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Abstract: Exploring the potential of utilizing CO2 for commercial purposes is a promising opportu-
nity, especially in light of the growing research efforts towards CO2 capture, storage, and utilization as
well as green H2 production. This review article delves into catalyst features and other technological
aspects of a plausible process for the indirect conversion of CO2 into glycolic acid, which involves the
following steps: CO2 capture, water electrolysis, CO2 hydrogenation to methanol, catalytic oxidation
to formaldehyde, and formaldehyde carbonylation to glycolic acid. We adopt an industrial perspec-
tive to address this challenge effectively, thoroughly evaluating different processing alternatives with
emphasis on the catalytic systems to optimize glycolic acid production performance.

Keywords: glycolic acid; CO2 capture; green hydrogen; CO2 hydrogenation; methanol oxidation;
formaldehyde carbonylation

1. Introduction

To achieve the goals of the Paris Agreement, global anthropogenic CO2 emissions
should be zero by 2050, and although major CO2 sources come from power, steel, and
cement industries [1,2], efforts from all areas of society will be needed. However, the
challenge involves unequal abatement costs across sectors. For example, chemical and
steel companies may face higher costs for decarbonization in comparison with electricity
generation plants [3]. In this scenario, carbon capture and storage (CCS) and carbon
capture and utilization (CCU) are solutions for CO2 abatement that are widely discussed in
the literature [4–6]. Both involve separation processes to avoid the release of CO2 to the
atmosphere, generated by conversion of fossil or biomass resources, differing mainly by
fate of the CO2 stream and whether it contributes to revenues of the project.

CCS prescribes sending captured CO2 (e.g., from combustion, industrial separation,
or direct air capture) to geological storage, returning carbon to underground locations if
it comes from a fossil resource. Power plants with CCS have been extensively studied in
the literature [7] regarding challenges in the efficient capture and safe storage of CO2 [8].
CCS can provide considerable reduction of global CO2 emissions by 2050 [9,10], but the
deployment of projects depends on a combination of favorable local aspects and leverages,
like regulatory requirements and proper economic incentives [11].

In turn, CCU encompasses all routes where CO2 is used commercially to add revenues,
either chemically as a raw material or physically as in enhanced oil recovery (EOR), among
other uses. The concept may be regarded as a current “hot topic”, but it is not new. Back in
1972, a plant was launched in Texas for the purpose of improving productivity of old wells
by EOR using CO2 captured from natural gas. Most early projects addressed EOR and
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utilized CO2 that had to be captured for other reasons (e.g., natural gas conditioning), but
even in the 1970s there were studies considering the capture of CO2 from flue gases, which
is believed by some as the origin of the CCS/CCU concept [8]. The chemical conversion of
CO2 has also been studied for many decades [11], as a possible low-cost raw material, with
possible uses in the production of methanol and methane by hydrogenation, as well as in
carboxylation reactions to produce carbonates, acrylates, and polymers [12,13]. However,
since CO2 is a relatively stable molecule, the processes are usually energy-intensive. Also,
the reaction kinetics for CO2 conversion require special catalysts [14].

Beyond global warming concerns related to energy use and direct CO2 emissions,
other significant environmental problems are caused by non-biodegradable plastic waste.
It is well known to impact ecosystems but may also indirectly lead to the emission of green-
house gases (e.g., from landfilling and incineration) [14–16]. This kind of waste mostly
consists of common synthetic polymers like polyolefins (polyethylene, polypropylene),
polyethylene terephthalate (PET), and nylon, as well as their combinations and composites.
In this scenario, one sustainable alternative is to invest in the production of biodegradable
polymers like polyglycolic acid (PGA), whose monomer (glycolic acid) can be produced
from renewable feedstocks (Figure 1), showing reduced lifetime (i.e., better biodegradabil-
ity) when compared to other sustainable polymers (e.g., polycaprolactone and polybutylene
adipate-co-terephthalate) [15].
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Figure 1. Reaction pathways from syngas to polyglycolic acid polymers.

Glycolic acid also has other applications, and its global demand has increased, with
possible use in food, cosmetic, textile, and cleaning chemical industries [17–19]. The
production of glycolic acid from CO2 involves the following sequence of steps: syngas
generation (e.g., by gasification), CO2 and/or CO separation (excess CO2 can be geologically
stored), methanol synthesis, methanol partial oxidation, and formaldehyde reaction with
CO (carbonylation). In this short review we detail each process step from a technical
perspective, emphasizing the achievements and outcomes of each stage. Given that catalysts
play a pivotal role in facilitating the various reactions, a comparative strategy is embraced
to pinpoint the best catalysts based on yield and catalytic activity considerations.

2. CO2 Capture

The production of polyglycolic acid can be carried out through different reaction
pathways, shown in Figure 1. The routes have in common the need for methanol synthesis,
where hydrogen reacts with CO and CO2. In this case, a CCU concept could be employed
to replace syngas production, with CO2 hydrogenation to methanol addressed by use of
renewable H2 from electrolysis. The CO2 could be obtained through different capture
technologies, with the choice being mainly a function of the characteristics of the gas
carrying the CO2 to be captured and the energy resource of the process; in a general way,
the lower the CO2 partial pressure and the carbon content of the resource gas, the more
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expensive the capture process. The capture strategies are generally classified into three main
groups when applied to power generation processes: pre-combustion, post-combustion,
and oxy-combustion [20,21]. They are briefly described below.

In pre-combustion CO2 capture, the fuel (e.g., biomass, coal, natural gas) is firstly
converted into syngas and then subjected to shift conversion to react CO and increase H2
content, as illustrated in Figure 2. Syngas generation occurs between 700 and 1000 ◦C, and
the required heat is usually supplied in situ by partial oxidation or indirectly by combustion.
Then, H2/CO2 fractionation takes place, usually by chemical or physical absorption, and
the H2 stream experiences combustion. The advantage of the strategy relies mainly in
performing separation with relatively high CO2 fugacity, in comparison with typical flue
gases of the post-combustion route. The major drawback is the high capital investment,
which is a consequence of the much greater plant complexity [22,23].
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Post-combustion CO2 capture concept consists of removing CO2 from flue gas (Figure 2).
This method is particularly advantageous when the CO2 content is relatively low [24,25].
The concept allows easy CCS adaptation to various industrial and power settings, requiring
minimum change in the original plant. In this case, chemical absorption with aqueous alka-
nolamines is a mature solution for this separation service, readily available for commercial
implementation [26]. The technology is well known for its use in natural gas processing,
with more than 6 decades of application [20]. The main drawback is the high operating cost
linked to CO2 removal in low fugacity from a low-pressure N2-rich stream. Absorption
processes are sensitive to the presence of NOx and SOx and require a solvent makeup to
compensate for losses from volatilization, inactivation, or degradation [23].

The process of oxy-combustion (Figure 2) involves burning fuel with pure oxygen in-
stead of air to minimize nitrogen introduction to the system, resulting in exhausts primarily
composed of CO2 + H2O, which has the advantage of dismissing a separation process for
CO2 removal in exchange for a process for oxygen production. The economic competitive-
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ness of this concept is thus highly dependent on air separation performance [27], which
usually entails high power demand and high capital investment [28].

The various possible technologies for CO2 separation can be categorized into five
generic groups (Figure 3): absorption, adsorption, membrane permeation, cryogenic distil-
lation, and chemical looping combustion (CLC) [24]. Chemical absorption with amines is
the most mature technology, given the experience of decades of large-scale plant operation.
These chemical solvents have high reactivity with CO2, relatively high thermal stability,
and high absorption capacity. The major drawback is the relatively high heating demand
for solvent regeneration [20]. Post-combustion capture by such amines in a thermal power
station involves a countercurrent contact of the gas with the solvent in a packed column op-
erated at nearly atmospheric pressure and a temperature of 40–70 ◦C [25]. Some substances
commonly used for this purpose are monoethanolamine (MEA), methyl-diethanolamine
(MDEA), and 2-amino-2-methyl-1-propanol (AMP) [29,30]. The mechanism involved in
CO2 chemical absorption by MEA is shown in Equations (1) and (2). Its regeneration heat,
expressed by mass of captured CO2, is nearly 4 GJ/ton(CO2) if it is applied to mitigate
emissions from a natural gas power plant. An alternative to minimize heating demand is
to employ phase change solvents [31], e.g., by addition of an alcohol to MEA, which allows
reduction of the amount of solvent to be regenerated, thus decreasing the heating demand
associated with CO2 capture. The general flowsheet of a standard chemical absorption
plant for CO2 removal is shown in Figure 4 [32]. Besides chemical absorption, physical
absorption is also mature and commercially available (e.g., SELEXOL, RECTISOL, NMP
PURISOL), being applicable when the stream is pressurized and when CO2 has enough
fugacity. Physical solvents are less selective—implying lower CO2 purity—but can be
regenerated at lower temperatures by stream depressurization.

MEA + CO2 + H2O → MEACOO− + H3O+ (1)

MEACOO− + H3O+ → MEA + CO2 + H2O (2)
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Separation by adsorption can occur through physical (e.g., using zeolites, activated
carbon, or metal-organic frameworks) or chemical mechanisms (e.g., metal oxides, hydro-
talcites, lithium zirconate) [33], among which physical adsorption has been more frequently
used for CO2 capture. It involves a selective interaction between the target adsorbate CO2
and a solid material, which retains the CO2 in its surface, to later be regenerated, usually
by pressure or temperature variation. At least two vessels installed in parallel are required
for continuous cyclic operation: while one tower is regenerated, another one is active in the
process. The cycle duration depends on adsorbent capacity and regeneration method (it
usually operates for a few hours without regeneration if it is temperature-swing, but only a
few minutes if it is pressure-swing) [34].
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A relatively new concept is the use of selective membranes to separate CO2 from
a gas stream. Membranes are semipermeable barriers that can be manufactured using
different materials, which can be an organic (e.g., polymer) or inorganic type (e.g., ceramic,
metallic). Separation by polymeric membranes has been more relevant in the field, and
it is already utilized commercially for natural gas processing, since the stream is already
found at high pressure, where it offers significant advantages of operational flexibility.
The following two perspectives are important in the evaluation of membrane performance:
permeability (for certain pressure drop) and selectivity (permeability ratio) of desired com-
ponents. These determine component recoveries and stream purities after the separation
process. The main drawbacks of gas permeation are low scalability (it is manufactured
in modules), low product purity, and the need to compress the feed stream to generate
separation driving-force if it is received at low pressure, which generally makes the option
economically unattractive when compared to other separation methods [25]. In addition,
the material may be sensitive to the presence of certain contaminants in the gas (e.g., sulfur
compounds). However, membranes can be advantageous to promote process intensification
in reactors and to improve reaction performance by in situ separation, as discussed in later
sections [25].

Another separation method is cryogenic distillation, which is capable of producing
high-purity streams and CO2 already pressurized and liquefied, ready to be pumped
for transportation. The process involves high capital investment (due to feed gas pre-
treatment, large amount of involved equipment, and requirement of resistant material
for low-temperature operation) and high operating costs (linked to refrigeration), being
economically competitive in large-scale applications where the feed stream has high CO2
content (usually above 50%) [22]. Some further advantages of this process—besides the
production of pure liquid CO2—are the absence of solvents and good scalability (economic
performance is substantially improved by process scale-up). Some of the existing process
designs differ in how CO2 freeze-out is avoided or managed (CO2 solidification may be
allowed at certain conditions, depending on the process) [22,35].

Chemical-looping combustion (CLC) uses metal oxides as oxygen carriers to convert
the fuel and generate heat, in order to produce CO2 + H2O flue gas as in oxy-combustion
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(it is often classified in this category). A cyclic process of oxidation with air and reduction
with fuel takes place to avoid the direct contact of air and fuel. The concept efficiently
promotes CO2 capture with low energy requirements, while avoiding the presence of
N2 in the flue gas, which not only increases the CO2 content but also has the further
advantage of avoiding the formation of NOx. Besides high oxidation/reduction activity, the
material should present long-term stability, with good mechanical resistance and minimum
agglomeration. Additionally, the material should enable complete oxidation of the fuel
for maximum system efficiency. Oxygen carriers meeting these requirements are under
development [36].

3. Hydrogen Production Unit

Methanol plants require syngas generation or pure H2 production for CO2 hydro-
genation. To avoid CO2 emissions, and also to allow chemical conversion of captured
CO2, renewable electricity from wind farms and/or solar energy can be used—promoting
integration of clean technologies into a broader energy landscape—to produce pure H2
(up to 99.99%v) from water electrolysis [37], which occurs through the reactions shown
in Equations (3)–(5) [38]. Water electrolysis can be carried out through different methods,
which include alkaline water electrolysis, proton exchange membranes, anion exchange
membranes (AEMs), and solid oxide electrolysis, among others. Table 1 compares differ-
ent electrolysis systems according to their operating conditions, technological status, and
advantages and disadvantages [39].

anode H2O → 1
2

O2 + 2H++2e− (3)

cathode 2H++2e− → H2 (4)

Generally speaking, the electrolysis of water releases hydrogen and oxygen:

H2O → H2 +
1
2

O2 (5)

Table 1. Classification and characteristics of the different hydrogen production technologies for
electrolysis. Adapted with permission from [39].

Category Alkaline
Electrolysis

Proton
Exchange

Membrane

Proton
Exchange

Membrane

Solid Oxide
Electrolysis

Solid Oxide
Electrolysis

Solid Oxide
Electrolysis

Charge carrier OH− OH− H+ H+ O2− O2−

Temperature 20–80 °C 20–200 °C 20–200 °C 500–1000 °C 500–1000 °C 750–900 °C
Electrolyte Liquid Solid Polymer Solid Ceramic

Anode
Ni > Co > Fe;
perovskite;

LaCoO3

Ni
IrO2, RuO2,

IrxRu1−xO2/TiO2,
TiC

Perovskite
LaxSr1−xMnO3

+ Y-ZrO2
(LSM-YSZ)

LaxSr1−xMnO3
+ Y-ZrO2

(LSM-YSZ)

Cathode Ni alloys Ni, Ni-Fe,
NiFe2O4

Pt/C MoS2 Ni Ni-YSZ
LaCrO3

Ni-YSZ
Perovskite

Efficiency 59–70% - 65–82% 100% 100% -
TRL * 9 4–5 6–7 3–5 3 3–5

Advantages

Low investment
cost, stable,
well-known
technology

Combination of
alkaline and
membrane
electrolysis

Compact
technology,
very high
H2 purity

Strengthening of kinetics and thermodynamics, low
energy demand, low investment cost

Disadvantages
Corrosive

electrolyte, very
slow dynamics

Low
conductivity of

OH- in
polymers

High cost of
membrane
polymers,
requires

noble metals

Mechanical instability of the electrodes, safety
problems, poor sealing

* TRL = Technology readiness level.
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Alkaline electrolysis is usually carried out at 20–80 ◦C using nickel as the electrocatalyst
and water mixed with strong hydroxide (e.g., NaOH, KOH) to produce H2 99%v. The
system is already commercially available but has the drawbacks of slow start-up and the
requirement of a constant power supply. Proton exchange membrane-type electrolysis is a
promising alternative for widespread deployment, as it can provide a faster response with
greater process efficiency, though it involves more capital investment due to expensive
membranes and electrocatalysts. The amount of hydrogen produced is a function of the
current intensity (the relationship is given by Faraday’s Law of Electrolysis). Solid oxide
electrolysis requires lower voltages and is capable of much greater performance due to
lower power demand. A drawback is that it requires operation at temperatures well above
500 ◦C, which also has shown to shorten the lifetime of the ceramic membranes. This
technology is not yet commercially available for large-scale application [39].

4. CO2 Hydrogenation to Methanol

Methanol synthesis is an exothermic catalytic process usually addressed in gas-phase
conditions, using syngas with H2 excess over a catalyst fixed bed at ≈250 ◦C and 50–100 bar.
In the case of hydrogenation of pure CO2, some changes are commonly introduced in the
catalyst, but the involved chemical reactions are practically the same. The reaction of CO2
hydrogenation is presented in Equation (6), which occurs with incomplete conversion due
to limitations of chemical equilibrium. In parallel, CO formation also takes place by reverse
water–gas shift, a competitive reaction also limited by equilibrium, which is represented
by Equation (7). The low single-pass conversion of reactants is usually circumvented by
recycling at least 90% of the unconverted gas, which enhances overall carbon efficiency.
The typical flowsheet of the synthesis loop is shown in Figure 5 [40]. Carbon monoxide
is believed by some as also susceptible to direct conversion to methanol, following the
reaction shown in Equation (8); however, there is experimental evidence from tests with
carbon isotope 14 in syngas indicating that the CO has to be converted to CO2 prior to
methanol formation [41,42]. Nevertheless, kinetic modelling of methanol synthesis has
been approached in the literature regarding diverse hypothetical mechanisms. In this sense,
kinetic models applicable for CO2 hydrogenation over commercial methanol catalysts can
be found in recent studies [43].

CO2 + 3H2 ⇌ CH3OH + H2O (6)

CO2 + H2 ⇌ CO + H2O (7)

CO + 2H2 ⇌ CH3OH (8)

Methanol formation equilibrium is favored by higher pressure and lower temperature.
However, pressure increase leads to a trade-off between product yield and operating cost,
and operation below 220 ◦C makes it difficult to overcome the activation energy of CO2
conversion given its stability, requiring development of better catalysts [44]. In this sense,
Figure 6 shows the effect of varying operating conditions on the reaction performance of
CO2 hydrogenation to methanol, where lower temperatures are unveiled to also benefit
methanol selectivity. Alternatively to conventional gas-phase synthesis, other technologies
have been developed. An example is to perform in situ distillation to improve the yield by
water removal [42] and to employ supersonic separators in the synthesis loop [45].
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CO2 hydrogenation to methanol has been carried out through different methods, in-
cluding heterogeneous and homogeneous catalysis, in addition to less common approaches
like photocatalysis, electrocatalysis, and enzymatic catalysis [47]. All these catalytic meth-
ods are well described and compared in a recent review work [47]. CO2 hydrogenation cat-
alysts usually contain copper or a noble metal as the active species, often being a bimetallic
and/or a hybrid oxide catalyst. Copper catalysts for this application are usually associated
to ZnO with Al2O3 as a supporter, which improves the dispersion of active sites over the
surface. Also, ZrO2 addition offers greater mechanical and thermal stability, and it is often
coupled to copper for CO2 hydrogenation to methanol. Its hydrophilicity and large specific
surface area improve its performance compared to the conventional catalyst formulation
utilized for syngas conversion (Cu/ZnO/Al2O3). Research has shown that it is possible to
achieve good methanol selectivity by using Ga2O3, La2O3, Y2O3, and MgO promoters [39].
Promoters play a crucial role as one of the major components, alongside the active metal
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and the support. While the promoter itself may not participate in the desired reaction, it
significantly influences the catalyst’s active components. This influence can manifest in
facilitating the reaction or reducing the production of unwanted byproducts. Consequently,
the use of promoters enhances both the catalyst’s activity and the selectivity of the resulting
product. There are two main types of promoters: structural and electronic. Structural
promoters, considered inert, stabilize the catalyst under conditions that prevent sintering
of active catalyst particles. On the other hand, electronic influencers increase the electronic
density of the catalyst’s active portion, by either increasing or decreasing the number of
active metals [48,49]. Recent review works from Din et al. [48] and Azhari, N. J. et al. [49]
cover this topic. Several types of catalysts and promoters and their behavior from the
mechanism point of view are reviewed in both works. The authors provide an in-depth
discussion about the influence of the promoters on this catalytic process.

The water generated by CO2 hydrogenation (Equation (6)) may lead to sintering and
rapid agglomeration of a copper catalyst, thus reducing its activity. In contrast, noble
metals (e.g., Pd, Au) are more stable and resistant to sintering, while being alternatives to
copper and capable of ensuring good catalytic performance. These catalysts also involve
the use of promoters: palladium uses ZnO, Ga2O3, CeO2, and/or SiC, while gold catalysts
use ZnO, TiO2, ZrO2, TiC, and/or CeOx. The use of ZnO allows much higher selectivity
for methanol.

The preparation of the catalyst is important to ensure large surface density and good
distribution of the active sites, for the best reaction performance. Several preparation meth-
ods have been considered on a lab scale, with the classical method being co-precipitation
of components with hydroxides (or carbonates) or another precipitating agent, which is
followed by washing, filtration, drying, calcination, and grinding [50]. A further technique
largely adopted in the literature is impregnation. In addition to the catalysts mentioned
above, other types have shown good catalytic activity for CO2 hydrogenation. These
are mostly oxides (e.g., In2O3/ZrO2, MnOx/m- Co3O4, ZnO- ZrO2) [46]. Table 2 gives
a summary of the type of catalysts, their preparation method, synthesis conditions, and
performance.

Table 2. Catalysts for CO2 hydrogenation to methanol: methods of preparation, synthesis conditions,
and their yields. Adapted with permission from [46,47].

Catalyst Preparation Temperature (◦C) Conversion (%) Selectivity (%)

Cu/ZnO/Al2O3 [51] Physical mixture 270 10.9 72.7
Cu/Zn/Ga/SiO2 [52] Co-impregnation 270 5.6 99.5

Cu/Ga/ZnO [53] Co-impregnation 270 6.0 88.0
CuZnGa-LDH [54] AMOST * 270 ≈20 ≈49

Cu@ZnOx [55] Precipitation 250 2.3 100
Cu/Zn/Al/Y [56] Co-precipitation 250 26.9 52.4

Cu/ZnO/ZrO2 [57] Inverse co-precipitation 240 17.5 48.4
Cu/Zn/ZrO2 [58] Combustion Glycerine-Nitrate 220 12.0 71.1
Cu/Zn/ZrO2 [59] Combustion Urea-Nitrate 220 5.8 72

Cu/Ga2O3/NC ZrO2 [60] Deposition-precipitation 250 13.7 75.6
Cu/ZnO/ZrO2/Ga2O3 [61] Co-precipitation 250 - 75
Cu/ZnO/ZrO2/Ga2O3 [61] Complexation with citrate 220 - 70

Ga-Cu-ZnO- ZrO2 [62] Co-precipitation 250 22 72
Cu-ZnO-ZrO2 [63] Inverse co-precipitation 240 9.7 62
Cu-ZnO-ZrO2 [64] Co-precipitation with oxalate 240 9 -
Cu-ZnO-ZrO2 [65] Co-precipitation with surfactants 240 12.1 54.1

Cu/ZrO2 [66] Deposition-precipitation 240 6.3 48.8
La0.8 Zr0.2 Cu0.7 Zn0.3 Ox [67] Sol-gel 250 12.6 52.5

CuZn@UiO-bpy [68] In situ reduction 250 3.3 100
Pd/Al2O3/ZSM-5 [69] Co-precipitation 260 16.9 2.1
Pd/ZnO/Al2O3 [70] Deposition-precipitation 180 29 79.4

PdZn-400 [71] Pyrolysis Pd@ZIF-8 270 15.1 56.2
Pd/on Ga2O3 [72] Impregnation 250 17.3 51.6
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Table 2. Cont.

Catalyst Preparation Temperature (◦C) Conversion (%) Selectivity (%)

Pd/Zn/CNTs [73] Impregnation 250 6.3 99.6
Pd/In2O3 [74] Impregnation 300 20 70
Au/ZnO [75] Deposition-precipitation 240 0.3 82

Pd-Cu/SBA-15 [76] Impregnation 250 6.5 23
Pd-Cu/SiO2 [76] Impregnation 250 6.6 34

PdZnAl [77] Co-precipitation 250 0.6 60
NiGa SiO2 [78] Impregnation 200 - -

Cu11In9—In2O3 [79] Co-precipitation 280 11.4 80.5
In2O3/ZrO2 [80] Impregnation 300 5.2 99.8
ZnO/ZrO2 [81] Co-precipitation 320 10 91
Ga2/ZrOx [82] Co-precipitation 300 12.4 80

Cu-ZnO/Al2O3 [83] Co-precipitation 260 65.8 77.3
Pd/ZnO [84] Sol-immobilization 250 10.7 60

h-In2O3-R [85] Precipitation 300 6.7 99.5
CuZn [86] Pseudo Sol-Gel 280 14.0 53

FL-MoS2 [87] - 180 12.5 94.3
Co@Si0.95 [88] Co-precipitation 320 11 54

* AMOST = Aqueous miscible organic solvent treatment.

Good catalytic performances have also been observed in homogeneous catalysis, in
particular with the use of noble metals (e.g., based on Ru and Ir), but the high cost of these
components has aroused research on Co-, Fe-, and Mn-based homogeneous catalysts that
are active at temperatures as low as 100 ◦C. Complexes of metals and phosphines form the
pre-catalysts, with an example being [Ru(tdppcy)(C(CH2)3)] [47]. The reaction then takes
place at nearly ambient temperature and at high pressure (≈60 bar).

5. Methanol to Formaldehyde Oxidation Unit

Currently, the industrial production of formaldehyde occurs via catalytic partial
oxidation of methanol. However, the first production of formaldehyde from methanol
was made with a high temperature process (600 ◦C) using a silver catalyst without oxygen
supply following the following Reaction (9):

CH3OH → CH2O + H2 (9)

Since the process is highly exothermic, temperature control is key to ensure good
selectivity, so the reactors are typically designed with circulation of saturated water for
generation of high-pressure steam, usually with the reaction occurring within tubes filled
by the catalyst [89]. The catalyst choice is crucial because other reactions in parallel and in
sequence can occur, reducing selectivity to formaldehyde formation. The overall desired
reaction is presented in Equation (10), and two other secondary reactions are shown in
Equations (11) and (12) [90]. Research has been carried out to develop a stable catalyst
capable of producing formaldehyde with relatively high yields at lower temperatures [90].

CH3OH + 0.5O2 → CH2O + H2O (10)

CH3OH + 0.5O2 → CH2O + H2O (11)

CH2O + O2 → CO2 + H2O (12)

Currently, three industrial processes are commercially available for producing
formaldehyde from methanol: BASF, ICI-silver, and FORMOX [91]. Both BASF and ICI
employ a fixed bed of silver-based catalysts, which operates at atmospheric pressure with
a large excess of methanol. The operating temperature is higher in the BASF process
(650–720 ◦C) [92], where methanol conversion can reach 98%. The ICI-silver process oper-
ates at 600–650 ◦C and has a lower methanol conversion of 77–87%, requiring recycling of
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unconverted reactant (recovered by distillation). The yields are 86.5–90.5% and 87–92% for
the BASF and the ICI-silver processes, respectively.

The problem of high reaction temperature required by silver catalysts makes it more
difficult to control the advance of oxidation reactions and also minimizes bed lifetime (i.e.,
due to catalyst sintering and aggregation) [93]. To overcome these issues and improve
plant performance, an iron-molybdenum catalyst active at 250–400 ◦C was developed [49],
being capable of reaching a yield of 88–92% [91] with a methanol conversion of 98–99%. It
substantially outperforms older high-temperature silver catalysts, whose yield is around
86%. The catalyst is the main working basis of the FORMOX reactor, which comprises
a fixed bed operated with methanol excess at 250–400 °C and at atmospheric pressure.
The product gas is cooled and sent to water-scrubbing to separate formaldehyde from
the gaseous phase. The bottom product is aqueous formaldehyde 37–55%w with <1%w
methanol [94]. A typical flowsheet of this process is given in Figure 7. The FORMOX
process has become the new standard for formaldehyde production and is already widely
used in the industry. As a partial oxidation process, the oxygen/methanol ratio is a key
parameter to ensure the control of oxidation reactions. The oxygen content in the reactant
mixture should not be too high—to avoid losing product selectivity and prevent excess
heat generation by oxidation reactions—nor too low—to avoid catalyst deactivation. In this
sense, Figure 8 illustrates the recommended window of operating conditions for oxygen
and methanol contents in the reactor inlet [95].
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Beyond iron molybdate and silver, other active species have been tested. For instance,
good catalytic activity was also unveiled with the use of alloys Zr(MoO4)3 and Ce2(MoO4)3.
Performance comparison with the standard FORMOX formulation is shown in Figure 9a,
where formaldehyde yield is presented as a function of methanol conversion [96]. Similarly,
interesting catalytic properties in using vanadium associated to different elements were also
shown in the literature, as shown in Figure 9b [96], where FeVO4 and AlVO4 catalysts were
evidenced as capable of reaching 76–87% of selectivity to formaldehyde when methanol
conversion is above 50% (on the other hand, other metal catalysts associated with vanadium
show a more or less low catalytic activity for oxidation).

The preparation of the catalyst and the quantity required is linked to operating condi-
tions, design type, and specificities of the reactor used in the process, thus affecting capital
investment and catalyst reposition costs. Improper preparation method and unnecessarily
large amounts encumber the process and may entail long-term losses by active surface re-
duction as a result of abrasion, fragmentation, and deactivation. The preparation method is
critical for yielding a material with good resistance to mechanical stresses. The most widely
used preparation method of catalysts for industrial scale applications is co-precipitation.
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A common procedure of this type to prepare formaldehyde catalysts of iron molybdate
is to mix ammonium heptamolybdate with an aqueous solution of FeCl3. The mixture
forms a precipitate, which is filtered and calcined after washing at 400–450 °C. The product
comprises MoO3 crystals (surface area 5–8 m2/g) and an Fe2(MoO4)3 catalyst, which is
applicable to formaldehyde production.
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Some drawbacks of the co-precipitation method are the relatively high cost of reagents,
high water consumption, the considerable release of gas in the form of impurities, and
the relatively small surface area, which results in a shallow rate of reoxidation of the
spent catalyst [97]. Thus, research has been carried out to overcome the limitations of
co-precipitation. For instance, the sol-gel approach has been proposed [98], offering the
advantage of low temperature preparation, which avoids the volatilization of molybdate,
ensuring good distribution/dispersion of MoO3 on Fe2(MoO4)3. While it is capable of
reasonable selectivities, the activity is much lower than that of the co-precipitation catalyst,
and its mechanical strength is also inferior.

In addition to these methods, research on catalyst preparation by hydrothermal meth-
ods has emerged [99]. The iron solution and molybdate are thermally treated at 150 ◦C in
an autoclave reactor. The catalyst is obtained without calcination after washing, filtering,
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and drying. However, the resulting catalyst shows instability at higher temperatures (from
250–300 ◦C), and its surface can be easily changed. Alternatively, the mechanochemical
preparation of iron molybdate catalysts has been developed [100]. The method is much
simpler to implement compared to co-precipitation. Indeed, it does not use any solvents.
The preparation is performed in a mill, giving the outlet a circular catalyst and allowing it
to reach a selectivity of 97.56%. However, the crystals are not uniform, and the grinding
time is much longer (about 2 h).

Recently, a mixing/evaporation technique was developed [97] to prepare the catalyst.
Ammonium molybdate is dissolved in water before the addition of iron nitrate powder
(dropwise). The catalyst is obtained after evaporation, drying, and calcination. In order
to reduce the preparation temperature, other methods were developed, such as grinding
and centrifugation of molybdic acid and iron oxalate [101]. Given what is presented, it
can be deduced that a large number of physicochemical preparation methods have been
developed for the iron molybdite catalyst. Each technique has its advantages and disadvan-
tages, but co-precipitation remains dominant in industrial applications. Determining the
iron/molybdate ratio is vital in defining the active phase of the catalyst. For this purpose,
Söderhjelm and colleagues dispersed Mo on Fe2(MoO4)3 and estimated that the catalyst has
an active phase when the Mo/Fe ratio = 1.7 [95]. The authors showed that the Mo/Fe ratio
strongly affect the conversion of the methanol. The highest conversion was observed for the
lowest Mo/Fe ratio (55% for the 0.2 ratio). The Mo/Fe ratio permitted also to obtain highest
specific surface area (55.4 m2/g for 0.2 ratio). However, as expected highest conversion
does not permit to obtain high selectivity to formaldehyde. In this case the best results was
observed at low conversion (90% selectivity for the Mo/Fe ratio of 2.2 at 256 ◦C) [95].

6. Formaldehyde Carbonylation to Glycolic Acid

The flowsheet of a carbonylation process for glycolic acid production is shown in
Figure 10 [32] In the reactor, formaldehyde undergoes carbonylation in the presence of
an acid catalyst to produce the glycolic acid. The most relevant reactions in this regard
are shown in Equations (13)–(15), which represent the desired synthesis of glycolic acid,
the overall secondary reaction of dimer formation from formaldehyde and CO, and the
dimerization of glycolic acid (another secondary reaction). Aqueous formaldehyde solution
is fed to the synthesis loop together with carbon monoxide, and the mixture is preheated to
the reactor inlet temperature before entering the reactor. The reaction products are then
separated in a flash, where the raw product is recovered. A major part of unreacted tail-gas
from the synthesis loop high-pressure drum is recirculated in the process. The condensed
liquid (glycolic acid concentrated liquid) is fed to a distillation column to separate the water
from reaction products. The glycolic acid solution has a mass fraction of approximately
81%. This solution is then fed into a crystallizer, forming a liquid–solid mixture. Finally, a
centrifugal filter collects the solid glycolic acid after solid–liquid separation [32].

CH2O + H2O + CO → HOCH2COOH (13)

2CH2O + H2O + 2CO → HOCH2COOCH2COOH (14)

2HOCH2COOH → HOCH2COOCH2COOH + H2O (15)

The control of the operating conditions and the use of a suitable catalyst is essential to
conversion of formaldehyde with good selectivity to glycolic acid. Early processes for this
route used to employ sulfuric acid [102]. DuPont started commercial production of glycolic
acid as an intermediary in the production of ethylene glycol. This production process
operated from 1940 to 1968. In this process, the formaldehyde was produced from syngas,
and the catalyst was H2SO4; the temperature was higher than 200 ◦C, and the pression
higher than 60 MPa. In 1974, Chevron submitted a patent in which they proposed a process
to produce glycolic acid. They were able to propose a process with a lower temperature
when compared to the DuPont process, since the higher temperature reported in the patent
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was 50 ◦C. They could reduce the pressure of the process compared to DuPont’s process,
but they also struggled with the high-pressure demand of the process, which varied from
6.9 MPa to 13.8 MPa [103]. Table 3 presents the main catalysts reported in the literature
used to produce glycolic acid from formaldehyde.
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Table 3. Catalysts used to produce glycolic acid.

Catalyst T P X S Y Ref.

H2SO4 204–220 ◦C 64.1 MPa - - 89.3% [104]
Nickel iodide on silica gel 200 ◦C 59.6 MPa 42.5% - - [105]
Cobalt iodide on silica gel 215 ◦C 60.2 MPa 34.0% - - [105]
Ferrous iodide on silica gel 230 ◦C 60.6 MPa 25.9% - - [105]

HF 50 ◦C 6.9 MPa 100% 94% * 94% [106]
30% Cs2.5H0.5PW/USY 120 ◦C 40 MPa - - 75.6% [107]
30% H3PW12O40/USY 120 ◦C 40 MPa - - 79.8% [107]

H3PW12O40 120 ◦C 3 MPa - - 82% [108]
PDS-1.0 120 ◦C 6.0 MPa 99.9% 68.8% * 68.8% [109]

PDS-1.0-F 120 ◦C 6.0 MPa 99.9% 91.2% * 91.2% [109]
CF3SO3H 120 ◦C 6.0 MPa 99.8% 94.8% * 94.8% [109]

PdO/ZSM-5 130 ◦C 4 MPa 50.2% - - [110]
PtO/ZSM-5 130 ◦C 4 MPa 50.3% - - [110]

Ru2O3/ZSM-5 130 ◦C 4 MPa 50.2% - - [110]
Rh2O3/ZSM-5 130 ◦C 4 MPa 50.2% - - [110]

* Selectivity calculated based on the conversion and yield results.

The optimal acidity of a catalyst for formaldehyde carbonylation is a delicate balance
between their nature and strength. Too-strong acidity may lead to undesired side reactions
or catalyst deactivation, while insufficient acidity can hinder the formation of crucial inter-
mediates. Catalysts with tailored acidity profiles can enhance the selectivity and efficiency
of glycolic acid production. Researchers in the field are actively exploring various catalyst
formulations, including supported metal catalysts and mixed metal oxides, to fine-tune
the acidity and achieve better control over the carbonylation process. Understanding the
impact of acidity on the catalytic performance is essential for advancing the development
of efficient and selective catalysts for the sustainable synthesis of glycolic acid. As can
be seen from Table 3, the high yields of glycolic acid (up to 80%) were obtained using
supported heteropolyacids on zeolites. High activity and yield for glycolic acid were
also observed using polymer-based catalysts modified with sulfonic groups. The grafted
sulfonic groups presented lower density of the acid sites but much stronger sites, yielding
95% glycolic acid compared to 68.8% obtained in the case of the non-modified sample.
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Noble metal oxides such as PdO, Rh2O3, and Ru2O3 were also tested, but the conversion
was much lower (50%) than for the strong acid catalysts (almost 100% in the case of PDS
catalysts). Even the incorporation of ZSM-5 did not result in high yields. The nature of the
acid sites is crucial. Sulfonic groups have strong Brønsted acidity, while ZSM-5 presents
Brønsted–Lewis acidity. In the case of supported metal oxides on ZSM-5, one could expect
the increase of the Lewis acidity, as highly dispersed PdO can be anchored on the ZSM-5
surface through the interaction between PdO and Brønsted acid sites. This could explain
the low activity of these materials.

7. Conclusions

In this work, indirect production of glycolic acid from H2 and CO2 was discussed
regarding existing technological alternatives, their operating conditions, and the characteris-
tics of the involved catalysts in the overall process, which comprises the following sections:
CO2 capture, H2 production from water electrolysis, CO2 hydrogenation to methanol,
selective methanol oxidation, and formaldehyde carbonylation to glycolic acid. All steps
are presented in a combined flowsheet in Figure 11.
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The choice of the method for CO2 capture depends on the characteristics of the fuel
and exhaust gas from combustion, where abatement costs are expected to increase with
reduced carbon content and lower gas pressure. Post-combustion chemical absorption
is usually better for CO2 at low partial pressure, pre-combustion allows in situ genera-
tion of H2—eventually dismissing electrolysis and even the capture of CO2 from syngas,
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thus being advantageous to couple methanol production to power generation—and oxy-
combustion is best suited to high carbon contents (e.g., biomass as energy resource), dis-
pensing CO2 separation in exchange for oxygen production. Regarding water electrolysis,
proton exchange membrane technology using noble metals in the electrodes appears as
the most promising for deployment within a short- to medium-term horizon—given the
relatively high energy efficiency and TRL of 6–7—being capable of producing pure green
hydrogen (up to 99.99%v) from wind and solar energy. CO2 hydrogenation to methanol
adopts a similar process of conventional plants on the synthesis loop and product purifica-
tion, demanding small changes in the reactor catalyst—due to low carbon monoxide and
greater H2O content—to enhance product yield.

The catalyst of CO2 hydrogenation can be of a similar type to that of conventional
methanol synthesis, which is usually essentially Cu/ZnO/Al2O3 prepared by co-precipitation
with the addition of promoters; zirconia addition has been shown to be particularly ad-
vantageous for this application. The selective oxidation to formaldehyde is carried out
preferentially through the FORMOX route over iron molybdate catalysts (Mo/Fe ratio
1.7) at 250–400 ◦C and at atmospheric pressure, with strict control of air injection, which
allows reaching high yields (88–92%). Finally, the carbonylation of formaldehyde can be
approached over polymer-modified resins (PDS, Table 3), reaching almost 95% glycolic
acid yield at 120 ◦C and 6 MPa.

Individually, an estimation of the TRL levels for the individual steps in this complex
CO2-to-glycolic acid process can be done: (i) CO2 capture with amines is estimated to be
at TRL level of 8. This is already well-established technology for CO2 capture in various
industries, including power plants; (ii) CO2 hydrogenation to methanol is considered to
be at TRL level of 7. CO2 hydrogenation to methanol using CuZnAl-type catalysts is a
technology with a relatively high TRL. Pilot-scale demonstrations contribute to its maturity;
(iii) Methanol oxidation to formaldehyde has seen significant progress, but it may not be
as mature as the previous steps. Research and development efforts, including catalyst
improvements, have elevated its TRL to 6, but larger-scale implementations are needed for
further maturity; (iv) formaldehyde carbonylation to glycolic acid is likely at a lower TRL
(5) compared to the previous steps. While there are established processes for formaldehyde
carbonylation, optimizing and scaling up the process for glycolic acid production may still
require additional research and development. However, it is important to note that these
TRL estimates are generalizations and can vary based on the specific technologies, catalysts,
and processes employed in each step. Actual TRL levels may be influenced by the specific
advancements achieved in ongoing research and development projects in the field of CO2
valorization.

Future studies can contribute to advancing the state of the art in glycolic acid produc-
tion from CO2, fostering sustainability and efficiency in this important chemical synthesis
process. It is important to focus on optimizing CO2 capture techniques, considering the
specific characteristics of different fuel sources and exhaust gases. Exploring advanced
capture technologies and evaluating their economic feasibility under various conditions
would enhance the overall efficiency of the glycolic acid production process. The hydro-
genation of CO2 requires huge quantities of hydrogen. Research efforts should delve into
advancing water electrolysis technologies, particularly exploring alternative materials for
electrodes and catalysts. Investigating novel electrocatalysts and materials could contribute
to improving the energy efficiency and sustainability of the proton exchange membrane
technology. In the field of CO2 hydrogenation, the studies on catalyst development should
focus on enhancing the performance and stability of catalysts, specifically exploring the
role of promoters and alternative compositions. Investigating innovative catalyst design
strategies may lead to improved yields and process efficiency. Researchers may also ex-
plore alternative pathways for methanol synthesis that diverge from conventional plants.
Investigating innovative approaches to the synthesis loop and purification processes could
contribute to process intensification and increased methanol production efficiency. One of
the most challenging steps in this process is the selective oxidation of methanol to formalde-
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hyde. This process plays a crucial role in the overall glycolic acid synthesis. Future studies
could focus on developing advanced catalytic systems and exploring new catalyst for-
mulations or modifications that enhance selectivity, yield, and operational stability. In
addition, new studies on direct photocatalytic conversion of CO2 to formaldehyde are also
in progress. This could remove one step from the overall CO2-to-glycolic acid process.
Further investigations into the carbonylation of formaldehyde could aim to achieve a
deeper understanding of the underlying processes. Exploring alternative catalysts, reaction
conditions, and process intensification techniques may lead to improvements in glycolic
acid yield and purity. The main progress could be made in the integration of this complex
process. Future research could explore the integration of individual process steps to achieve
a more streamlined and efficient overall glycolic acid production process. Investigating
synergies between different stages and optimizing the overall process flow could lead to
higher productivity and reduced energy consumption. Consideration of sustainable and
renewable feedstocks, such as biomass-derived sources, could be explored to further align
the glycolic acid production process with green and circular economy principles. Assessing
the feasibility and environmental impact of alternative feedstocks would contribute to the
sustainability of the entire process.

What is still missing in the literature is comprehensive economic and technological
feasibility analyses for the entire glycolic acid production process, considering different
scenarios and scales; this would provide valuable insights for industrial implementation.
Evaluating the economic viability of each process step and identifying potential bottlenecks
can guide further optimization efforts.
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