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Kernelizing: A way to increase accuracy in trilinear decomposition analysis 
of multiexponential signals 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A tensorization approach based on 
convolution of exponential decays is 
proposed. 

• The new Kernelizing approach is able to 
generate trilinear from bilinear data. 

• This new unmixing approach provides 
the pure monoexponential components. 

• Kernelizing can be applied even if a low 
number of sampling points is only 
available. 

• Kernelizing has been tested in simula
tions, experiments and FLIM images.  
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A B S T R A C T   

The unmixing of multiexponential decay signals into monoexponential components using soft modelling ap
proaches is a challenging task due to the strong correlation and complete window overlap of the profiles. To solve 
this problem, slicing methodologies, such as PowerSlicing, tensorize the original data matrix into a three-way 
data array that can be decomposed based on trilinear models providing unique solutions. Satisfactory results 
have been reported for different types of data, e.g., nuclear magnetic resonance or time-resolved fluorescence 
spectra. However, when decay signals are described by only a few sampling (time) points, a significant degra
dation of the results can be observed in terms of accuracy and precision of the recovered profiles. 

In this work, we propose a methodology called Kernelizing that provides a more efficient way to tensorize data 
matrices of multiexponential decays. Kernelizing relies on the invariance of exponential decays, i.e., when 
convolving a monoexponential decaying function with any positive function of finite width (hereafter called 
“kernel”), the shape of the decay (determined by the characteristic decay constant) remains unchanged and only 
the preexponential factor varies. The way preexponential factors are affected across the sample and time modes 
is linear, and it only depends on the kernel used. Thus, using kernels of different shapes, a set of convolved curves 
can be obtained for every sample, and a three-way data array generated, for which the modes are sample, time 
and kernelizing effect. This three-way array can be afterwards analyzed by a trilinear decomposition method, 
such as PARAFAC-ALS, to resolve the underlying monoexponential profiles. To validate this new approach and 
assess its performance, we applied Kernelizing to simulated datasets, real time-resolved fluorescence spectra 
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collected on mixtures of fluorophores and fluorescence-lifetime imaging microscopy data. When the measured 
multiexponential decays feature few sampling points (down to fifteen), more accurate trilinear model estimates 
are obtained than when using slicing methodologies.   

1. Introduction 

The analysis of exponential decay signals is usually performed by 
multiexponential fitting approaches that allow extracting the charac
teristic decay constants and preexponential factors of the different 
monoexponential components [1]. However, multiexponential fitting 
remains difficult due to the high natural correlation among the mono
exponential decays of these individual components and becomes even 
more complex for signals exhibiting a low signal-to-noise ratio [2]. Be
sides, the results obtained can be very user-dependent since selecting the 
correct number of monoexponential components and setting appro
priate initial parameters for the fitting are tasks that require expertise 
and are often based on a trial-and-error approach. 

In this context, factor analysis can constitute a good alternative to 
multiexponential fitting. Indeed, specific chemometric approaches are 
available to solve the unmixing (curve resolution) problem for expo
nential mixtures and have been successfully applied in e.g., Nuclear 
Magnetic Resonance (NMR) [3,4] and Time-Resolved Fluorescence 
Spectroscopy (TRFS) [5–7]. Among these approaches, PowerSlicing [8] 
is a method aimed at resolving mixtures of monoexponential decays, 
based on (i) the reorganization of the collected dataset into a three-way 
data array by a so-called slicing approach and (ii) the subsequent 
application of Parallel Factor Analysis-Alternating Least Squares (PAR
AFAC-ALS) [9]. From a broad perspective, data slicing can be considered 
a tensorization approach [10] which consists of splitting the exponential 
decays of a data matrix, say D, into several equally sized slabs or “slices” 
covering different signal time ranges separated by a certain lag. The 
slices obtained are afterwards rearranged into a three-way data array D, 
to which a trilinear decomposition method is applied (see Fig. 1A). 
Trilinearity offers the advantage of uniqueness, being trilinear models 

more robust to noise and less affected by the choice of the initial esti
mates as long as the datasets analyzed have full rank [9,11]. These 
properties enhance significantly the capacity for unmixing multi
exponential signals even in conditions of complete window overlap and 
high correlation among profiles. However, methodologies like Power
Slicing usually require that the measured signals encompass many 
sampling points (hundreds), so that the slicing procedure can be effi
ciently performed returning accurate results. In real scenarios where the 
exponential signals would consist of a few tenths of sampling points, 
results could be much less accurate or even incorrect. 

In this work, we propose an alternative approach, called Kernelizing, 
to tensorize multiexponential signals characterized by only few sam
pling points. Kernelizing exploits the following invariance property of 
exponential functions, i.e., when convolving a monoexponential 
decaying function with any positive function of finite width (hereafter 
called “kernel”), the shape of the monoexponential decay (determined 
by the characteristic decay constant) remains unchanged and only the 
preexponential factor varies. This approach provides a new way to build 
three-way data arrays from the measured two-way data matrices of 
decay curves. To do this, each measured exponential decay (each row of 
the data matrix) is convolved with a set of different kernels, yielding 
new signals for which the decay constants of the individual mono
exponential components are unchanged and only the corresponding 
preexponential factors are modified, but preserving the relative pro
portion of the components across the samples analyzed. Such an oper
ation yields the “slices” needed to build a three-way trilinear data array 
from the original bilinear data to which a trilinear data decomposition, 
such as PARAFAC-ALS, can be applied to extract decay constants and 
concentration profiles of individual components (see Fig. 1B). 

Both PowerSlicing and Kernelizing generate slices that are arranged 

Fig. 1. Multilinear decomposition of exponential signals A) Slicing allows tensorizing a bilinear dataset into a trilinear dataset obtained by the selection of slices of 
the original decay separated by certain lags. B) Kernelizing allows tensorizing a bilinear dataset into a trilinear dataset convolving the original signals with a set 
of kernels. 
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in a three-way data array. However, the substantial difference between 
PowerSlicing (or other methodologies based on data lagging) and the 
Kernelizing approach is that the latter can provide a three-way array 
with an unlimited number of slices (as many slices as the number of 
kernels used), whereas PowerSlicing can only work with a limited 
number of slices, defined as a function of the total number of data points 
resulting from the sampling of the measured exponential signals. Such a 
difference becomes crucial when working with exponential signals with 
a low number of sampling points, a scenario in which Kernelizing im
proves significantly the accuracy and precision of the monoexponential 
profiles resolved. 

To assess the performance of the proposed approach, several datasets 
simulated considering mixtures of monoexponential decays with 
different numbers of sampling points were studied. To complement 
these simulations, TRFS datasets were also investigated. TRFS is a well- 
established spectroscopic technique aiming at measuring the emission 
decay of a fluorophore in the picosecond to nanosecond timescale for the 
characterization of its lifetime (decay constant) [5]. Fluorescence life
time is fluorophore-specific, dependent on the physicochemical envi
ronment probed, and provides valuable information about the sample. A 
real dataset was obtained gathering measurements performed on mix
tures of known composition of ATTO fluorophores in solution using 
Time Correlated Single Photon Counting (TCSPC), a TRFS-based tech
nique. Both PowerSlicing and Kernelizing were applied to the simulated 
and the TCSPC datasets (for which the ground truth solutions were 
known) to illustrate the benefits of the new approach proposed. Finally, 
the potential of Kernelizing was tested on a challenging real example of 
Fluorescence-Lifetime Imaging Microscopy (FLIM) [12], another 
TRFS-based technique widely used in the bioimaging field [13]. 

Although all the case-studies presented involve TRFS measurements, 
the results and conclusions inferred can be generalized to any analytical 
signal following a multi-exponential decaying behavior. 

2. Datasets and software 

The Kernelizing methodology was tested on simulated and experi
mental TRFS datasets. All datasets are representative of challenging 
scenarios for curve resolution approaches (high correlation among 
decay profiles, no selectivity, i.e., absence of subwindows with pure 
channels in either the concentration or the decay direction, and signif
icant amount of Poisson-structured noise). The simulated dataset 1 
consists of a set of multiexponential decay curve signals sampled at 500 
time points (columns of the data matrix). The simulated dataset 2 con
sists of the same signals sampled at 50 points. The simulated dataset 3 
consists of the same signals, with only 15 sampling points. The ATTO 
experimental dataset contains exponential decay curves of known mix
tures of fluorescence dyes, originally sampled at 1500 time points. 
Finally, the ConvM dataset corresponds to a real FLIM image of a Con
vallaria Majali, for which pixel decay curves were sampled at 16 time 
points only. Further details about each dataset are given below. It should 
be noted that all datasets are full-rank. 

2.1. Simulated dataset 1 

Three pure monoexponential decays were simulated with decay 
constants of 0.8 ns, 1.4 ns and 2.4 ns, respectively, and with 500 equi
spaced sampling points. The three pure exponential profiles were 
organized in a matrix sized 3 × 500. These profiles show strong corre
lation with complete window overlap, i.e., all the pure monoexponential 
decays have a correlation coefficient ≥0.9 among them and cover the 
full time range concerned. A total of 200 mixtures with different 
composition were simulated to build a concentration matrix, sized 200 
× 3. The two-way dataset 1 (200 × 500) of multiexponential decay 
curves was generated by matrix multiplication of the concentration and 
pure monoexponential decay matrices. All samples have a significant 
contribution of the three components, resulting in a non-trivial unmix
ing problem, since no pure sample for any component exists. Poisson 
noise was added representing approximately 10.0% of the global signal. 

2.2. Simulated dataset 2 

As for dataset 1, three pure monoexponential decays with constants 
of 0.8 ns, 1.4 ns and 2.4 ns were used. However, in this case, they were 
downsampled (the total time range covered was unchanged) and only 50 
sampling points were considered , which resulted in a pure profile 
matrix sized 3 × 50. The concentration matrix, sized 200 × 3, was 
identical to the one exploited for dataset 1. The dataset 2, sized 200 ×
50, was generated by matrix multiplication of the concentration and 
pure monoexponential decay matrices. Poisson noise was added repre
senting approximately 5.0% of the total signal. 

2.3. Simulated dataset 3 

The same pure monoexponential decays as for dataset 1 and 2, with 
constants of 0.8 ns, 1.4 ns and 2.4 ns, were used; however, only 15 
sampling points were now considered. The concentration matrix was left 
unchanged. The resulting dataset 3, sized 200 × 15, was obtained as 
described before and Poisson noise was added representing approxi
mately the 4.5% of the total signal. 

2.4. Time Correlated Single Photon Counting (TCSPC) data of ATTO 
fluorophores 

Seven mixtures were prepared using solutions of three commercial 
dyes (ATTO 647, ATTO 655 and ATTO 665 from ATTO-TEC GmbH, a. r.) 
at the volume ratios listed in Table 1. Standard solutions of pure dyes 
were prepared in phosphate buffer solution (PBS) at pH 7.4 with a 
concentration of 5⋅10− 7 M. 

All TCSPC measurements were performed using a PicoQuant TCSPC 
system with a FluoTime 200 spectrometer equipped with a picosecond 
laser diode emitting at 640 nm with a pulse width <90 ps full width at 
half-maximum (FWHM) and a repetition rate of 8 MHz. 

A microchannel plate photomultiplier tube (MCP-PMT) connected to 
a TCSPC system (TimeHarp260, time precision 20 ps, dead time 25 ns) 
with a bin time of 25 ps was used for detection. The instrumental 
response function (IRF) of system (75 ps FWHM) was measured using a 
nonfluorescent scattering solution (LUDOX colloidal silica solution). 
Measurements stopped when the maximum reached 10 000 counts. The 
signals were recorded at 700 nm using a band pass filter with a 4 nm 
band pass, which resulted, after cropping the non-exponential signal 
portion originated from the IRF, in a TRFS data matrix composed of 
seven fluorescence decay curves in the range 0–20 ns with 1500 time 
points each. Thus, the experimental ATTO dataset is sized 7 × 1500 and 
does not contain any pure sample. In addition, a second dataset with 
fewer sampling points was built by sampling the ATTO dataset decay 
curves once every 100 points. The reduced dataset obtained is sized 7 ×
15. 

To assess the accuracy of the results obtained from the analysis of the 

Table 1 
Composition of each analyzed mixture (expressed as volume ratios of standard 
solutions of pure dyes).  

Mixture ATTO 647 N (v/v) ATTO 655 (v/v) ATTO 665 (v/v) 

1 1/3 1/3 1/3 
2 4/6 1/6 1/6 
3 1/6 4/6 1/6 
4 1/6 1/6 4/6 
5 5/12 5/12 2/12 
6 2/12 5/12 5/12 
7 5/12 2/12 5/12  
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mixtures, the fluorescence decays of the pure solutions of ATTO 655, 
ATTO 665 and ATTO 647N were measured and fitted by a mono
exponential decay to retrieve an estimate of the ground-truth lifetimes 
(1.9 ns, 2.9 ns and 3.5 ns, respectively). 

2.5. ConvM dataset 

The ConvM dataset was generated from a FLIM image of Convallaria 
Majali acquired by G. Williams et al. [12]. Instrumental details are 
available in the original reference. In FLIM, for a given spectral channel, 
a multiexponential fluorescence decay is provided for each pixel. The 
resulting dataset is, therefore, a hypercube of four dimensions, sized 256 
× 256 pixels × 512 spectral channels × 16 time points. For every pixel, 
the spectral dimension of the FLIM image was integrated by summing 
the intensity values of all the spectral channels at each time point in 
order to analyze only the time dimension and increase the 
signal-to-noise ratio. This operation provided a FLIM image of 256 ×
256 pixels and 16 time-sampling points, with a decay curve associated to 
every pixel. The first 30 columns of pixels were cropped because the 
related signal was saturated. In addition, time channels 1 to 3 and 14 to 
16 were removed because they presented a non-exponential behavior. 
After cropping, the final size of the image was 256 × 227 pixels × 11 
sampling points. The related unfolded convallaria dataset had size 58 
112 × 11. 

2.6. Software 

All in-house routines, scripts and analyses generated for the Ker
nelizing approach were performed using MATLAB 2021 (The Math
works, Inc., Natick, MA). PowerSlicing was adapted from Engelsen et al. 
[8]. The N-Way331 toolbox [14] was used for PARAFAC-ALS analysis. 

For all analyses, the PARAFAC-ALS convergence criterium was set as 
10− 10%, this small value being justified by the high correlation of the 
monoexponential profiles to be retrieved. In this scenario, when pure 
profiles are very correlated, a clear change in the decay constants of the 
resolved profiles may result in a very small change in the model re
siduals. Therefore, the algorithm needs more iterations to refine the 
resolved profiles. The analysis was repeated 1000 times adding the same 
amount of Poisson-structured noise in each run for each simulated 
dataset. The results obtained across these multiple runs help in the 
assessment of the accuracy and precision of the solutions obtained. 

3. Data analysis 

Let us consider the dataset D shown in Fig. 1, constituted by a set of 
multiexponential decay curves from different samples, sized I× J 
(samples and number of time-sampling points, respectively). Using 
curve resolution methods and under certain constraints, such as non- 
negativity, the bilinear decomposition of D provides component pro
files (i.e., decay profiles and related sample concentration profiles) with 
direct chemical meaning, identifiable as those of the pure chemical 
compounds present in the samples [15,16]. However, due to the high 
correlation and time overlap among the monoexponential signals of the 
pure components, the bilinear decomposition of the data, even under 
constraints, seldom results in unique solutions, which hinders the 
interpretation of the results [11]. 

As shown in Fig. 1A and B, a two-way dataset of decay curves can be 
transformed into a three-way data array through different tensorization 
approaches. These data arrays or tensors (say, generically, D), follow a 
trilinear model as defined in Eq. (1), [9]. 

D=C(S ⊙ K)
T
+ E Eq. 1  

where D is sized I × J × K and the N-components model is built from the 
data matrices C (I × N), K (K × N), and S (J × N), with ⊙ denoting the 
Khatri-Rao product. The matrix C contains the pure concentration pro

files, S the related pure monoexponential decays and the matrix K is 
related to the way the initial two-way dataset of full decay curves is 
transformed into D. E is the data array of residual variation unexplained 
by the model, sized I× J× K. 

One of the most useful properties of trilinear data factorization is the 
uniqueness of the solutions obtained [9,11]. This property is especially 
useful to resolve datasets formed by mixtures of exponential decay 
curves, with high correlation among them and showing no selectivity. 
To perform the trilinear decomposition of the data array D, Parallel 
Factor Analysis-Alternating Least Squares (PARAFAC-ALS) [9] will be 
used to obtain the trilinear model given by the matrices C, K and S, 
which contain chemically meaningful profiles for the components in the 
system studied. 

A parameter used to assess the fit quality of the PARAFAC-ALS model 
is the lack of fit (LOF) expressed as in Eq. (2). 

LOF (%)= 100 ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ʃi,j,ke2

i,j,k

Ʃi,j,kd2
i,j,k

√

Eq. 2  

where di,j,k is the ijk th element of D and ei,j,k is the residual associated 
with the reproduction of di,j,k by the trilinear model. 

To assess the quality of the final trilinear model, the core consistency 
diagnostic (CORCONDIA) [17] can be used as an indicator parameter. 
CONCORDIA takes values from 100 (perfect fit by a trilinear model) to 
0 or even negative (when the fitted trilinear model is less appropriate). 

Despite the fact that PARAFAC-ALS has been the chosen algorithm in 
this work, it is important to note that the Kernelizing approach would 
increase the accuracy of the solutions provided by any other trilinear 
decomposition method. 

3.1. Tensorization methods: slicing 

Trilinear data arrays can be built from bilinear matrices by 
adequately reorganizing the original data, an example of so-called Data 
Tensorizing [10]. In this context, Pedersen et al. [4] proposed to use a 
slicing methodology to generate trilinear data from bilinear data based 
on the mathematical properties of exponential decays. Later, Power
Slicing [8], which consists of an optimal way to perform such slicing, 
was introduced. PowerSlicing and other slicing techniques exploit the 
invariance of exponential functions taken at different lags (see Eq. (3)): 

Ae−
t+Δt

τ = e− Δt
τ Ae− t

τ Eq. 3  

When the independent variable t is lagged (t+ Δt), the characteristic 
decay time τ of the exponential function (i.e., its shape, e− t

τ) remains 
unchanged, and only the value of the preexponential factor (A) gets 
modified. 

If several slices, lagged Δt from one another, are extracted from the 
same decay (Fig. 1A), they will share the same τ but their respective 
preexponential factors will be different. Thus, linking Eq. (3) with Eq. 
(1), the preexponential factor A is related to the concentration mode (C), 
the e− t

τ term is related to the shape of the monoexponential decay (S) and 
the new preexponential term e− Δt

τ is related to the lag, which is in turn 
linearly related to the signal and becomes the new dimension K. The 
same occurs if the decay curve results from a mixture of exponential 
decays: individual τ are unchanged, but the preexponential factors for all 
the components get modified as previously described. Thanks to this 
mathematical property, slices can be arranged as a three-way data array 
that can be readily decomposed (Eq. (1)). For slicing methodologies, the 
profiles in K describe how the preexponential factors vary over the K 
slices, i.e., they define the lagging effect per component. 

When applying PowerSlicing, we define the number of slices K to 
consider for the tensorization step according to the relation J

2 ≥ 2K− 1, 
being J the number of sampling points of the decays. The size of every 
slice is then J − 2K− 1 +1. For instance, for a matrix built from expo
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Fig. 2. Representation of a multiexponential decay resulting from the contributions of two monoexponential components (preexponential factors of 10 000 and 8000 
and decay constant of 0.5 and 3.1, respectively) convolved with A) a single kernel (the preexponential factors change but the decay constants remain unchanged) and 
B) three kernels, yielding three new signal profiles, each of them characterized by different preexponential factors but the same decay constants. The dotted lines 
indicate the extremes of the convolved signals exhibiting non-exponential behaviors. Only the exponential part of the convolved signals is used for further trilinear 
decomposition analysis. 

Fig. 3. Schematic representation of the Kernelizing approach. Each decay of the matrix D is convolved individually with a set of different kernels. Then, only the 
exponential parts of the resulting curves are kept and gathered into a matrix. After convolving every sample with the aforementioned kernels, a trilinear data array D 
can be built and subsequently analyzed by PARAFAC-ALS. 
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nential signals consisting of 1000 sampling points, nine slices can be 
generated, with 745 points each. If now only 15 sampling points are 
available, only three slices can be obtained, each of 12 sampling points. 
The effect of reducing the number of slices and the number of sampling 
points per slice on the stability of the trilinear model can be dramatic 
when few sampling points are available. 

3.2. Tensorization methods: kernelizing 

Kernelizing provides an alternative approach to generate trilinear 
data arrays from mixtures of monoexponential decay signals. It exploits 
the invariance of exponential functions resulting from the fact that by 
convolving a monoexponential decay function with any positive func
tion (kernel), the preexponential factor gets modified but the charac
teristic decay time remains unchanged. 

An example is shown in Fig. 2A, which illustrates this property. From 
left to right, an exponential signal of 100 sampling points generated 
from the sum of two monoexponential decays is convolved by a given 
kernel, with a width of 15 points. Once cut at the beginning and at the 
end (removing as many points as the size of the kernel window used), 
the resulting signal corresponds to a decay signal formed by the two 
same monoexponential components, but with different preexponential 
factors (for a mathematical proof and additional explanations see Eq. S1- 
7 in the Supplementary Material). 

If a single decay curve is convolved with a set of K kernels (see 
Fig. 2B, K = 3), K new decays are obtained, characterized by different 
preexponential factors but the same decay constants. Then, if each decay 
curve (rows of D) is convolved with the same set of K kernels, the K 
convolved decays obtained can be arranged into a three-way data array 
(D) and analyzed by PARAFAC-ALS to obtain the underlying 

monoexponential contributions associated with the individual 
components. 

A schematic representation of the Kernelizing approach is shown in 
Fig. 3. I samples, characterized by different mixtures of two mono
exponential decays, and a set of 20 kernels of different shapes, providing 
20 new convolved decays per sample, are here considered. Since the 
preexponential factors of the components change along the kernel di
rection, a third linearly independent dimension (mode) is obtained, and, 
thus, D results to be a trilinear array. Differently from slicing, this pro
cedure remains applicable for signals characterized by very few sam
pling points. 

It should be noted that kernel normalization is recommended to 
obtain convolved sets of decay curves with similar signal intensity for 
the subsequent PARAFAC-ALS analysis. Fig. 3 shows an example where 
kernels were normalized to a maximum value of 1. 

Several features can be expected for the Kernelizing approach. First, 
the number of kernels used to build D does not depend on the number of 
sampling points of the decay curves and, hence, a rich trilinear dataset, 
with no limited number of slabs can always be generated. The second 
feature is the denoising action associated with the Kernelizing approach, 
since signal convolution can be interpreted as a weighted moving 
average methodology, where every point in the convolved signal results 
from the sum of the signal points covered by the kernel window, 
weighted by the related kernel coefficients. The third feature is linked to 
the wide diversity of kernel shapes that can be chosen to emphasize 
different parts of the original decay signal. For example, by choosing a 
kernel corresponding to a monotonically decreasing function, the 
emphasis would be on the components with longer decay times, since 
the decay points at longer times will be weighted with a larger coeffi
cient in the convolved signal, (see the darkest blue kernel and the related 

Table 2 
Median of the correlation coefficients between simulated and recovered concentration profiles and of the decay constants recovered by PowerSlicing and Kernelizing in 
the 1000 analyzed runs. Values between brackets show the interval between the 2.5th and 97.5th percentiles of the corresponding metric. Median of CONCORDIA 
parameter across all runs is shown.   

True decay constant Simulated dataset 1 

PowerSlicing Kernelizing 

Concentration profile Decay constant Concentration profile Decay constant 

Component 1 0.80 0.98 0.78 0.99 0.79 
[0.98, 0.99] [0.76, 0.80] [0.99, 0.99] [0.78, 0.80] 

Component 2 1.40 0.95 1.39 0.98 1.40 
[0.91, 0.97] [1.35, 1.43] [0.97, 0.98] [1.37, 1.43] 

Component 3 2.4 0.96 2.26 0.98 2.34 
[0.95, 0.97] [2.13, 2.41] [0.98, 0.99] [2.26, 2.44] 

CONCORDIA (%)  55 97   

True decay constant Simulated dataset 2 

PowerSlicing Kernelizing 

Concentration profile Decay constant Concentration profile Decay constant 

Component 1 0.80 0.95 0.76 0.97 0.77 
[0.94, 0.97] [0.73, 0.78] [0.96, 0.98] [0.75, 0.79] 

Component 2 1.40 0.86 1.38 0.94 1.42 
[0.74, 0.92] [1.30, 1.42] [0.91, 0.96] [1.37, 1.46] 

Component 3 2.4 0.91 2.16 0.95 2.27 
[0.87, 0.93] [2.01, 2.35] [0.93, 0.96] [2.16, 2.41] 

CONCORDIA (%)  24 77   

True decay constant Simulated dataset 3 

PowerSlicing Kernelizing 

Concentration profile Decay constant Concentration profile Decay constant 

Component 1 0.80 0.92 0.71 0.94 0.73 
[0.86, 0.94] [0.60, 0.75] [0.93, 0.95] [0.69, 0.76] 

Component 2 1.40 0.64 1.29 0.83 1.41 
[0.56, 0.81] [1.12, 1.40] [0.72, 0.89] [1.33, 1.47] 

Component 3 2.4 0.83 2.00 0.89 2.15 
[0.76, 0.88] [1.86, 2.18] [0.85, 0.91] [2.04, 2.29] 

CONCORDIA (%)  − 2 24  
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convolved blue signal in Fig. 3). In our case, we have selected a set of 
kernels based on symmetric exponential functions to weight equally the 
short and long decay time components, as it is shown in Fig. 3. In gen
eral, it would be advisable to use a set of kernels that allows weighting in 
a similar way the entire range of points of the decay curves to be 
convolved. 

4. Results and discussion 

Kernelizing has been tested on simulated and time-resolved fluo
rescence experimental data acquired under controlled conditions. It has 
also been applied to a FLIM image for exploratory analysis. The results 
are discussed in the following sections. 

4.1. Simulated examples 

This subsection is divided in two parts. The first part aims at showing 
and discussing the performance of Kernelizing on simulated datasets 
with different numbers of sampling points (datasets 1, 2 and 3). The 
results are compared with those yielded by PowerSlicing. The second 
part aims at assessing the effect of key parameters of the Kernelizing 
approach on the results obtained. 

4.2. Performance of the kernelizing approach 

Datasets 1, 2 and 3 were simulated as explained in Section 2 and 
tensorized by both the Kernelizing and PowerSlicing approaches. The 
data arrays provided by Kernelizing were built by tensorizing the 
datasets 1, 2 and 3 using a set of 20 kernels, sized 20× 250, 20× 25 and 
20× 8, respectively (in all cases, the kernel size is half the number of 
sampling points of the corresponding dataset). The typology and di
versity of kernel functions were chosen according to the guidelines 
provided in Section 3 (see Fig. 3 and S3). The dimensions of the 

corresponding three-way data arrays are 200 × 20 × 250, 200 × 20 × 25 
and 200 × 20× 7 for datasets 1, 2 and 3, respectively. In the case of 
PowerSlicing, considering the rules to define the number of slices and 
the sampling points therein, the dimensions of the three-way arrays 
generated are 200 × 8 × 373, 200 × 5 × 43 and 200 × 3 × 12, 
respectively. 

PARAFAC-ALS was used to analyze the three-way data arrays 
resulting from both tensorization procedures. Initial estimates were set 
as the profiles yielded by the best-fitting models obtained after several 
PARAFAC-ALS runs started with a variety of initial estimates and fitted 
using only a few iterations [14]. 

To compare the results obtained by both the Kernelizing and Pow
erSlicing approaches, the individual pure component decay profiles in S 
were fitted by a monoexponential model to extract their respective 
characteristic decay constants and the correlation coefficients between 
the recovered concentration profiles in C and their corresponding 
ground truth profiles were calculated (see Table 2). The analysis was 
repeated 1000 times adding the same amount of Poisson-structured 
noise in each run for each dataset. To assess the accuracy and spread 
of the final solutions, the median and the 2.5th-97.5th percentile in
terval of these metrics were considered for every component. For each 
run, the CONCORDIA was calculated. The lack of fit of all models was 
found in agreement with the quantity of noise added to the simulated 
dataset (data not shown). 

For the tensorized dataset 1 (500 sampling points), the values of the 
three decay constants are well recovered by both Powerslicing and 
Kernelizing. The full distribution of the decay constants is shown in 
Fig. 4. The exponential profiles and related decay constants are very well 
recovered for components 1 and 2, whereas a higher scatter, slightly 
more pronounced for Powerslicing, can be observed for component 3. 

The correlation coefficients obtained for the concentration profiles 
are satisfactory for both approaches (equal or higher than 0.9 for all 
components), despite a slightly lower value for the concentration profile 
of component 2 returned by Powerslicing. Finally, it should be noted 
that a clear difference exists in the CONCORDIA values, 55% for Pow
erSlicing vs 97% for Kernelizing, meaning that the PARAFAC-ALS model 
yielded by Kernelizing is closer to an ideal trilinear model than the one 
yielded by PowerSlicing. 

Overall, although Kernelizing provides slightly better results, both 
approaches guarantee a satisfactory performance when dealing with 
exponential decay signals for which a sufficiently number of sampling 
points is available. 

When inspecting the results for datasets 2 and 3 (featuring 50 and 15 
sampling points, respectively) the differences between PowerSlicing and 
Kernelizing become more pronounced (see Table 2). For the concen
tration profiles, Kernelizing provides correlation coefficients very close 
or higher than 0.9 in all components and datasets whereas the accuracy 
of Powerslicing decreases, as can be seen from the outcomes obtained for 
component 2 in dataset 2 and components 2 and 3 in dataset 3. Looking 
at the decay constants, correct decay constant values are recovered by 
Kernelizing for datasets 2 and 3 (with only a small bias for component 3 
in the latter case). An additional relevant fact is that all Kernelizing 
models are very stable, the spread of the calculated decay constants does 
not change across datasets (see Fig. 4 and Table 2). Conversely, biased 
results are obtained for the decay constants of component 3 in dataset 2 
and components 2 and 3 in dataset 3 when applying PowerSlicing. 
Additionally, the spread of the solutions is significantly larger when the 
number of sampling points decreases, which derives from the instability 
PARAFAC-ALS exhibits when taking into account reduced numbers of 
slices. Another indicator of the quality of the modelling approach is the 
CONCORDIA value. It can be observed that this parameter decreases for 
both approaches from dataset 1 to dataset 3, but the effect is more 
pronounced for PowerSlicing. All the differences mentioned above stem 
from the fact that reducing the number of sampling points heavily affects 
the amount of information that can be encoded in the three-way data 
array generated by Powerslicing since less slices can be built (five and 

Fig. 4. Decay constants returned after the application of PowerSlicing and 
Kernelizing to the simulated datasets 1, 2 and 3 over the 1000 calculation runs. 
A significant reduction of the estimate scatter is observed for Kernelizing with 
respect to PowerSlicing when the number of sampling points is decreased. 
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three for datasets 2 and 3, respectively). This, together with the 
decreasing number of sampling points per slice, hinders the correct re
covery of monoexponential decays. For the Kernelizing approach, the 
number of sampling points per slice is also reduced, but the number of 
slabs remains unchanged (20 for all datasets). The shape diversity of the 
kernels is also preserved and, as a consequence of both facts, a three-way 
data array with large variability of information can still be generated in 
the worst-case scenario and satisfactory results can be obtained. 

4.3. Effect of the kernel size and shape variation on the final solutions 

In this section, we investigate several key features of the Kernelizing 

approach, such as the number of kernels used, their widths and shapes. 
Six different sets of kernels were generated, enclosing from four to 20 

exponential functions with different shapes, chosen so that the set of 20 
kernels weights similarly short and long decay time components. The 
kernel sets used are shown in Fig. S3. In addition, for each set, six 
different kernel widths were considered (covering 5, 10, 20, 30, 50 and 
75% of the total number of sampling points of the data). This results in a 
total of 36 different sets of kernels that were used to build the three-way 
data arrays corresponding to datasets 1, 2 and 3. For each combination 
of kernel shape and kernel width, PARAFAC-ALS analysis was repeated 
1000 times adding to the data the same amount of Poisson-structured 
noise in each run. 

Fig. 5. Dispersion of the values of the decay constants recovered using Kernelizing on dataset 1. From top to bottom, the number and diversity of the kernel functions 
increase. From left to right, the width of the kernel functions (expressed as percentage of points over the total number of sampling points of the original decay 
curves) increases. 

Table 3 
Summary of results yielded by PowerSlicing and Kernelizing for the ATTO dataset in the two tested scenarios.   

True 
lifetime 
(ns) 

ATTO data (1500 sampling points) ATTO data (15 sampling points) 

PowerSlicing Kernelizing PowerSlicing Kernelizing 

Concentration 
profile* 

Lifetimes (ns) 
+

Concentration 
profile* 

Lifetimes 
(ns)+

Concentration 
profile* 

Lifetimes 
(ns) +

Concentration 
profile* 

Lifetimes 
(ns) +

ATTO 
655 

1.9 0.75 1.786 0.76 1.887 0.70 1.86 0.72 1.93 
[1.783–1.789] [1.886–1.887] [1.85–1.88] [1.92–1.94] 

ATTO 
665 

2.9 0.86 2.435 0.87 2.486 0.83 2.64 0.88 2.8 
[2.432–2.438] [2.486–2.486] [2.62–2.66] [2.79–2.83] 

ATTO 
647 N 

3.5 0.90 3.419 0.99 3.494 0.77 3.65 0.86 3.74 
[3.416–3.421] [3.494–3.495] [3.61–3.68] [3.72–3.77] 

+ Monoexponentially fitted lifetime and 95% confidence interval associated with the fitting error. 
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Fig. 5 shows the decay constants obtained from the analysis of 
dataset 1. Looking at the results from top to bottom, it can be clearly 
observed that the higher the number of kernels and the wider the di
versity of their shape, the closer to the ground truth the solutions are. 
For this reason, a key point is to always use a high number of kernels 
with very different shapes, since more variance is induced in the pre
exponential factors of all components, irrespective of their characteristic 
decay time (short or long). 

Looking at the results in Fig. 5 from left to right, the effect of the 
kernel width can be assessed. In general, the larger the kernel, the more 
signal needs to be removed (see Fig. 3) and, thus, the lower the amount 
of available information exploitable for the resolution of strongly 
overlapping monoexponential components. On the other hand, when 

the kernel is too narrow, the variability induced in the preexponential 
factors is too small, and so is the denoising action, both effects resulting 
in a larger dispersion of the results. In practice, a compromise should be 
found and for the cases explored here, choosing a kernel width in the 
range between 20% and 50% of the total number of sampling points 
provided good results. However, different approaches may be advisable 
when coping with real-world datasets for which the ground truth is 
unknown, e.g., generating replicates by the noise addition method [18] 
and looking at the spread of the final results. 

As a final conclusion, it is also important to understand the inter
action between the effects of the key factors described above. When the 
number of kernels increases, the kernel width can be significantly 
reduced and, hence, the part of the convolved signals with non- 

Fig. 6. ATTO dataset (15 sampling points). A) Top panel, concentration profiles recovered by PARAFAC-ALS for PowerSlicing (red) and expected concentration 
profiles (black). Bottom panel, pure fluorescence decays recovered by PARAFAC-ALS for PowerSlicing (red) and expected pure fluorescence decays (black). B) Top 
panel, concentration profiles recovered by PARAFAC-ALS for Kernelizing (red) and expected concentration profiles (black). Bottom panel, pure fluorescence decays 
recovered by PARAFAC-ALS for Kernelizing (red) and expected pure fluorescence decays (black). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 
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exponential behavior minimized. 
The results obtained for datasets 2 and 3 provide the same general 

conclusions as for dataset 1 and are presented in the Supplementary 
Material (Figs. S4 and 5). 

4.4. ATTO fluorescence data 

The ATTO dataset, composed of fluorescence decays of seven ternary 
mixtures of three ATTO dyes sampled at 1500 points, was used to 
compare the results obtained by both Kernelizing and Powerslicing on 
real data. Kernelizing was applied using a set of 20 kernels of 300 point 
width (20%), resulting in a data array sized 7 × 20 × 1200. Power
Slicing was applied using 10 slices and the corresponding data size was 
7 × 10 × 989. The tensorized data arrays were then decomposed by 
means of PARAFAC-ALS. After this, the resolved time profiles were fitted 
and the respective lifetimes extracted with their corresponding fitting 
error (95% confidence). The CONCORDIA parameter was also 
calculated. 

Table 3 shows a summary of the results obtained. For full length 
signals, the concentration profiles and decay constants are, generally, 
well recovered by both approaches when they are compared with the 
ground truth (Fig. S6), despite the high correlation among the undelying 
monoexponential profiles and the very low number of samples handled. 
The decay constants of the components found for PowerSlicing and 
Kernelizing match well the expected ones. However, a small deviation 
for the component ATTO 665 can be observed for both approaches. The 
concentration profiles are also in good agreement with the true ones. 
Thus, in this scenario, both approaches are found to perform equiva
lently from a practical point of view, which is in line with the results 
obtained on simulated data for a large number of sampling points 
(dataset 1). 

In a second step, the sampling points in the ATTO dataset were 
reduced to 15 (see Section 2). Kernelizing (20 kernels, 3 points width) 
was then applied to the resulting signals and a 7 × 20× 12 data array 
was obtained. PowerSlicing was applied to the same data using three 
slices which yielded a 7× 3× 12 data array. PARAFAC-ALS was used to 
analyze both datasets. Results are shown in Fig. 6. It can be observed 
that the concentration profiles and the decay constants retrieved by 
PARAFAC-ALS are more consistent with the ground truth when 
employing the Kernelizing approach rather than PowerSlicing, 

especially for components 2 and 3. This can be explained by the fact that 
only three slices are here available for Powerslicing as opposed to the 20 
kernelized versions of the initial dataset, as previously observed for 
dataset 3. It is also important to notice that the error associated with the 
fitted lifetimes is higher for Powerslicing, indicating that the pure decay 
curves extracted may be a bit further from the pure monoexponential 
shapes expected. 

4.5. Analysis of FLIM data 

A FLIM image of Convallaria majali has also been investigated for 
illustrative purposes. The FLIM data was made available by Williams 
et al. [12]. The FLIM image has size 256 × 227 × 11 after preprocessing 
(see Section 2), where the first two dimensions are the x- and y-spatial 
directions and the third represents the 11 sampling points of the decay 
curve of every pixel, respectively. A set of 20 kernels of 3 time points 
each was used to tensorize the data, resulting in a dataset sized 256 ×
227 × 20 × 8. The dataset was decomposed (after unfolding along the 
pixel direction) by a three-component PARAFAC-ALS model. The con
centration profiles obtained were refolded to recover the 2D concen
tration maps of every component. Fig. 7 shows the pure component 
concentration maps and the related pure monoexponential decays 
obtained. 

As can be observed, despite no ground truth is available, the three 
resolved concentration maps highlight quite specific biological zones of 
the vegetal tissue. A tentative assignment would be the following: 
component 1 relates to the xylem and could correspond to the safranin 
dye linked to lignin. Besides, the endodermis is highlighted. The safranin 
dye stains lignin, which is generally located on the xylem and the 
endodermis [19]. Component 2 (fast decay) generally appears in the 
mesophyll cells as well as in some lignified cells and might be related to 
the fast-green stain. It has been reported that fast-green stains well the 
phloem and cellulosic cell walls in the pith [19]. On the other hand, 
component 3 (slow decay) appears specifically on the xylem, differen
tiating multiple environments for lignin. These results are in agreement 
with Kaminski et al. [19], who characterized a similar sample by means 
of excitation-emission spectroscopy. 

As all the investigated components have biological sense and were 
satisfactorily recovered in spite of the high complexity of the case-study 
dealt with, this last example shows the potential of the Kernelizing 

Fig. 7. FLIM dataset. Pure distribution maps (top) and pure fluorescence decays (bottom) recovered by Kernelizing-PARAFAC-ALS).  
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approach for the analysis of FLIM images of vegetal tissues featuring a 
low number of sampling points. 

5. Conclusions 

In this work, Kernelizing is proposed as a very efficient way to obtain 
trilinear data arrays with a high degree of variability from bilinear data 
matrices of multiexponential decays. The richness of information 
encoded in these kernelized three-way arrays allows PARAFAC-ALS 
resolving chemical mixtures into individual components characterized 
by monoexponential decays with an equal or higher accuracy than well- 
established slicing approaches (such as PowerSlicing). 

Thus, although PowerSlicing is a fast and robust method that can 
serve the same purpose as Kernelizing in most practical situations, we 
have identified specific scenarios for which the robustness of the Pow
erSlicing solutions can be questioned, i.e., situations for which very few 
slices can be obtained because the number of sampling points in the 
original multiexponential curves is low. Such a problem does not affect 
the proposed Kernelizing approach since the number of convolved de
cays that can be generated for each sample signal is not limited by the 
number of sampling points. As has been proven, the possibility to choose 
the number and shapes of the kernels used is an excellent asset to in
crease the variability in the three-way arrays to be analyzed and, 
consequently, the accuracy and precision of the solutions obtained. 

Kernelizing has been found very useful to handle multiexponential 
measurements for which binning is required to increase the signal-to- 
noise ratio or whose number of sampling points is low due to instru
mental limitations. Fluorophores characterized by very similar decaying 
behaviors, for example, could be unmixed in a FLIM imaging case-study, 
where the number of sampling points was limited due to specific fea
tures of the instrument resorted to. 

At this point, the main aspect that needs further exploration is the 
choice of the kernel width. In this study, a trial-and-error approach was 
utilized, but we acknowledge that a more systematic strategy would be 
useful, e.g., defining the width of the kernels based on the characteristics 
of the dataset (number of sampling points, noise, etc.) would further 
simplify the generalized use of the Kernelizing approach. 

Finally, it is worth pointing out that the results and conclusions 
drawn in this article mainly relate to the PARAFAC analysis of TRFS 
datasets, but can be generalized to any measurement that can be 
expressed by multiexponential decay curves and to any algorithm 
devoted to perform trilinear decomposition analysis. 
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