against S. cerevisiae GP 200 carbohydrate moiety 
was raised by the same group [55,56], but it is unknown if it reacts with 
mannan. 

When synthetic ASCA epitopes were used to detect antibodies in a 
large multicenter study, including 1365 sera, the specificity for CD was 
similar to the ASCA test [49], although, as could be expected for a non- 
microbial native product, the sensitivity was lower (38% vs. 55%). 
Surprisingly, in spite of this lower sensitivity, the synthetic epitope 
allowed the detection of a substantial number of CD patients (24%), 
mostly with colonic involvement, who were negative for ASCA and/or 
any associated serological markers. This agrees with the reactivity of so- 
called AMCA (anti-mannoside carbohydrate antibodies), a dimannoside 
corresponding to the non-reducing terminal end of the ASCA epitope 
which is observed in some CD-negative ASCA patients [57]. Regarding 
native “natural” yeast antigens, a similar conclusion about comple-
mentation was reached when the ASCA responses of CD patients from 
North Africa were investigated using an in-home test involving mannan 
from a strain designated W303 and our original ASCA test with Su1 

mannan. In this case, the combination of tests resulted in a slight 
decrease in specificity to 80%, but an impressive sensitivity of 80% for 
differentiating CD from UC [58]. 

From a fundamental point of view, these studies demonstrate the 
considerable heterogeneity of the ASCA response in humans, revealed 
by comparison of various commercially available tests [59,60] but 
which has never been explored about complementation for diagnostic 
purposes or, importantly enough, addressed to understand the meaning 
of the ASCA response. Thus, although the oligomannose sequences 
composed of α-1,3 Man at the non-reducing end of α-1,2 Man chains is 
undoubtedly highly reactive with sera from CD patients, the human anti- 
mannose ASCA response comprises a wide variety of more or less 
structurally related motifs that remain to be elucidated, as well as their 
clinical significance. 

4. C. albicans is undoubtedly an ASCA immunogen 

4.1. Experimental and clinical evidence 

With regard to the large and increasing number of papers and re-
views on the mycobiota, which suggest a role for C. albicans in CD [61], 
very few papers have addressed this question from a molecular point of 
view. 

A number of concordant scientific facts have been established. 
Experimentally, C. albicans was shown to generate ASCA when it was 

Fig. 1. Graphical abstract: inter-related traits of ASCA discovered over time. 
Representation of the evolution of knowledge in the 3 fields involved in scientific and medical research concerning ASCA (Vertical panels). The two major evolution 
of medical concepts and microbiological methods are shown laterally. In each of these panels, rectangles represent the successive achievements over 30 years with 
immunology being at the interface. 
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used to infect rabbits by the intravenous route [62], or when it thrives in 
the guts of mice with dextran sulphate sodium (DSS)-induced inflam-
mation [63]. In humans suffering from systemic candidiasis caused by 
C. albicans, as demonstrated by the isolation of this species from blood, a 
strong ASCA response can be observed [64] which resolves after cura-
tive treatment, in contrast to the ASCA stability in CD [65]. Conversely, 
probing of the pathogenic phase of C. albicans in tissue sections from 
biopsies of patients with systemic C. albicans infection with ASCA 
immunopurified from CD patients showed strong reactivity [62]. Thus, 
there is no doubt that C. albicans can be the origin of ASCA [66,67] even 
though this does not preclude the existence of other microbial immu-
nogens or auto-antigens (see below). 

4.2. Possible mechanisms of ASCA generation by C. albicans 

4.2.1. On the Candida side 

4.2.1.1. S. cerevisiae and C. albicans mannans as structural models 
(Fig. 1). Understanding the mannosylation process, and thus the 
building and alteration of sequences of mannose residues acting as 
epitopes -and as pathogen-associated molecular patterns (PAMPS)- by 
C. albicans requires us to refer to the large number of basic structural 
glycobiology studies conducted over several decades complemented by 
the identification of genes responsible for the synthesis of mannosyl 
transferases (Mnts). These enzymes, located in the Golgi apparatus, 
establish specific linkages (either α-1,6, α-1,2, or α-1,3) with strong 
specificities for the acceptor molecule (the pre-existing mannoside 
sequence). This leads to a highly complex polymer which is more or less 
species specific, the archetype of which is called mannan (or more 
exactly, phosphopetidomannan (PPM)). 

PPM is a water-soluble polysaccharide of high molecular weight 
bound non-covalently to the cell wall surface of yeasts. The activity of 
Mnts was first characterized in the PPM of S. cerevisiae, a yeast cell 
model providing many clues to our understanding of glycosylation in 
eukaryotic cells and the first fungal organism to be sequenced. As shown 
in Fig. 2, the mannose residues are branched on a protein chain, either 
by N-glycosidic linkages on an asparagine [68], or by O-glycosidic 
linkages on a serine or threonine amino acid [69]. Due to the need for 
large quantities of material to define the structure of the numerous 
mannoglycoconjugates synthesized by C. albicans by nuclear magnetic 

resonance (NMR) of native molecules or sequences released after 
sequential chemical or enzymic depolymerization, most studies on the 
variability of mannosylation have concerned PPM. Fig. 2 was derived 
from comprehensive reviews compiling dozens of structural papers on 
PPM taking in account strains and environmental variations still rep-
resenting hallmarks in the domain [70,71]. 

4.2.1.2. Necessary extension of the model from mannan to mannoproteins 
(Fig. 3). Restriction of structural analysis to PPM to analyze the activity 
of Mnts left a completely unexplored field of research which concerned 
the variability of glycosylation of the wide variety of cytoplasmic and 
cell wall mannoproteins synthesized by C. albicans. Fig. 3 shows repre-
sentative examples of the recognition of C. albicans mannoproteins in an 
attempt to answer this question with detailed explanations gathered 
from previous publications. 

Despite the unquestionable issue of the relevance of anti-protein 
antibodies in terms of the diagnosis of host invasion by C. albicans, the 
question of their mannosylation has never been addressed, mostly 
because recombinant proteins generally produced in Escherichia coli and 
thus, not glycosylated, are used for diagnostic purposes. Among these 
are proteins that have been identified over time as C. albicans virulence 
factors (i.e., the Als family, Hwp1…). The fact that a given variable 
mannan epitope may be shared by these proteins depending on the 
growth conditions, including during the pathogenic phase, deserves our 
attention. The legend to Fig. 3 provides an illustration of this statement. 
Thus, mannosylation affects both the function of the molecule and its 
recognition by the immune system, and this revealed the existence of 
important gaps in our knowledge. In other words, and as an example, it 
is highly likely that the function and immune reactivity of Als3 [72,73] 
will depend on the environmental signals perceived by C. albicans cells, 
including under pathogenic conditions. It is anticipated that variations 
in Mnt activities in relation to the growth conditions (pH, temperature, 
osmolarity…) inhibit some β-mannosyltransferases and thus unmask 
α-1,2/α-1,3 linked Mans [74–76] affecting the total machinery of 
mannoprotein mannosylation. This has never been considered or 
investigated. A recent paper demonstrated that a significant part of the 
mannosylation regulatory process was dependent on a complex of 
mitochondrial proteins whose resultant form could dramatically alter 
the host response. [77]. Thus, we can say in conclusion that: (i) the 
majority of C. albicans proteins are mannosylated; (ii) the same epitope 
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can be shared by several mannoproteins; (iii) the expression of the 
epitope can be regulated according to the growth conditions of 
C. albicans; and (iv) the ASCA epitope can be unmasked according to an 
expression balanced with β-mannosides [78]. 

Regarding the similarities between S. cerevisiae and C. albicans 
mannans, and the ability of the latter species to express ASCA epitopes, it 
is interesting to refer to the pioneering work of McKenzie et al., who 
showed that pre-adsorption with C. albicans serotype B strains removed 
anti-S. cerevisiae antibodies from CD patients' sera in contrast to serotype 
A strains [4]. It is worth noting that serotype A specificity is conferred by 
the expression of β-Mans at the non-reducing end of α-Man acid-stable 
linked chains [71]. 

Thus, it seems that combining observations from antibody analysis, 
structural chemistry of mannans and mannosides, and yeast mannose 
biosynthetic pathways reinforces our understanding of why C. albicans 
could be at the origin of ASCA [65]. The considerable bulk of knowledge 
gathered on Candida and the mycobiota obtained over the last decade 
led to consider this hypothesis seriously [79]. 

To conclude this section about possible C. albicans involvement in 
CD, a striking “coincidence” is noticed when cross-referencing research 
on C. albicans and CD. One resides in the unexpected observation by 
Marr et al., who reported >20 years ago that prevention of systemic 
C. albicans infection with an antifungal (fluconazole) during an immu-
nosuppressive regimen for hematopoietic stem cell transplantation 
resulted in a unexpected decrease in graft-versus-host disease (GvHD) 
[80]. Of note, hematopoietic stem cell transplantation is a condition 
where patients may develop de novo IBD or an IBD flare [81]. As these 
patients are at high risk for invasive candidiasis, fluconazole, an 

antifungal developed to prevent C. albicans growth, might also have a 
preventive effect on this secondary cause of CD because of its activity on 
C. albicans [82]. 

4.2.2. On the host side 
As far as C. albicans is concerned, what are the mechanisms of host 

(human) innate and adaptive immunity? 
The question of the unique relationships between C. albicans and 

inflammation was addressed in a review, but no mention was made 
about which antigen(s) could be relevant or determinant in this process 
[9]. The discovery of CARD-9 in the genome of patients with the rare 
condition of chronic mucocutaneous candidiasis (CMC) [83–85] repre-
sented a hallmark in the analysis of genetic susceptibility to C. albicans. 
More recently, a single study reported the influence of the same muta-
tion, CARD-9, together with the determinant role of CX3-CR1 on the 
antibody response in CD, including ASCA generation [86,87]. However, 
although these papers are important from the host side, they did not take 
into account the antigenic complexity of C. albicans as an indissociable 
partner. All molecules from the complex and variable antigenic mosaic 
of C. albicans are not equally important, as demonstrated by the strong 
antibody response reported in patients with CMC using older less sen-
sitive methods such as gel precipitation, revealing multiple precipitin 
lines. Thus, much remains to be discovered at the molecular level about 
the complex mechanisms of regulation in C. albicans and the host 
response. In other words, it is difficult to anticipate that the myriad of 
variable Candida epitopes could be equally affected by the host regu-
latory response. Considerable progress has recently been made in our 
understanding of how C. albicans is sensed by innate immunity receptors 

Fig. 3. Western blots of C. albicans whole cell extracts illustrating the question of mannosyl epitope expression on various mannoproteins and their variability 
depending on the growth conditions. (Figures collated from previous publications, with permissions.) 
Nature of the staining. Panel A: 1 - protein staining, 2 Con A staining, 3 - mAb anti-α-Man staining (mAB EBCA1), 4 - patients' sera staining. Panel B: 1 - Staining with 
immunopurified ASCA, 2,3 - staining with an anti-β-Man mAb (mAb 5B2) and GNL (Galanthus nivalis lectin*) at neutral pH., 2′,3′ - probed with an anti-β-Man mAb 
and GNL at acidic pH. * GNL binds to terminal α-1,3 Mans like ASCA does. 
Description of the profiles. A1. Protein staining of polyacrylamide gels of whole C. albicans cell extracts revealed numerous well-defined bands corresponding to 
proteins. A2. When these molecules are transferred onto nitrocellulose for Western blotting and probed with Con A reacting with α-mannosides, larger bands appear 
that correspond to the mannan moieties coupled to proteins. The width of these bands increases as a function of molecular weight leading to polydispersed material 
(smears) accounting for heterogeneity of the mannose moiety. A3 Mapping of an α-linked oligmannose epitope recognized by a single monoclonal antibody (EBCA1) 
clearly shows that a single epitope may be shared by many different mannoproteins. A4. Probing of the same blot with sera from patients infected with C. albicans 
shows that a large number of mannoproteins are targets of the human antibody response. 
B1 Lane 1. Probing with ASCA generated by rabbit immunization and subsequently immunopurified on S. cerevisiae mannan shows that the ASCA epitope is shared by 
many C. albicans mannoproteins. B. Lanes 2–3’ Probing of extracts from C. albicans grown at neutral and acidic pH clearly shows a reduction in β-Man expression (2 to 
3) by lowering the pH and a concomitant increase in the GNL signal (2′ to 3′). This demonstrate that the balance between α and β mannose expression occurring at the 
mannan level depending on the growth conditions (comments of Fig. 2) also concerns the mannose moiety of mannoproteins. 
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and how this sensing directs the nature of the immune response up-
stream towards an inflammatory or anti-inflammatory process. Sophis-
ticated mechanisms involving host membrane, cellular, or soluble 
receptors were identified to respond to all major C. albicans cell wall 
components (i.e., mannans, glucans and chitin). These mechanisms and 
their consequences have been summarized in several comprehensive 
reviews [88–91]. While some therapeutic clues would hopefully be 
derived from this research, current investigations on adaptive immunity 
shows that the mechanisms involving host receptors to sense the 
external and symbiotic microbial communities are probably not suffi-
ciently elaborated to lead to protection against C. albicans, which finds 
its infective niche during host immunosuppression. Thus, research on 
Candida faces the challenge of identifying determinant targets for 
adaptive immunity in a complex variable interplay, which depends on 
both the host's genetic background [92] and yeast commensal/infecting 
species/strains [93]. 

5. Why an ASCA auto-antigen should be considered 

An important characteristic of ASCA in CD is their stability over time. 
Once ASCA levels have increased, sometimes long before disease onset 
[44,45], they remain remarkably stable during the lifetime of a patient, 
independently of acute or remission phase of CD [94] and medical or 
surgical treatments [30]. Considering a microbial hypothesis alone for 
ASCA generation (C. albicans or any other potential immunogenic 
microbe) does not fit with fluctuations in the microbiota classically 
observed in long-term studies. Regarding the half-life of immunoglob-
ulins, a decrease in a given microbial immunogen would result in a 
decrease in ASCA. In a recent unpowered but informative study about 
the effect of antifungal treatment on the evolution of biological pa-
rameters of C. albicans pathogenic development and CD activity, a 
decrease in these latter parameters was observed over a 6-month period. 
In contrast, despite a decrease in C. albicans colonization, ASCA 
remained stable [82]. 

Thus, it would make sense to consider that once the antibody 
response has been triggered by exogenous microbial antigens analogous 
self-antigen motifs, against which a response is normally down- 
regulated, escape this control and maintain the stability of the ASCA 
response. The repertoire of oligomannose motifs express on human 
glycoproteins or glycolipids is extremely vast and the possibility that the 
ASCA epitope is expressed is not unrealistic. Furthermore, the Mnt 
responsible for the transfer of α-1,3 mannose, reported as preponderant 
in the ASCA epitope, also exists in humans. To date, several human 
molecules likely to support the ASCA response may be suggested from a 
literature analysis. 

5.1. Why should glycoprotein-2 (GP2) be an ASCA auto-antigen? 

The first human antigen against which an antibody response was 
reported to present a correlation with ASCA during CD is GP2 (zymogen 
granule membrane) [95]. Antibodies against both GP2 and S. cerevisiae 
mannan are associated with disease severity [96,97]. However, a 
dissociation between ASCA and anti-GP2 antibody responses was 
observed in Behcet's disease compared to CD [98]. Kurashima et al. [99] 
showed that GP2 was a line of defense against adhesive and invasive 
commensal bacteria during intestinal inflammation. GP2 expressed in 
Brunner glands was recently described as a putative auto-immune target 
in CD and celiac disease (CeD) [100]. The presence of ASCA in CeD will 
be discussed later. 

5.2. Why should CEACAM-6 be an ASCA auto-antigen? 

Among the microbes that have been identified as involved in CD 
pathophysiology is an E. coli pathotype designated adherent-invasive 
E. coli (AIEC), expressing a mannose binding adhesin [101,102] at the 
tip of its pili. Oligomannose glycans exposed on early apoptotic cells 

were identified as the preferred binding targets of AIEC, and apoptotic 
cells were identified as potential entry points for bacteria into the 
epithelial cell layer, after which the bacteria propagate laterally into the 
epithelial intercellular spaces [103]. The AIEC pili bind to terminal 
mannose of host glycoproteins, including carcinoembryonic antigen- 
related cell adhesion molecule 6 (CEACAM6 or CD66c) [102], GP2 
(see above) [104], Lamp-2 [105], and TLR4 [106]. Each of these pro-
cesses is deleterious to the host by promoting bacterial invasion via M 
cells, or the induction of proinflammatory cytokines TNFα and IFNγ. The 
CEACAM6 gene is overexpressed in most carcinomas, including those of 
the gastrointestinal, respiratory, and genitourinary tracts [107]. 
Increased serum levels of CEACAM6 serve as prognostic indicators of 
chronic inflammation in CD patients, given that no CEACAM6 produc-
tion and mannosylation are observed in the healthy ileal mucosa [108]. 
In >35% of CD patients with ileal involvement, the abundance of 
mannosidic structures at the ileal mucosa is elevated due to over-
expression of ceacam6 by ileal epithelial cells, which favors AIEC colo-
nization. Oligomannosylation was demonstrated at two distinct sites of 
CEACAM6 [103]. Strategies to saturate the carbohydrate recognition 
domain of FimH were developed in an attempt to prevent AIEC adhe-
sion. A recent paper reported that TAK-018, a specific FimH blocker, 
successfully inhibited bacterial adhesion, preserved mucosal integrity, 
and prevented inflammation [109]. Some experiments involved 
S. cerevisiae strains or cell walls [110,111], these were also efficient for 
FimH adhesion blockade in experimental models [112]. As for the mo-
lecular receptors for FimH, CEACAM6 and GP2 receptors may be 
mimicked functionally by S. cerevisiae and its mannan and we can 
question whether the host molecules CEACAM6 and GP2 are able to 
support the ASCA response. 

Direct binding of C. albicans to CEACAM6 has also be demonstrated 
[113]. A further study from the same group recently demonstrated that 
ligation of CEACAM6 prevented C. albicans binding to human neutro-
phils and induced an altered response of these cells [114]. In these 
studies, where binding was prevented by anti-CEACAM6 antibodies, it is 
reasonable to speculate that anti-C. albicans antibodies, including ASCA 
directed against the invasive form in vivo, could also prevent ligation. 

5.3. The paucimannose track 

Regarding the existence of α-1,3 linkages in human molecules and 
human immunological cross-reactivity with S. cerevisiae, it is interesting 
to note that the human gene encoding the enzyme responsible for α-1,3 
Man transfer was discovered after research on S. cerevisiae. The 
S. cerevisiae sexual cycle with haploid mating phases has been an 
important model for conventional genetics by screening for mutants. 
This particularly concerned the early stages of protein N-glycosylation in 
the Golgi apparatus, which has been shown to be conserved from fungi 
to mammals. Glycans with short mannosidic chains corresponding to 
early stages of human glycoprotein synthesis are expressed in the 
cellular cytoplasmic compartments (endoplasmic reticulum and Golgi) 
before being processed in the latter compartment by mannosidases and a 
wide range of glycosyltransferases, leading to the highly complex 
repertoire of glycans found in human cells and tissues [115]. In contrast, 
paucimannosidic glycans, restricted to the core structure of N-glycans, 
are rare but may be upregulated in pathogenic conditions. It was 
elegantly documented that during pathogen-based activation poly-
morphonuclear neutrophils (PMNs) produced bioactive paucimannose- 
carrying proteins in their azurophilic granules [116]. The atypical 
glycosylation of one of these proteins, myeloperoxidase (MPO) isolated 
from human blood neutrophils, was fully characterized in a crystal 
structure [117]. It has been suggested that paucimannosylation might 
contribute to its presentation as a self-antigen by antigen-presenting 
cells and neutrophil-mediated immunity [118]. Interestingly, 
regarding the ASCA epitope, basic and clinical studies on paucimannose 
detection in humans have involved a unique monoclonal antibody, 
designed as mannitou IgM; binding of this monoclonal antibody was 
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shown to require a non-substituted α-1,3-linked mannose branch [119], 
a configuration defined as of high importance for ASCA binding. 
Considering these data together suggest that PMNs, known to be 
important cells for auto-antibody detection in UC with ANCA (Protein-
ase 3 P-R3- and MPO), could also contain some hidden auto-antigens 
relevant for CD. Much remains to be revealed regarding the 
complexity of the variation in human glycosylation patterns during 
health and disease [120,121]. The IgG Fc glycosylation pattern associ-
ated with the shift from pre- to inflammatory immune conditions [122] 
is probably worthwhile exploring for ASCA. Ultimately, tissue destruc-
tion by inflammation massively exposes normally non-accessible early 
stages of human glycosylation to an immune response, as well to cancer 
[123,124] (see below). 

6. Other microbial candidates as ASCA immunogens 

6.1. Yeasts 

6.1.1. Saccharomyces cerevisiae complex 
It is logical to start this section with the organism that remains the 

best producer of antigens to diagnose CD (i.e., S. cerevisiae). These an-
tigens have been involved in millions of diagnostic tests over the past 30 
years, made by many manufacturers across the world. Our group was at 
the origin of the acronym ASCA (anti-S. cerevisiae antibodies) created for 
the original ELISA test since it nicely complemented the differential 
diagnosis of IBD with a similar test ANCA [3]. In retrospect, this was not 
a good idea since it shed suspicion on a largely innocuous yeast used by 
humans for millennia to produce bread, wine, and beer. This unfortu-
nate denomination for a good diagnostic test (the ASCA-ANCA paper has 
been cited 400 times) led to several reductionist studies aimed at 
proving that S. cerevisiae was a dreadful pathogen, without considering 
experience from medical mycologists. In daily practice, S. cerevisiae was 
very rarely isolated from stools and mouth swabs from the thousands of 
hospital patients examined each year in a university hospital, including 
IBD patients (records from the Mycology Department of Lille University 
Hospital, France). Such observations led several generations of medical 
mycologists to consider that S. cerevisiae was not adapted to thrive in the 
human gut, or to be an endogenous threat to human health. In contrast 
to conventional microbiological methods of isolation and identification, 
the refinement of next generation sequencing (NGS) methods over the 
years unambiguously confirmed that the mycobiota of IBD patients was 
characterized by a decreasing presence of S. cerevisiae DNA on the one 
hand and a preponderance of C. albicans DNA on the other [125–128]. 

With regard to S. cerevisiae, as discussed in the chapter on antigenic 
variability, this Linnean binominal denomination corresponds to an 
extremely vast repertoire of strains with specific biological [129] 
properties selected for food production including organoleptic proper-
ties (i.e., those selected over centuries to produce great vintage wines). 
Numerous species are now considered to be co-specific, such as 
Saccharomyces uvarum used for beer production and the first reported 
ASCA antigen [2]. However, it is indisputable that in CD patients with a 
triggered ASCA response, dietary S. cerevisiae strains will interfere with 
this immune response depending on their oligomannoside repertoire. 
This huge variablity is probably to consider since S. cerevisiae co-specific 
species Saccharomyces boulardii, may display both anti- C.albicans and 
anti-inflammatory properties [130,131] and a S. cerevisiae strain desig-
nated CNCM I-3856 prevents AIEC induced colitis in a transgenic mouse 
model mimicking CD [110]. 

6.1.2. Candida species 
In addition to C. albicans, which has a role in ASCA generation and 

CD, as discussed previously, the involvement of other species of the 
genus Candida has also been investigated. Unsurprisingly, this has 
concerned the species most commonly isolated in clinical mycology 
laboratories after C. albicans (i.e., Candida tropicalis and Candida glab-
rata). These three species share a pathogenic potential that allows them 

to invade the mucosae, resulting in Candida vulvovaginitis and 90% of 
systemic Candida infections spreading from the gut. 

The involvement of C. tropicalis (which has a mannan oligomanno-
sidic repertoire similar to that of C. albicans) was suggested from the 
initial studies on the mycobiota associated with CD [132], as well as its 
correlation with ASCA levels. With the evolution of NGS methods, 
further studies failed to demonstrate such a preponderance of 
C. tropicalis, contradicting the results obtained by conventional myco-
logical methods on the same patients [133]. Similarly, a study published 
1 year later claimed as “the first demonstration of the existence of an 
altered fungal microbiota in CD patients” did not isolate C. albicans, but 
showed a preponderance of C. glabrata [134]. No relationship was 
established with ASCA levels, which probably makes sense from an 
immunochemical point of view since C. glabrata constitutively expresses 
the major ASCA epitope, Man α-1,3, when grown in vitro and identified 
as antigen 34 in the yeast serological classification [71]. In contrast to 
C. tropicalis, a mainly saprophytic yeast common in fruit juices, in 
transit, or surviving in the gut, C. glabrata is a truly endosaprophytic 
species adapted to colonize the human gut. Experimental models have 
clearly demonstrated its pathogenic potential in an inflammatory setting 
as a player able to modify bacterial communities [135,136]. 

Attention has recently focused on Candida famata, a species rarely 
isolated in the clinical mycology laboratory, the anamorph (asexual 
stage) of the species Debaryomyces hansenii. An elegant experimental and 
clinical study demonstrated that the abundance of this species in 
wounds and inflamed tissues was linked to its ability to dysregulate 
mucosal healing [137] through a specific mechanism involving myeloid 
cells. Interestingly, C. famata is among the yeast species expressing the 
presumptive ASCA epitope [71]. 

To conclude this section on yeasts, it is clear that a survey of the 
extensive literature on the analysis of the microbiota in IBD shows that 
initial studies failed to demonstrate the importance of yeast species 
considered by medical mycologists to be the most pathogenic and 
generated doubt on their possible involvement. The progressive refine-
ment of methods and analyses clarified these points in favor of con-
ventional mycology conclusions. A remarkable short review published 
recently provided very clear explanations for this evolution and 
explained that extreme caution and scientific humility in sampling, at 
the bench, or in front of the computer is of crucial importance regarding 
the power of methods to draw conclusions [138]. 

Second, it is highly probable that due to their biological richness and 
the models represented, namely for mannosylation, Saccharomyces and 
Candida yeasts have not yet reached their full potential for research on 
the mechanisms of ASCA generation. 

6.1.3. Malassezia species 
The recent incrimination of species of this complex in CD [139,140] 

is representative of the discrepancies between the results of meta-
genomic investigations based on DNA sequencing and knowledge gained 
on these species by mycologists 100 years ago in human and animal 
samples, studied by direct microscopy and culture on various specific 
media [141]. 

The classification of yeasts belonging to the Malassezia complex has 
been clarified considerably by genetic analysis. This complex is 
composed of 18 species including the species previously named Pity-
rosporum [142,143]. These yeasts are commensals of the human skin, 
thriving in the lipophilic environment of sebaceous secretions. They 
were also identified as opportunistic pathogens, capable of changing 
morphology to be associated with different clinical skin conditions, such 
as dandruff, seborrheic dermatitis, atopic dermatitis (where their 
involvement is suspected), or Pityriasis versicolor where the yeast invades 
the tissues [144,145]. With regard to the inflammatory states of atopic 
dermatitis or dandruff, it is not yet known whether the proliferation of 
Malassezia is the cause or the consequence. However, antifungal treat-
ment does lead to clinical improvement. The only possible involvements 
reported outside the skin sphere were sepsis observed following the 
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unfortunate combination of two favoring circumstances, namely deep 
immunosuppression of premature neonates and skin contamination of 
lipid infusions [146]. 

Reports of its presence in the digestive tract as a commensal using 
conventional methods are scarce or non-existent. Examination of stools 
samples by direct microscopy does not indicate their presence. Limited 
data exist on the isolation of Malassezia from stool cultures. This yeast 
cannot be isolated in culture using conventional media and requires the 
use of lipid-enriched media [147]. 

Mycobiome characterization by NGS methods has highlighted the 
presence of Malassezia spp. in the stools of CD patients [126]. Malassezia 
restricta was identified in CD patients carrying a polymorphism in the 
CARD9 gene, involved in antifungal defense and shown experimentally 
to exacerbate colitis [140]. Pediatric patients with CeD were found to 
exhibit a 2-fold increase in Malassezia spp. in their intestinal mycobiome 
compared to a control group [148]. Of note, the discordant results in 
metagenomic detection of Malassezia spp. relates to different ribosomal 
RNA regions selected for high-throughput sequencing [149]. The 
Human Microbiome Project cohort of healthy patients revealed an un-
expectedly high prevalence of Malassezia spp. and the presence of 
M. restricta Operational Taxonomic Unit (OTU) in up to 88.3% of sam-
ples [150]. However, these findings have not been challenged by cul-
turomic [151], to assess yeast viability. To achieve this goal, Blachowicz 
et al. [152] proposed the pre-treatment of samples with propidium 
monoazide, intercalating the DNA of dead cells, to restrict the viable 
yeast metagenome. The discrepancies between metagenomic and cul-
turomic need to be addressed to determine whether the presence of 
Malassezia spp. reflects contamination of the digestive tract by the skin 
microbiota where proliferation of Malassezia is exacerbated by systemic 
inflammatory disorders [145]. One mycobiome study of oral samples 
highlighted the high prevalence and abundance of the Malassezia genus 
among the salivary microbiota [153], in contrast to the low prevalence 
of Malassezia species in stool samples. 

Regarding the immunogenicity of Malassezia mannan, cross- 
reactivity with C. albicans mannan has been clearly demonstrated 
regarding IgE, the isotype predominant in patients with atopic derma-
titis [154]. Specifically, S. cerevisiae gp 200, to which patients with CD 
exhibit high reactivity [55], supports cross-antibody reactivity during 
atopic dermatitis [155], an inflammatory disorder in which Malassezia is 
suspected to play a role. 

6.2. Mycobacteria 

Among the thousands of bacterial species present in humans, many 
of which have been explored for their relationship with CD, the only 
species that has so far shown cross-reactivity with ASCA is Mycobacte-
rium avium subspecies paratuberculosis [156] the etiologic agent of a se-
vere gastroenteritis in ruminants known as Johne's disease. Two 
epitopes incriminate Mycobacteria as elicitors of antibodies in humans 
with CD, a terminal α-1.3 mannose [157] and a peptide sequence [158]. 
At the genetic level, an impressive study has demonstrated considerable 
overlap between susceptibility loci for IBD and mycobacterial infection 
[159]. 

6.3. Viruses 

The gut virome consists of eukaryotic viruses, bacteriophages, 
archeal viruses, and plant viruses originating from food and environ-
mental exposure. With roughly 108–1010 virus-like particles per gram 
of intestinal content, viruses make up a hefty sum of the gut microbiome 
[160,161]. Bacteriophages have been described as modifying the bac-
terial environment in a way that supports IBD development [162], 
whereas some strategies have been proposed to use them to target 
bacteria identified as playing a detrimental role [163]. 

Eukaryotic virome dysbiosis has been associated with IBD patho-
genesis, because eukaryotic-targeting viruses integrated into the human 

genome may play a role in shaping mucosal immunity [161,164]. 
Regarding glycosylation, which is a central question in our under-
standing of ASCA, eukaryotic viruses take advantage of the host cells' 
endoplasmic reticulum and Golgi apparatus to produce complex glycans 
such as high-mannose and complex elongated N-glycan structures. From 
an evolutionary point of view, the capacity of viruses to replicate and 
modify their own N-glycosylation sites brings advantages for host 
colonization through glycan-mediated molecular mimicry. This glycan- 
dependent viral adaptation masks viral proteins from host neutralizing 
antibodies; human immunodeficiency virus, influenza virus, and severe 
acute respiratory syndrome related Coronavirus 2SARS-CoV-2 are major 
examples of this process. Some viral proteins have been implicated in 
the host immune response, triggering the production of anti-glycan 
antibodies, soluble lectins, and complement activation [165]. Among 
the viruses suspected to play a role in IBD pathogenesis, the Epstein-Barr 
virus (EBV) has been proposed as a trigger for IBD [166,167]. EBV can 
be considered in this setting for three main reasons: (i) host glycopro-
teins: EBV has a lipid envelope derived from the membranes of infected 
cells and bristling with host glycoprotein spicules [168]; (ii) a link with 
MBL deficiency: in a pediatric cohort study, analysis of mannose-binding 
lectin (MBL-2) genotypes and EBV antibody levels showed that EBV 
seropositivity was significantly lower and time to seroconversion 
increased in MBL-insufficient compared to MBL-sufficient children, 
indicating that MBL may be involved in primary EBV infection in infancy 
[169]. Of note, low MBL levels are also associated with pediatric IBD and 
ileal involvement in CD [170], as well as a high ASCA response 
[66,171]; (iii) persistence of antibodies: EBV infects germinal center 
(GC) B-cells and establishes persistent infection in memory B-cells. EBV- 
encoded latent membrane protein 2 A mimics B-cell antigen receptor 
signaling in murine GC B-cells and has also been shown to cause an 
altered humoral immune response and autoimmune diseases by 
inducing a reduction of the stringency of GC B-cell selection. It may also 
contribute to persistent EBV infection and pathogenesis by providing GC 
B-cells with excessive pro-survival effects [172]. 

7. ASCA and other diseases 

Reaching the goal of understanding the mechanism of ASCA gener-
ation cannot be achieved without considering the panel of human dis-
eases in which their presence has been reported. The availability of the 
non-invasive ASCA test incited many researchers to explore the presence 
of ASCA in the diseases they studied and for which they had available 
many sera from different patient cohorts. Over many years, the inci-
dental observation of the presence of ASCA was confirmed by large 
studies. Table 1 lists the human diseases in which an increased preva-
lence of ASCA has been reported. This is an impressive and diverse list 
and it is not objective of this review to embrace the topic. Deciphering 
the pathophysiological mechanisms involved to explain the presence of 
ASCA is the domain of specialists in each of the relevant disciplines. 
However, when data were found and in coherence with the theme of this 
review, we attempted to report the changes in the gut bacteriome/ 
mycobiome which are described in these other diseases. Instead of 
considering the whole and probably still incomplete panel of diseases, 
we first focused on diseases of the digestive tract and its appendages 
since some of these are important models to address some basic issues. 

(i) Regarding the question of ASCA stability, a character of ASCA 
associated with CD discussed previously, it must be mentioned that this 
stability has not been documented/investigated for any other disease. 
Interestingly, concerning CeD, for which a triggering role for C. albicans 
has been suspected through molecular mimicry between the hyphal 
protein Hwp1 and gliadin (both substrates of transglutaminase) 
[173,174], it has been established that ASCA are not stable. Indeed, 
ASCA decrease under a gluten-free diet [175]. This suggests that CD and 
CeD differ in the genetic mechanisms leading to ASCA stability. 

(ii) Regarding the question of ASCA and C. albicans overgrowth, 
studies on patients with alcoholic hepatitis probably provide the most 
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Table 1 
Left panel. Non-exhaustive list of human diseases in which an increased prevalence of ASCA has been reported to date. The huge amount of available information led us 
to select a limited number of studies in an attempt at clarity. The methods of ASCA determination, usually commercially available, vary from one study to another 
[59,60]. The results are expressed as a % of positive tests regarding the cut-off proposed by the manufacturer for differentiating CD from UC, which is not particularly 
appropriate. We did not discriminate between IgG and IgA, and have reported a global range. For studies in which only statistical comparisons of groups were per-
formed, we reported the results as an “increase”. Right panel. Results from gut mycobiota analyses in the corresponding diseases reporting fungal dysbiosis or Candida 
overgrowth established using metabarcoding (NGS) and/or conventional methods of mycological isolation/identification (M).   

Presence of anti-S. cerevisiae antibodies (ASCA) Mycobiota References  

Prevalence 
Familial 

trait 
Stability Predictive 

Diagnostic 
usefulness Fungal 

dysbiosis 

C. albicans 
ASCA Mycobiota (% or 

increased) 
(%) Comments overgrowth 

Control population 6 YES Unknown   
Low fungal diversity 

compared to bacterial 
diversity 

[2,3,15] [150]  

Gut diseases 
IBDs (Inflammatory 

Bowel Diseases)     
In association with 

ANCA     

Crohn's disease 50–60 20–30 YES YES  YES YES (NGS & 
culture) 

[2,3] [126,133] 

Small Bowel 50–60       [192]  
Large bowel 8       [49]  

Healthy First Degree 
Relatives 20–30  Unknown ?   YES (culture) [16,133] [133] 

Ulcerative colitis 11.9  Unknown   YES YES (NGS) [3] [126,178] 

Pouchitis 5–12.5  Increase?  Evolution close to 
CD 

YES 

YES (NGS), 

[177,193] [181] in patients with 
starch 

consumption 

Celiac Disease 60–70  NO   Rather No 
Candida genus 

(PCR) [194] [195–197] 

Celiac Disease under 
gluten diet 8-Jun  ?  Resistance to GFD?   [175]   

Candidiasis 
Systemic 72.2  NO YES YES YES YES (NGS) [64] [198] 
Vaginal 29  NO YES YES YES YES (culture) [199] [200]  

Hepato-biliary diseases 
NAFLD 

ND     YES YES (NGS & 
culture)  

[201] (Non Alcoholic Fatty 
Liver Disease) 

Primary sclerosing 
cholangitis 

6-30     YES 

Discordant 
studies [202] [203,204] 
(NGS & 
culture) 

Alcoholic hepatitis Up to 24.3  High levels 
pejorative  

YES (linked to 
prognosis) 

YES YES (NGS) [205] [176,206]  

Skin diseases 

Atopic dermatitis ND    S. cerevisiae GP 200 YES 

Discordant 
studies 

[154,155] [207] 
(NGS & 
culture) 

Hidradenitis 
suppurativa, with 
chronic inflammatory 
intestinal disorders 

Increased     Unknown Unknown [208,209] [210]  

Pulmonary diseases 

Cystic fibrosis 3.7–55.6  
Increase in 
prevalence 
over time   

YES 

YES (NGS & 
culture) [211–213] [213–215] 

prevalence 
35–93%  

Autoimmune diseases 

Multiple sclerosis 3.5–15     Maybe 
Discordant 

studies (NGS) [216,217,219,217] [218,219] 

Behçet disease 
(vasculitis) 4–48.1     

Unknown Unknown 
[220–222]  

Intestinal Behçet 
disease 

12.7–25.4     [98,223,224]  

(continued on next page) 
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clear-cut model. This acute-on-chronic liver disease occurs suddenly 
after years of heavy alcohol consumption, for unknown reasons, and is 
characterized by prominent cholestasis and high mortality rates 
(20–40% within 6 months). Stunning of the immune system is associated 
with an increase in ASCA, which are associated with Candida over-
growth, a process clearly independent of increased intestinal perme-
ability. Kaplan Meier curves show that ASCA levels are not only 
predictive, as in other diseases, but also strikingly associated with death 
[176]. The relation between ASCA/Candida overgrowth and this acute 
auto-immune process probably deserves attention from the scientific 
and medical communities. 

(iii) The mystery of ASCA and UC. Although the term ASCA was 
proposed initially for a test differentiating the serological response in CD 
versus UC (with a specificity close to 100% using the ASCA-ANCA 
combination), an exception exists concerning pouchitis, a complica-
tion from ileo-anal anastomosis surgery. The presence of ASCA, but also 
anti-glycan antibodies, has led some gastroenterologists to consider this 
complication of UC as CD-like [177]. The relationship between ASCA 
and Candida, and the absence of ASCA in UC, raises some questions. 
ASCA prevalence is low in colonic forms of CD, whereas ASCA and 
ANCA co-exist in UC-like CD [21]; the absence of both markers corre-
sponds to a clinico-serological entity representing >40% of cases of 
indeterminate colitis. The question of the relationships between 
C. albicans and ASCA extends to recent studies demonstrating that 
clinical improvement of UC after fecal microbiota transplant is associ-
ated with a decrease in C. albicans load [178,179] or improvement of 
clinical, histologic scores and calprotectin levels in UC patients 

colonized by C. albicans and receiving oral fluconazole therapy [180]. 
This suggests that the UC-based micro-mycobiota from the colon to the 
ileon (associated with low ASCA levels - including in CD) affects ASCA 
production, and that the site of C. albicans growth in IBD matters for 
ASCA generation [181]. 

Returning to Table 1, it is clear that during initial studies on ASCA as 
a marker of CD it was difficult to comprehend why so many diseases 
could have an increased prevalence of this marker. It should be pointed 
out that these prevalences are relative and that different studies used 
commercial tests of different origins. However, although ASCA levels 
often fell below those considered to be specific to CD their increase in 
prevalence is obvious. The fact that neurological diseases are part of this 
panel has been recognized over the past few decades and studies have 
found that the gut-brain axis as an unexpected player in human health 
and well-being [182]. The presence of ASCA (a response to microbial 
antigens) suggests that rather than an axis a triangle may exist involving 
the immune system, as suggested recently in premature neonates [183]. 
Metagenomics, allowing easy analysis of the microbiota (and technical 
progress in assessing the importance of the mycobiota), showed that for 
most of these diseases with an auto-immune background the presence of 
ASCA was associated with fungal dysbiosis and Candida overgrowth 
[174,184]. It is only recently that investigations into ASCA and/or 
C. albicans have extended to cancer and the literature in this field has 
grown. A general review from 2020 about Candida immunoreactivity 
and human diseases in different parts of the body, making reference to 
ASCA, proposed a framework for the human anti-fungal deterioration of 
colitis to cancer, but without linking ASCA to the process [10]. Overall, 

Table 1 (continued )  

Presence of anti-S. cerevisiae antibodies (ASCA) Mycobiota References 

Kawazaki disease 
(vasculitis) Increased    

Increased anti- 
Candida cell wall 

beta-glucan 
antibodies 

Unknown Unknown [225]  

Systemic Lupus 
Erythematosus 

4.5–31.9     YES (C. glabrata 
culture) 

[226,227] [228] 

Thyroiditis 0.8–16.6     Unknown Unknown [229,230]  

Sjögren Syndrome 4.8     Unknown 
YES oral 

candidiasis 
(culture) 

[231] [232] 

Spondyloarthritis 18–25 Unknown    YES YES (NGS) [233,234] [235]  

Metabolic diseases 

Diabetes 6.2–21     YES YES (NGS & 
culture) 

[236,237] [201,238] 

Obesity 2.1–22     YES YES (NGS & 
culture) 

[239,240] [201] 

Myocardial infarction Increased     Unknown Unknown [241]   

Neurologic diseases 
Parkinson disease Increased     YES Unknown [242] [242,243]  

Psychiatric diseases 

Autism ND    
Anti-C. albicans 

IgG antibodies in 
36.5% of patients 

YES 

Discordant 
studies 

(cultures & 
NGS) 

[244] [245–247] 

Depression Increased     YES Unknown [248] [249] 

Schizophrenia 6–44.4     YES 
Unclear 

[248,250–252] [253,254] (IgG anti- 
C. albicans) 

Bipolarity Increased     Unknown Unknown [255]   

Infectious diseases 
Covid-19 13.7–25     YES YES [256,257] [258] 

Cancer ND    

Glycosylation 
modification of 

YES Unknown 
*[123,124,259] 

[188,261]    epithelial and 
immune cells* [260]  
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two major articles addressing the topic of cancer and the mycobiota 
were published in Cell in 2022. One [185] identified a 20-fungus 
signature potentially able to distinguish pan-cancer from healthy in-
dividuals [185]. The study by Dohlman et al. [186] revealed that 
Candida is correlated with worse survival outcomes, pro-inflammatory 
gene expression, and metastasis, and that identification of fungal DNA 
at the tumor site may provide a predictive biomarker for gastrointestinal 
cancers. A study finely analyzing cross talk between Candida and im-
mune cells uncovered regulation mechanisms promoting tumorogenesis 
[187]. Although impressive information has been obtained from these 
high-tech studies, the relation between C. albicans and ASCA, and ASCA 
and cancer, has not been addressed. Interestingly, no information can be 
found in the literature concerning a very simple but important question: 
“is there a different risk of CD evolution towards cancer in ASCA positive 
versus ASCA negative patients?” 

Finally, convincing evidence has been found in some diseases, but 
the multiplicity of human pathologic circumstances where C. albicans 
overgrowth has been described makes interpretation of some of these 
findings in other diseases challenging. Thus, the question about 
C. albicans proliferation as a cause or consequence is legitimate. Inverse 
reasoning fits with the old medical adage of C. albicans as a sensor of 
human health [188]. The only response to this question would reside in 
clinical trials using antifungals (or probiotics?) to assess whether they 
improve the evolution of a patient's primary disease. Although this 
would probably improve a patient's clinical condition by decreasing the 
adverse effects of Candida proliferation, ethical, legal, and economic 
considerations render such trials challenging. It is therefore up to 
medical research to obtain more evidence of the impact of C. albicans on 
diseases in one way or another. 

Just at the time this long-lasting review was completed, two 
important advances were made about ASCA and C. albicans. One 
established a clear link between ASCA and altered CD4+ T cell responses 
[189]. The second [190], demonstrated that severe infection led to 
reprograming of granulocytes. These provide new angles to revisit or 
answer the large number of questions still raised about ASCA meaning in 
human health. 

8. Conclusion 

This analytic review was prompted by a recent paper showing that 
ASCA are probably the most potent markers of CD [45], and that un-
derstanding the mechanisms of ASCA generation and persistence would 
help to decipher the pathophysiology of CD. Regarding the possible role 
of C. albicans in CD, we carried out early investigations on the mecha-
nism of ASCA generation and revisit the contributions to this subject 
published over the past three decades. We have deliberately opted for a 
broad analysis of this subject by including papers on basic yeast 
immuno-glycobiology, medical mycology achievements, gastroenter-
ology, and auto-immune diseases. Over many years, where numerous 
papers have been published in top ranked scientific journals exploring 
the question of C. albicans gut saprophytic/pathogenic adaptation in 
relation to the hosts' antibody response [72,73], we hope that some 
answers finally “emerge from the shadows” [79,191]. 
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