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A B S T R A C T   

Emission (3D) and excitation-emission (4D) fluorescence images allow covering wide excitation and emission 
spectral ranges and, hence, provide very complete information for a good characterization and location of flu
orophores in samples. However, when the acquisition time of the image is too long, degradation of the fluo
rescence signal of compounds and sample photodamage can occur due to photobleaching. This phenomenon is 
due to the long exposure time of the sample to the light source and can hinder the detection and the proper 
characterization of the fluorophores in samples. 

The main purpose of this research is providing a methodology to obtain and interpret the information of 
fluorescence images for the characterization of samples without suffering the consequences of photobleaching. 
Such a goal implies a first thorough knowledge of the photobleaching phenomenon to adapt the fluorescence 
imaging measurement for an optimal characterization of the fluorophores present in samples. 

The proposed approach relies first on a study of time-series of 3D or 4D fluorescence images to characterize 
spatially and spectroscopically the fluorophores present in the samples and their photobleaching behaviour. 
Since photobleaching is fluorophore-dependent, the unmixing algorithm Multivariate Curve Resolution- 
Alternating Least Squares (MCR-ALS) is applied to the set of fluorescence images acquired as a function of 
time to understand the specific behaviour of every fluorophore. The characteristics of the photobleaching phe
nomenon and the nature of the fluorescence measurement offer a challenging scenario to look for adapted 
implementations of trilinear and quadrilinear models within the MCR framework. From the results obtained, 
appropriate instrumental settings are adopted for an image acquisition that allows the correct spatial and 
spectroscopic characterization of fluorophores in samples. 

To test the potential of this methodology, the characterization of thin cross-sections of the Oryza sativa 
(commonly called rice) root have been studied due to the co-occurrence of several natural fluorophores in vegetal 
tissues.   

1. Introduction 

Hyperspectral imaging is a powerful analytical technique that pro
vides spectral and spatial information of the sample surface. Each pixel 
of a hyperspectral image (HSI) is related to spectral information and 
imaging platforms are adapted to work with many spectrophotometric 
techniques. Hyperspectral imaging is used in many research fields, such 

as food quality [1,2], medicine [3–5], pharmacy [6–8] por biology 
[9–11]. Within the spectroscopic techniques adopted in imaging sys
tems, fluorescence offers a high sensitivity to detect low concentrations 
of fluorophore compounds and the capability to provide a very detailed 
information on the distribution of these compounds on the sample sur
face due to its high spatial resolution, which can go down to several tens 
of nm if super resolution imaging techniques are used [12–14]. 
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Confocal fluorescence microscopy can provide 3D or 4D fluorescence 
HSI depending on the spectroscopic information recorded [15]. Thus, a 
3D fluorescence image acquires a full emission spectrum per each pixel 
of the sample surface at a fixed excitation wavelength, providing three- 
dimensional data (x, , λ). Instead, a 4D fluorescence image associates a 
full 2D excitation/emission landscape to every pixel, covering a range of 
excitation and emission wavelengths, providing four-dimensional data 
(x, y, λex, λem). The combined use of 3D and 4D fluorescence images 
provides information on a wide spectral range of excitation and emission 
wavelengths and, therefore, allows an accurate sample characterization 
[15]. However, issues related to the instrumental image settings and to 
the big size of image data need to be addressed, as explained below. 

The acquisition time of a 4D fluorescence HSI is relatively long. As a 
consequence, the degradation of the fluorescent signal of the compounds 
by photobleaching can occur [16]. Thus, photobleaching can hinder the 
detection and proper characterization of fluorophores in samples. In the 
worst scenario, a sample can be damaged due to laser exposition, 
making impossible the acquisition of images of living tissues. Hence, this 
phenomenon needs to be studied by collecting consecutive images as a 
function of time and studying the intensity decay of each fluorophore in 
the sample, instead of the global intensity decay. This kind of pre
liminary study is necessary to obtain suitable settings that enable a 
proper fluorescence image acquisition for sample characterization. 

Understanding the information offered by fluorescence images re
quires chemometric tools due to the large size and complexity of the data 
sets acquired. Both for the study of the photobleaching phenomenon and 
the subsequent characterization of samples, it is relevant unmixing the 
raw signal into the contributions of the pure fluorophores in the samples 
analyzed. A solution to this problem is provided by the Multivariate 
Curve Resolution – Alternating Least Squares (MCR–ALS) method [17] 
that works iteratively decomposing the raw HSI into the pure spectral 
signatures and concentration maps of the image constituents. Such a 
procedure can work analyzing a single image or an ensemble of related 
images in a multiset fashion. Besides, the flexibility in data configuration 
allows handling 3D and 4D images [15]. The profiles issued from MCR- 
ALS provide a complete chemical, semiquantitative and distributional 
characterization of the fluorophores present in the samples and an 
additional description of the individual decay behavior of every fluo
rophore when photobleaching is investigated. 

In the present work, the image acquisition protocol assisted by MCR- 
ALS, adapted to study photobleaching and to handle the specificities of 
3D and 4D fluorescence HSI, is tested on samples of cross sections of 
Oryza sativa (rice) root. This example is a perfect testing scenario since 

vegetal tissues contain many natural fluorophores colocalized across the 
sample surface analyzed. In the following sections, the protocol to ac
quire and interpret images obtained in photobleaching and character
ization studies is described, together with the most important results 
related to the specific study of Oryza Sativa root cross-sections. 

2. Experimental work 

2.1. Plant growth and sample preparation 

Rice plants were grown as in Ref. [15]. After harvest, thin cross 
sections of roots were manually cut and placed on a 1 mm-thickness 
CaF2 slide with a drop of phosphate-buffered saline solution, covered 
with a 0.5 mm-thickness CaF2 coverslip and sealed with nail polish, to 
avoid water evaporation during the experiment. Fig. 1 shows the 
structure of a cross section of Oryza sativa root with the different parts 
identified [18]. 

2.2. Image acquisition 

All images were collected using a Leica TCS SP8 STED 3X microscope 
(Leica Microsystems, Mannheim, Germany) with an HC PL APO CS2 10 
× /0.40 DRY objective. The instrumental parameters were set, as 
explained below, depending on the experiment (photobleaching on 3D 
images, photobleaching on 4D images and characterization images). 

For studying the photobleaching on 3D images, a 405 nm excitation 
laser (power of 89 μW at the sample plane) was selected with an emis
sion range from 432.5 to 597.5 nm. The sampling interval and band
width were 5.69 nm with a dwell time set 3.8 μs. Six consecutive images 
of the same root cross-section were acquired to study the photobleaching 
phenomenon covering an interval of time going from 0 to 40 min. The 
total acquisition time of every 3D image is eight minutes. The 3D images 
were split in two regions of interest (ROIs): the epidermis and the stele, 
sized 428 × 315 μm2 and 270 × 315 μm2 respectively. 

On the other hand, for studying the photobleaching on 4D images, a 
supercontinuum white light laser (WLL) was used. The excitation range 
covered 470 to 582 nm with a sampling interval of 8 nm (power of 146 
μW at the sample planned). The emission range covered 504–624 nm 
with a sampling interval and bandwidth of 6 nm. The dwell time was set 
to 7.7 μs. Three consecutive images of the same root cross-section were 
acquired to study the photobleaching across the images covering an 
interval of time going from 0 to 24 min. The total acquisition time of 
every 4D image is 12 min. 

Fig. 1. Main anatomy of a cross-section of Oryza sativa Japonica root cross-section. 1) Phloem. 2) Xylems. 3) Sclerenchyma layer. 4) Stele. 5) Xylem-pole pericycle. 
6) Cortex. 7) Epidermis. 8) Endodermis. 9) Exodermis. 
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To study the characterization of the natural fluorophores present on 
the rice root, a final image of a new root cross-section was acquired with 
only five excitation wavelengths (405, 470, 520, 570, 620 nm) and 
covering an emission range of 435–663 nm with 12 nm sampling in
terval and a bandwidth of 12 nm. The dwell time was 32 μs in all 
excitation wavelengths, except for 405 nm, where 15 μs were used. 

All images had a pixel resolution of 450 × 450 nm2. 

3. Data treatment 

This section covers the preprocessing applied to improve the signal- 
to-noise ratio of the fluorescence images and the description of the 
protocol based on the use of Multivariate Curve Resolution-Alternating 
Least Squares (MCR-ALS) for photobleaching and characterization 
studies using 3D and 4D fluorescence images. 

3.1. Preprocessing 

The images obtained have a high spatial resolution, with a pixel size 
of 450 × 450 nm2, but the signal to noise ratio is too low for multivariate 
analysis. To address this issue, a binning of adjacent pixels (10 × 10) was 
done to improve the spectroscopic signal quality. Finally, the back
ground was cropped. 

In EEM measurements, the scattering produced by the Rayleigh 
emission has to be removed from the data, since it does not follow either 
bilinear nor trilinear responses. Thus, few emission channels close to the 
laser wavelength were set as not a number (NaN). 

For the characterization study, the channel at excitation 405 nm and 
emission 591 nm showed a loss of signal, probably due to a problem with 
the detector. The channel was interpolated using the nearest emission 
wavelengths. 

3.2. Multivariate Curve Resolution-Alternating least Squares (MCR-ALS) 

Multivariate Curve Resolution-Alternating Least Squares [17] is an 
unmixing algorithm that decomposes the raw mixed information con
tained in an initial data set into a bilinear model of profiles related to 
their pure components, according to equation (1):  

D = CST + E                                                                                 (1) 

In a spectroscopic context, D is a table of raw mixture spectra and S 
and C are the matrices that contain the pure spectra and the related 
concentration profiles of the pure compounds, which can reproduce 
appropriately the information contained in the initial data set D. E is the 
variance unexplained by the bilinear model. 

The MCR-ALS method works optimizing iteratively the C and S 
matrices via an alternating least squares procedure under constraints. 
An initial estimate of the matrix C or S, often obtained with a purest 
variable selection method, is required to start the optimization proced
ure. The constraints used are based on general mathematical or chemical 
properties that the profiles in C and S matrices naturally obey. The role 
of constraints is providing chemically meaningful profiles and 
decreasing the rotational ambiguity associated with the bilinear 
decomposition. The choice of the constraints is adapted to the nature of 
the profiles to be resolved and can be optionally applied per component 
and per mode (C and S). The iterative optimization is finished when a 
convergence criterion is reached, usually related to the fulfillment of a 
preset threshold value linked to the relative difference in lack of fit (see 
eq. 2) among consecutive iterations. 

LOF(%) = 100 •

̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
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In the lack of fit expression, di,j is an element of matrix D and ei,j from 
matrix E. 

MCR-ALS has been applied in many diverse research fields and is 

particularly suitable for hyperspectral image analysis. The flexible data 
configurations and use of constraints of this algorithm allows the anal
ysis of 3D and 4D HSIs [15,17,19–22]. The multiset modality of the 
method adapts to the simultaneous analysis of several related HSIs ac
quired with the same spectroscopic platform and to challenging image 
fusion scenarios where HSIs come from platforms differing in spectral 
dimensionality and spatial resolution. 

The application of MCR-ALS to a single 3D or 4D fluorescence image 
implies transforming the initial image array into a data table and 
applying the suitable constraints. 3D images can be displayed as a cube 
where a full emission spectrum acquired at a fixed excitation wave
length is associated with each pixel of the sample surface. The image 
cube consists of two spatial pixel coordinates, x and y, and one spectral 
dimension, λ (see Fig. 2A). The cube can be easily unfolded into a data 
table by putting one pixel emission spectrum under the other. The D 
matrix obtained has a number of rows equal to the number of pixels (x ×
y) and a number of columns equal to the number of emission wave
lengths (λ). The bilinear model provided by MCR consists of a matrix 
with the pure emission spectra of the fluorophores in the sample (S 
matrix) and the related pixel concentration arrays (C matrix), which 
refolded according to the structure of the 2D sample surface provide the 
fluorophore distribution maps. The basic constraints that can be used in 
this resolution are non-negativity for both the concentration profiles and 
the pure emission spectra and spectra normalization in the S matrix. 

4D images instead associate a 2D excitation-emission (EEM) land
scape per every pixel. Therefore, the data table D is obtained by putting 
the vectorized 2D EEM landscape of every pixel, i.e., the concatenated 
emission spectra λem obtained at the different excitation wavelengths 
(λex1 to λexN ), one under the other (see Fig. 2B). The D matrix obtained 
has a number of rows equal to the number of pixels (x × y) and a number 
of columns equal to the total number of emission channels in the vec
torized EEM spectrum. The bilinear model provided by MCR consists of a 
matrix with a set of pure pixel concentration arrays, which are turned 
into fluorophore distribution maps, and a matrix with pure vectorized 
EEM landscapes related to each fluorophore (S matrix), which can be 
refolded into 2D EEM landscapes as well. All constraints mentioned for 
3D images can be applied to 4D images. However, the nature of 2D EEM 
spectra allows for the application of the trilinearity constraint to matrix 
S. In plain words, the action of this constraint is forcing that all emission 
spectra within the EEM vectorized profile of a pure compound show the 
same shape across all the excitation wavelengths covered. Since the 2D 
EEM landscapes of fluorescence images show a systematic pattern of 
missing values when the excitation and emission ranges overlap, i.e., no 
emission fluorescence values are obtained if the emission wavelength is 
lower than the excitation wavelength, a dedicated implementation of 
the trilinearity constraint able to handle structures with missing values 
has been applied [23]. The three modes of the trilinear model linked to a 
4D single image analysis by MCR-ALS would be the concentration and 
the emission spectra (explicit modes in the MCR decomposition) and the 
excitation mode (embedded in the vectorized EEM landscape). 

An asset of MCR-ALS is the possibility to work with several related 
HSIs into a single multiset structure. For both 3D and 4D images, this can 
be easily accomplished by appending the blocks of spectral information 
of the different sample images (either single emission spectra in 3D 
images or vectorized 2D EEM landscapes in 4D images) one under the 
other. Such a multiset configuration is used in fluorophore character
ization studies by analyzing multisets formed by images of different 
samples and the constraints used would be the same as for the analysis of 
single 3D and 4D images. 

Multisets related to photobleaching studies deserve a special 
comment. As described in the introduction, the study of the photo
bleaching phenomenon can be easily carried out by analyzing simulta
neously a set of fluorescence HSIs obtained on the same sample over 
time (see Fig. 3). 

The nature of the photobleaching phenomenon allows taking 
advantage of the singular behavior of the fluorophores and the related 
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samples in the experiments performed. On the one hand, since the 
measurement is based on fluorescence spectroscopy, the shape of the 
emission spectra for every pure fluorophore remains invariant across the 
wavelength excitation range and/or across time and only the global 
signal intensity varies; on the other hand, since HSIs are collected on the 
same sample as a function of time, the shape of the concentration map of 
every fluorophore remains invariant across time and only the fluores
cence intensity is modified because of photobleaching. These two facts 
allow a high flexibility in terms of data configuration and implementa
tion of model constraints, as will be described below for studies carried 
out by using 3D and 4D images. 

Fig. 3A shows the data arrangement and MCR model for a photo
bleaching study based on a time-series of 3D images. In this case, since 
the spatial structure of the concentration maps of every fluorophore is 
invariant over time and, hence, the shape of the related concentration 
profile, the blocks of spectral information from the different images are 
appended one beside the other forming a row-wise augmented multiset. 
As a consequence, the resulting MCR model obtained is formed by a 
single C matrix, which reflects the invariant shape of concentration 
profiles and, hence, of the related refolded maps of every fluorophore, 
and an augmented ST matrix, which contains in every row the concat
enated emission spectra of a single fluorophore at the different photo
bleaching times studied. Other than non-negativity in the concentration 
and spectral profiles, trilinearity is applied to the ST matrix, forcing the 
shape of the emission spectrum of every pure fluorophore to remain 
constant at the different photobleaching times monitored. Finally, the 

pure decay signal of every fluorophore is obtained representing the area 
under the profile of each concatenated pure emission spectrum as a 
function of the related photobleaching time. In the case of photo
bleaching based on 3D images, the direction extended in time has been 
the spectral one because this mode was the least selective. Due to this 
fact, trilinearity could be applied and the pure spectra were resolved 
without ambiguity [17]. 

Photobleaching based on collecting 4D images over time required a 
different data configuration, shown in Fig. 3B). Every 4D acquired was 
unfolded as shown in Fig. 2B) and the blocks of information related to 
every photobleaching time were organized one under the other. The 
result is a row- and column-wise augmented multiset and the resulting 
MCR model will be formed by an augmented C matrix formed by the 
pixel concentration arrays (turned into concentration maps) linked to 
each photobleaching time studied and an augmented S matrix that has 
the same information as when a single 4D image is analyzed (see 
Fig. 2B). Adding to the non-negativity constraint, the trilinearity 
constraint has been used in the two directions of the MCR model. In the 
spectral direction, the adaptation of this constraint to handle missing 
values has been used. In the concentration direction, the classical 
implementation of trilinearity was applied forcing all concentration 
profiles (hence, maps) of the same fluorophore to have the same shape 
along time. The fluorescence decay profiles of every fluorophore can be 
subsequently obtained by integrating (summing) the values of the ele
ments of the concentration profiles at every photobleaching time. 

Looking carefully at the way photobleaching studies are done and 

Fig. 2. A) MCR model for a 3D fluorescence image. B) MCR model for a 4D fluorescence image.  
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the way MCR analysis is performed, photobleaching studies based on 3D 
fluorescence images obey a trilinear model, where the three modes are 
the concentration profiles and the emission spectra (explicit MCR 
modes), and the decay profile mode (embedded in the set of emission 
spectra augmented over time). Analogously, photobleaching based on 
4D fluorescence images obeys a quadrilinear model (see Fig. 3B), where 
the four modes are the concentration profiles and the emission spectra 
(explicit MCR modes), the excitation mode (embedded in the vectorized 
EEM landscape) and the decay profile mode (embedded in the set of 
concentration profiles). Thus, MCR provides a flexible framework for 
multilinear model implementation and, as a consequence of the use of 
these higher-order multilinear models, the fluorophore information can 
be recovered in a unique way. 

3.3. Software 

All in-house routines, scripts and analyses generated to preprocess 
and the analyze the data were performed using MATLAB 2021 (The 
Mathworks, Inc., Natick, MA). 

4. Results and discussion 

The photobleaching studies were performed by taking consecutive 
images (3D or 4D) on a single root cross-section over time under the 
same instrumental conditions and analyzing them by MCR-ALS. The 
results obtained in the study of the photobleaching effect helped to set 
the optimal image acquisition settings for the final characterization 
study of the fluorophores present in rice root samples. Table 1 shows a 
summary of the models obtained in all studies carried out. The nature, 
location and photobleaching decay of every component will be dis
cussed in the following sections. 

4.1. Photobleaching studies 

For the results reported below, initial spectral estimates were 
calculated by a SIMPLISMA-based method [24]. Non-negativity was 
applied to C and S. Trilinearity constraint is often used and adapted 
depending on the context of the study, as will be described below. 
Convergence criterion was set to 10− 6 % difference in lack of fit among 
consecutive iterations. After the MCR-ALS analysis, to recover the dis
tribution maps at the initial high resolution, an extra least squares step 

Fig. 3. A) Multiset configuration and related MCR model for a photobleaching experiment based on: A) 3D fluorescence images and B) 4D fluorescence images.  
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was performed using the optimal spectral profiles and the image data 
without binning. 

4.1.1. 3D fluorescence images 
The six 3D fluorescence images were concatenated as Fig. 3A. Trili

nearity constraint was applied to force the emission shape to be the same 
for each component over the time. Three components were resolved 
(Fig. 4). The variance of the original data, i.e., the binned image (see 
section 3.1), is well explained by the MCR – ALS model (98.9%). 

The first component found by MCR-ALS is significantly affected by 
photobleaching, losing 41% of the signal after 40 min of image acqui
sition. This component seems to be related to small vesicles (red color in 
Fig. S1), the cortex and the external part of the epidermis, with an 
emission maximum at 450 nm. The second component is present in the 
endodermis and the sclerenchyma layer of the epidermis (green color in 
Fig. S1). This component is less affected than the first one by 

photobleaching, having a loss of signal only of 6% after 40 min of image 
acquisition, with an emission maximum at 500 nm. Finally, the last 
component is specific of the inner part of the stele, where the cells are 
used to be more lignified (blue color in Fig. S1), with an emission 
maximum around 470 nm. The photobleaching affects even less this 
component than the previous ones, having a loss of signal of 3% after 40 
min of imaging. 

4.1.2. 4D fluorescence images 
The three 4D fluorescence images were concatenated as in Fig. 3B 

into a single multiset. Trilinearity constraint was applied to force the 
concentration profile shape to be the same for each component over the 
time. On the other hand, the pure fluorescence profiles were forced to 
have the same shape across the excitations [23], resulting in a quadri
linear model. Convergence criterion was set to 10− 6 % difference in lack 
of fit among consecutive iterations. 

Table 1 
Instrumental conditions and MCR-ALS results of each of the characterization experiments.  

Photobleaching 

Dataset Excitation range (nm) Emission range (nm) No. images (time step/min) NC (*) LOF (%) Explained variance (%) 

3D 405 432.5–597.5 6 (8) 3  10.7  98.9 
4D 470–582 504–624 3 (12) 5  18.5  96.6  

Characterization 
4D 405,470,520, 570,620 435–663 – 8  3.6  99.9 

(*) NC: Number of components. 

Fig. 4. MCR results obtained from the 3D photobleaching data. Plots from left to right: distribution maps (stele and epidermis ROIs), pure fluorescence emission 
spectra and pure photobleaching decay. Note that time 0 in the pure decay plots means the final time of acquisition of the first image acquired in the photobleaching 
experiment, i.e., 8 min. 
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Using MCR-ALS, five components were detected (Fig. 5), which 
explained 96.6% of the variance. In order to recover the distribution 
maps at the initial high resolution, an extra least squares step was per
formed using the optimal spectral profiles and the image data without 
binning. 

Component 1 is related to an accumulation in the stele. The excita
tion maximum is around 480 nm, while the emission maximum is 
around 520 nm. There is no photobleaching phenomenon associated 
with this component. Component 2 is located in the endodermis and the 
sclerenchyma layer of the exodermis. This component has a similar 
excitation maximum than component 1, around 480 nm. However, the 
pure emission spectrum has a maximum around 530 nm. The photo
bleaching effect is significant for this component, with a loss of 55% of 
its signal in 24 min. Component 3 is specific of the sclerenchyma layer of 
the exodermis. The excitation maximum is around 530 nm and its 
emission around 570 nm. This component is affected by photobleaching 
as well, losing 11% of its intensity after 24 min of imaging. Component 4 
appears on the cortex, but it has significant signal in the rest of the root, 
being a general component across the tissue. It has two different emis
sion regions. The first one is located at an excitation of 500 nm and an 
emission of 540 nm. The second region is located at an excitation of 570 
nm and an emission 620 nm, being a yellow–red fluorescence, in con
traposition of the rest of components, located in the blue-green emission 
region. Finally, component 5 is the most shifted to the blue emission. Its 
excitation is 470 nm and the emission around 500 nm, and it is located in 
the phloem vessels and the sclerenchyma layer of the exodermis. This 
component seems to be almost unaffected by photobleaching, having a 
loss of signal around 4%. 

The study of photobleaching in data sets formed by 3D and 4D 
fluorescence images using MCR-ALS has revealed that the photo
bleaching phenomenon is fluorophore-dependent and it is mandatory to 
perform an unmixing task of the image to properly characterize this 
behavior for the individual components of the sample. In the context of 
the rice root study, the results have shown that certain fluorophores 

present in the root tissue are sensitive to laser exposure at certain 
wavelengths, and their decay can significantly impact the quality of the 
measurement. Therefore, in order to accurately characterize the natural 
fluorophores present in the root tissue, it is important to minimize 
photobleaching effects. To achieve this, a strategy has been developed to 
reduce the number of excitation and emission channels to decrease the 
exposure time, while simultaneously increasing the bandwidth of the 
detector to increase the signal-to-noise ratio. This approach has allowed 
the acquisition of complete 4D images with a high signal-to-noise ratio 
in just 10 min, effectively minimizing the impact of photobleaching. It is 
clear that the effect of photobleaching must be considered on a per- 
component basis, as different fluorophores react differently to laser 
exposure. 

4.2. Characterization study 

Once the photobleaching phenomenon was confirmed in some 
components, the instrumental settings for the characterization of fluo
rescence components in root sections were tuned according to Section 
2.2. The 4D hyperspectral image was unfolded as in Fig. 2B. Trilinearity 
constraint was applied to force the fluorescence emission profiles to 
have the same shape across the excitations. Using MCR-ALS, eight 
components were detected (Fig. 6), which explained 99.9% of the 
variance. 

Fig. 7 displays the distribution maps of most of the biological com
ponents in false color, to highlight the differences among them. 
Component 1 (in red in Fig. 7A and B) appears on the pith of the root 
where the tissue is highly lignified, being more intense in the xylems and 
early xylems. It has an excitation maximum around 405 nm, while the 
emission maximum is around 480 nm. This compound could be attrib
uted to lignin [25], specifically that which is related with lignified cells 
conforming the pith. Component 2 (in red in Fig. 7C) is related to the 
endodermis, but it has significant signal in the rest of the root, being a 
component located across all the tissues. Its excitation maximum is 

Fig. 5. MCR results obtained from the 4D photobleaching data. Plots from top to bottom: distribution maps, pure excitation-emission matrices and pure photo
bleaching decay. Note that time 0 in the pure decay plots means the final time of acquisition of the first image acquired in the photobleaching experiment, i.e., 
12 min. 
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around 520 nm, while the emission is around 570 nm. Further investi
gation is needed to correctly characterize this component. Component 3 
(in green in Fig. 7A and B) has an excitation of 405 nm and an emission 
around 440 nm, and it is located in the pericycle. It can be observed 
specifically in the phloem companion cells. To the knowledge of the 
authors, the fluorescence of the phloem companion cells has not been 
reported yet in rice roots. Component 4 (in blue in Fig. 7) is present in 
the sclerenchyma layer of the exodermis, but also in the xylem-pole 
pericycle. It can be observed as well where the Casparian strip should 
be located. This is a similar distribution found by Vishal, B. [26], which 

may indicate the presence of suberin. It has an excitation around 
405–470 nm, while the emission is around 500 and 550 nm. Component 
5 is specific of the sclerenchyma layer of the exodermis, having an 
excitation around 520 and an emission around 560 nm. Component 6 is 
located in all the root tissues, being characterized probably as a type of 
lignin not specific of any particular tissue. The excitation maximum is 
405 while the emission is around 500 nm. Component 7 (in green in 
Fig. 7C) appears in the endodermis, the exodermis and the epidermis. In 
addition, small vesicles inside some vessels are specifically related to 
this component. A reasonable hypothesis is that these vesicles can be 

Fig. 6. MCR results for the characterization study performed using the 4D image. Distribution maps and pure EEM landscapes of the resolved components.  
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related to silica bodies [27]. Its excitation is around 570 nm and its 
emission around 620 nm. Finally, the Component 8 is an artifact due to 
Rayleigh scattering. 

Thus, thanks to the application of MCR-ALS to 3D and 4D images and 
to the previous study of the photobleaching phenomenon, the optimal 
image acquisition parameters to minimize photobleaching and improve 
the overall quality of data obtained from fluorescence imaging of root 
tissue could be obtained. Improving the signal-to-noise ratio (SNR) of 
fluorescence data, MCR-ALS could improve the detection and unmixing 
of natural fluorescence compounds present in root tissue, as it is re
flected in Table 1, i.e., the number of components detected and the 
explained variance by the MCR model increased significantly even if the 
characterization experiment took only 10 min. In this context, the use of 
MCR-ALS also enabled to identify previously undetected compounds, 
which can provide valuable insights into the biology and physiology 
knowledge of plants. 

5. Conclusions 

The photobleaching phenomenon needs to be adequately described 
to guide a proper fluorescence image acquisition that allows detecting 
and characterizing all fluorophores present in samples while minimizing 
sample photodamage. 

To do so, sets of 3D or 4D fluorescence images need to be acquired 
over time and be analyzed simultaneously. Characterization of the 
photobleaching phenomenon of a sample requires considering that this 
phenomenon is fluorophore-specific and some compounds may show a 
high signal decay while others may be almost invariant along time. To 
assist in this individual characterization, the unmixing methodology 
MCR-ALS is particularly suitable. Owing to the flexibility in the use of 
model constraints, pure fluorophore specificities like the invariance of 
the shape of maps and of pure excitation-emission spectra during pho
tobleaching can be appropriately considered. To do so, trilinearity 
constraints applied in the maps and/or spectral directions and inclusion 
of model constraint variants that can handle the presence of systematic 
patterns of absent values in 2D excitation-emission landscapes is 
exploited. Thus, photobleaching in 3D and 4D images can be adequately 
described with dedicated trilinear and quadrilinear models, respec
tively, always providing concentration and spectral profiles and, most 
important, photobleaching decay curves, for every resolved fluo
rophore. Additionally, the multilinear nature of the models applied 
ensures unique solutions. 

Once the photobleaching phenomenon is characterized, strategies 
like selecting few excitation channels to build sufficiently informative 
4D fluorescence images with a limited sample exposure time ensure the 
characterization of all fluorescent compounds despite their different 
sensitivity to photobleaching. 

The presented approach has been shown to be particularly suitable 
for challenging biological samples, with a high number of spectrally and 
spatially overlapped fluorescent compounds with very different photo
bleaching behavior, and can be extended to any kind of samples con
taining natural fluorescent compounds or fluorophores used for staining 
purposes. 
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S. Espeout, E. Guiderdoni, C. Périn, Molecular genetics of rice root development, 
Rice 2 (1) (2009) 15–34. 

[19] Anna De Juan, Multivariate curve resolution for hyperspectral image analysis, in: 
En Data Handling in Science and Technology, Elsevier, 2019, pp. 115–150. 

[20] S. Hugelier, O. Devos, C. Ruckebusch, On the implementation of spatial constraints 
in multivariate curve resolution alternating least squares for hyperspectral image 
analysis, J. Chemom. 29 (10) (2015) 557–561. 

[21] S. Hugelier, et al., Application of a sparseness constraint in multivariate curve 
resolution–alternating least squares, Anal. Chim. Acta 1000 (2018) 100–108. 

[22] A. de Juan, M. Maeder, T. Hancewicz, R. Tauler, Use of local rank-based spatial 
information for resolution of spectroscopic images, J. Chemometrics: J. 
Chemometrics Soc. 22 (5) (2008) 291–298. 
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