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Abstract
Photodegradation of an industrial Azo dye C.I Basic Red 46, was examined in a semi-pilot scale prototype solar photoreactor 
under solar radiation. In our study, photodegradation of the dye was optimized using Response Surface Methodology (RSM) 
based on Box-Wilson approach. The Artificial Neural Network (ANN) was used to establish suitable modeling and optimal 
conditions for the Solar UV/Immobilized-TiO2 process in order to evaluate the individual effects of three factors that inde-
pendently affect the effectiveness of the photodegradation process: (1) initial concentration of the dye, (2) pH, and (3) flow 
rate. The RSM was in good agreement with the prediction model (R2

Dec = 0.95); meanwhile, the ANN approach revealed that 
the predicated model fit perfectly with the experimental data to yield the highest value of R2 = 0.999. The effects of these 
three factors could be estimated from a second-order polynomial equation, and the optimal parameters of photodegradation 
consisted of three main parameters: (1) initial concentration of colorant 10.65 mg.L−1, (2) pH 10.82, and (3) rate of fluid 
flow of 852 L h−1. The decolorization removal efficiency under these optimal conditions was 99%.

Keywords  Photocatalysis · Azo dye · Optimization · Response surface methodology · Artificial neural network · central 
composite design

1  Introduction

Organic dyes are widely used in various industries and gen-
erate around one trillion dollars, contribute to 7% of the total 
world exports. Organic dye industries, such those involv-
ing textiles, pharmaceuticals, colors, papers, cosmetics, 

photography, and food, employ around 35 million workers 
worldwide [1]. More than 0.7 million tons of organic syn-
thetic dyes are produced annually worldwide. In addition, 
over 10,000 different dyes and pigments are applied in these 
industries [2].

The Danish Environmental Protection Agency (DEPA) 
has classified the azo-dye as a suspected human carcinogen 
and has suggested a maximum of 3.1 μg L−1 in drinking 
water for safety reasons [3]. Moreover, a recent study by 
the Occupational Dermatology Research Center in Australia 
recommended that the textile dye BR 46 be tested as a causa-
tive agent in cases of foot dermatitis [4].

Advanced oxidation processes (AOPs) are promising 
techniques that can be used as efficient processes for waste-
water treatment of industrial textile dyes. Over the last sev-
eral decades, AOPs have come under extensive scrutiny by 
many researchers due to the possibility of complete mineral-
ization of the most toxic pollutants [2, 5, 6]. Heterogeneous 
photocatalysis, as one of the AOPs, has attracted much atten-
tion because these processes occur in the presence of irra-
diating sources in addition to a semiconductor with oxygen 
as a critical electron scavenger. Photocatalysis is a chemical 
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reaction that occurs via photon absorption by a solid mate-
rial, known as a photocatalyst. Thus, based on photocatalytic 
activity, the photonic excitation of a photocatalyst (semi-
conductor) generates electron–hole pairs in its surface, and 
the photocatalysis process can be recapitulated in water in 
five steps: (1) transfer to the surface of photocatalysts, (2) 
adsorption of the reactants, (3) photonic activation of the 
photocatalyst, (4) desorption, and (5) finally, elimination of 
reaction products from the interface region.

The highly oxidative h+
�B

 can react with surface bound 
H2O to produce hydroxyl radicals °OH or can directly react 
with the organic molecules [7, 8]:

Thus, solar  energy has been regarded as one of the 
most promising renewable energy-generating pro-
cesses in recent years, interest has focused on the design of 
new solar photocatalytic reactors [9, 10]. Thus, solar photo-
catalysis is a more interesting process that consists of using 
the 5% of ultraviolet (UV) radiation in the solar spectrum 
that is sufficient to activate the catalyst. This technique is 
considered a durable developmental perspective based on 
renewable energy and is very promising, especially for a 
country that receives lots of sunlight, such as Algeria. Since 
the emergence of photocatalysis, several semi-pilot photo-
reactors for the treatment of water have recently been devel-
oped [11–14].

The photocatalysis process is strongly dependent on vari-
ous operational conditions, which require the development 
of experimental designs that allow for the study and optimi-
zation of their influence during the photodegradation pro-
cess. The design of these types of experiments is a powerful 
tool and can be used to examine the effects of the selected 
factors on the response process. Response surface method-
ology (RSM) has been extensively applied to solve many 
optimization processes [15, 16], including photocatalysis 
process with titanium oxide (TiO2)-supported or slurry/UV 
oxidation [17, 18] and ozone or electrochemical oxidation 
processes [19]. Many recent studies use artificial neural net-
works (ANN) as robust tools that can be applied to a set of 
raw experimental data to address a wide range of problems, 
such as a non-linear mathematical relationships between 
the input and output of the process. ANN is an information 
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processing paradigm consisting of many interconnected 
neurons that was loosely inspired by the human brain [20]. 
The neuron is a processing element that takes a number of 
inputs, weighs them, sums them up, adds a bias, and uses 
the outcome as the argument for a single-valued function 
(transfer function), which results in the neuron’s output [21]. 
Recently, the ANN technique has been widely used for AOP 
modeling [22, 23] and photocatalytic processes [24–27].

However, as far as we know, studies on the solar UV/TiO2 
semi-pilot scale systems modeling using RSM and ANN are 
very limited even non-existent in the literature. In this study, 
we examined optimization of three independents parameters: 
(1) initial dye concentration, (2) pH, and (3) flow rate by 
training a neural network. To estimate an RSM based on 
the Box–Wilson design of photocatalytic decolorization of 
an industrial cationic dye Basic Red 46 (BR46) in a semi-
pilot solar photoreactor using the catalyst TiO2 Degussa P25 
from the TiO2/Solar UV system. Furthermore, this study 
provides a way to optimize such a photoreactor and will 
enable application of this device as specific treatment for a 
real water sample obtained from Aurassienne Spinning and 
Blankets (SAFILCO) Company, Algeria, charged by the dye, 
C.I. Basic Red 46 to achieve optimal results.

2 � Experimental

2.1 � Chemicals and materials

The solar photocatalytic reactor used in our study was a 
tubular reactor compound parabolic collector (CPC) type 
(Fig. 1) [15]. The volume of wastewater to be treated in 
each experiment was 10 L. The solar reactor was oper-
ated in the batch mode (Fig.  1) and consisted of five 
UV-transparent borosilicate glass tubes (length: 1  m, 
external diameter: 30 mm, thickness: 1.4 mm) made in 
Germany (Schott–Rohrglas GmbH Company) and deliv-
ered by SOMIVER (E.N.A.V.A) Company, Algeria. These 
tubes were connected in series to a storage tank (40 L 
capacity) by plastic joints and mounted on CPC-type alu-
minum reflector, thus ensuring that the light reaching the 
surface of the tubes was homogeneous. The volume that 
was effectively irradiated was 3.2 L, and the volume of 
colored water to be treated was 10 L. A stirrer inside the 
tank ensured a homogeneous concentration of particles 
in the solution. The effluent was circulated via a centrifu-
gal pump. A flow meter, fitted with a calibration curve, 
was placed between the pump outlet and reactor inlet. The 
reactor was oriented south and inclined at an angle of 36° 
(latitude at Constantine, Algeria) with respect to the hori-
zontal; with this position, the annual collection of solar 
energy is maximized. Basic Red 46 (Table 1) used in this 
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study is an industrial textile dye available at Aurassienne 
Spinning and Blankets (SAFILCO) Company, Algeria.

The photocatalyst used in our study was a commer-
cial TiO2 photocatalyst provided by Ahlstrom Company 
(France). The company produces paper with deposited 
TiO2 used as flexible photocatalytic media. The immobi-
lized catalysts consist of PC500 TiO2 from Millennium 
Inorganic Chemicals (anatase: > 99%, specific surface 
area 350–400 m2 g−1, crystallites mean size = 5–10 nm). 
In order to improve the adsorption capacity and the pho-
tocatalytic efficiency of the composition, the catalyst was 
coated onto nonwoven fibers (254 µm thickness) using an 
inorganic binder agent consisting exclusively of an aque-
ous colloidal dispersion of silicon dioxide (SiO2). The 
SiO2 represents from 20 to 50% by weight of the colloidal 
aqueous dispersion with 48% as the most advantageous 
weight (EP1069950B1 European patent). Moreover, to 
increase the specific surface area extender zeolite UOP 
(2000 m2 g−1) was used to increase adsorption proper-
ties of the photocatalyst. Table 2 shows the physical and 
chemical characteristics. The presence of zeolite on the 
TiO2 surface leads to an increase in surface area of the 
photocatalyst, which provides an effective way to cre-
ate more reactive sites and better adsorption capacity 
and thus enhance photocatalytic activity. The scanning 
electron microscopy (SEM) image of TiO2 nanoparti-
cles deposited on non-woven paper and X-ray diffraction 

pattern (XRD) of TiO2 PC-500 (Supplementary Data) 
reveal that the fiber surfaces show the agglomeration of 
the catalyst on the fiberglass cloth surface [28].

The photocatalyst used in our study has also 
attracted the attention of several researchers, such as Ko 
[28, 29] who did a comparative study of the characteriza-
tion of natural zeolite-based nano-titania composite sheets 
with non-woven photocatalytic paper purchased from Ahl-
strom, (France, BR 1048- 075, 75 g m−2).

Fig. 1   Experimental solar set up

Table 1   Structure and characteristics of C.I.Basic Red 46

Structure Class C.I number λmax(nm) Mw (g mol−1)

Cationic Mono-azo 110825 531 357.5

Table 2   Physico-Chemical properties of the immobilized photocata-
lyst

Compositions
 PC 500 18 g m−2

 SiO2 20 g m−2

 UOP200 2 g m−2

Physical properties
 Masse per unit area 75 g m−2

 Thickness 254 µm
 Air permeability 2570 L m−2 s−2

 Tensile strength MD 1100 N m−2

 CD 500 N m−2

 Elongation MD 3%
 CD 5%
 Water drop 2%



967Topics in Catalysis (2020) 63:964–975	

1 3

2.2 � Analytical procedures

All of the samples collected from the experiments were 
centrifuged at 4000  rpm for 25 min using a centrifuge 
(Sigma 2–16) to remove the TiO2 nanoparticles. Color 
removal of dye BR46 was determined by UV absorption 
at λmax = 531 nm using a UV–Vis spectrophotometer (Shi-
madzu UV-160A) and calibration curve based on Beer–Lam-
bert’s law; therefore, the photodegradation yield (Y%) can be 
explained by the ratio of residual concentration to the initial 
one as shown in Eq. 6:

The percentage decolorization rate (Y, %) was expressed 
as the percentage ratio of decolorized dye concentration to 
that of the initial one. Y, C0, and Ci are the decolorization 
efficiency (%) and the initial and decolorized dye concentra-
tions, respectively. Solar radiation (400–720 nm) was meas-
ured with a light meter (Lutron; LX-107) mounted next to 
the CPCs.

The results of experiments are expressed as a function of 
accumulated solar energy QV (KJ L−1) received by the reac-
tor per unit volume of solution to be treated.

in which QV,n is the accumulated solar energy incident on the 
reactor (KJ L−1), tn is the experimental time of each sample, 
−

VG,n the solar radiation intensity (W m−2) measured by the 
lightmeter, Ar is the collector surface (m2), and Vt is the vol-
ume of solution to be treated (L). This dimension makes the 
comparison of degradation kinetics for different operating 
conditions possible regardless of the weather conditions and 
resulting solar irradiation. All experiments were conducted 
at at the temperature interval of 25–40 °C.

2.3 � Experimental design

The second-order polynomial equation describes the rate of 
photodegradation versus the selected functional parameters, 
including initial dye concentration (X1), pH (X2), and flow 
rate (X3), while the solar energy accumulated remained fixed 
at 60 kJ L−1 for all experiments. The photodegradation pro-
cess was optimized applying the Central Composite Design 
(CCD) or Box–Wilson Design and RSM consisting, of 20 
experiments. Table 3 represents the levels and ranges of the 
selected independent variables.

A second-order polynomial model was provided by the 
Box–Wilson design, which relates the response Y to the 

(6)Y =
C0 − Ci

C0

× 100.

(7)QV ,n = QV ,n−1 + Δtn VG,n

Ar

Vt

Δtn = tn − Tn− 1

selected factors, X1, X2, X3, was used to optimize the decol-
orization process:

MINITAB stat software (17 Minitab Institute, USA) offers 
a full quadratic regression method to analyze responses, and 
this method was used to fit the mathematical experimental data 
models to the second-order polynomial equation.

2.4 � Artificial neural network model development

The development of ANN models was studied using MAT-
LAB 14a. Table 4 illustrates the different parameters. The 
feed-forward neural network with back propagation method 
is the most commonly encountered in physicochemical pro-
cess modeling [29]. A three feed forward network with func-
tion “traingdx” was chosen as the training function, which 
describes the gradient decline with momentum and adaptive 
learning rate backpropagation, the input layer defined by three 
neurons that represents the dye concentration (mg L−1), pH, 
and recirculation flow rate QL (L h−1); on the other hand, the 
output layer comprises one (01) neuron as an interest rate such 
as BR46 degradation efficiency (%), as shown in Fig. 2.

The datasets were divided into three subsets in which 70% 
of the data was used for the training of the network, 15% for 
validation, and 15% for testing. The mean square error (MSE) 
was used to examine the relationship between the neurons in 
the hidden layer and network error or even more between the 
ANN model predictions and the experimental data as calcu-
lated by Eq. 9:

and the coefficient of determination (R2) was expressed as:

(8)

Y(photodegradation efficiency) = a0 + a1X1 + a2X2 + a3X3

+ a12X1X2 + a13X1X3 + a23X2X3a11X
2
1
+ a22X

2
2

+ a33X3

(9)MSE =

N∑

i= 1

(yi − yi−pred)

n

(10)R2 =

N∑
i= 1

(yi − yi− pred)
2

∑
(yi−moy − yi−pred )

2

Table 3   Range and levels of experimental parameters

Variable Ranges and levels

− 1.68 − 1 0  + 1  + 1.68

X1 [RB46]0(mgL−1) 8.2 15 25 35 41.8
X2 pH 2.8 4.5 7 9.5 11.2
X3 Recirculation flow 

rate QL (Lh−1)
348 450 600 750 852
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in which yi and yi-pred are the experimental and predicted 
values obtained either from ANN or RSM, yi-av is the aver-
age values, and n is the number of experiences.

In the present work, log-sigmoidal and linear trans-
fer functions were used for hidden and output layers, 
respectively.

3 � Results and discussions

3.1 � Box‑Wilson modeling

The three-level matrix generated by the Box–Wilson design 
was used for the experimentally obtained responses for pho-
todegradation is shown in Table 5. Based on these results, 
the empirical relationship that relates the response and 
selected variables was obtained:

The diagnostic plots describes the residual analy-
sis, which is mainly based on the difference between the 
observed and the predicted response value of the response 
surface design, thus ensuring that the statistical assump-
tions fit the analysis data (Fig. 3). Normal probability plots 

(11)

� = 78.17 − 0.290X
1
+ 4.178X

2
− 3.349X

3
− 3.139X

1
X
2

− 0.796X
1
X
3
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2
X
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2

1
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2

2
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2

3

Table 4   ANN Parameters 
setting

Parameters Condition

Input Neurons Three (Dye concentration, pH, Recirculation flow rate)
Output Neurons One (BR 46 Degradation efficiency)
Hidden Layers From 2 to 16
Transfer Function Tangent sigmoid (TANSIG)
Performance function Mean Square Error
Data division 70%-15%-15% for training- validation- testing
Data division function Dividerand
Training function Traingdx

Fig. 2   Neural Network 
Architecture for input/output 
variables

Table 5   Experimental design matrix, experimental results and pre-
dicted photocatalytic decolorization efficiency

Exp [BR46] (mg L−1) Ph Flow rate 
(L min−1)

Yield (%)

Measured Predicted

1 − 1 − 1 − 1 77.33 78.62
2 1 − 1 − 1 89.63 87.07
3 − 1 1 − 1 65.52 67.52
4 1 1 − 1 61.00 63.42
5 − 1 − 1 1 80.18 77.89
6 1 − 1 1 85.03 83.15
7 − 1 1 1 82.14 84.83
8 1 1 1 78.70 77.54
9 − 1.68 0 0 65.05 62.91
10  + 1.68 0 0 61.94 63.88
11 0 − 1.68 0 95.11 98.39
12 0  + 1.68 0 87.83 84.34
13 0 0 − 1.68 74.05 72.23
14 0 0  + 1.68 81.88 83.50
15 0 0 0 78.33 78.16
16 0 0 0 78.33 78.16
17 0 0 0 78.33 78.16
18 0 0 0 77.33 78.16
19 0 0 0 78.33 78.16
20 0 0 0 78.33 78.16
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of the residuals are a suitable graphical method to verify 
whether the standard deviations between the actual and the 
predicted response values follow a normal distribution [16]. 
The results illustrated in Fig. 3 convey the general impres-
sion of a normal distribution of underlying errors since the 
residuals fall near a straight line; thus, there is no clear indi-
cation of non-normality of the experimental results. Based 
on this plot, the residuals appear to be randomly scattered; 
thus, the proposed model was adequate, and the constant 
variance assumption was confirmed.

The experimental responses versus the predicted ones 
are shown in Fig. 3. The predicted values approximated the 
observed values in all sets of experiments. Also, there were 
tendencies toward a linear regression fit. The predicted val-
ues agreed well with the experimental data with a coefficient 
of determination of R2 = 0.95 and adjusted coefficient of 
determination of Radj

2 = 0.908. These results imply that 95% 
of the variations in percent degradation could be explained 
by the selected variables. The adjusted R2 (R adj

2) is a cor-
rected goodness-of-fit parameter, and it was also close to 
the coefficient of determination R2, which indicates that the 
regression predictions accurately approximated the real data 
points.

3.2 � Analysis of variance (ANOVA)

Analysis of variance (ANOVA) was used to determine the 
important main and interaction effects of factors that influ-
ence the dye photodegradation efficiency (Table 6). This 
model is extremely significant and could be validated by 
Fisher value (F–value = 21.53), which is greater than the 
critical F-value at a level of significance α = 0.95 (F-tabu-
lar = 3.48), indicating that the differences in treatment were 
highly significant. For statistical significance, we expect 
the absolute value of the t-ratio to be > 2 or the P-value to 
be < the significance level (α = 0.05). The P-values were 
also used to verify the significance of each coefficient; if 
the p-value < 0.05, the terms of model would be significant; 
thus, the coefficient was more significant with a greater 
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Fig. 3   Residual plots for photocatalytic decolorization efficiency of BR46

Table 6   Analysis of variance (ANOVA) for fit of decolorization effi-
ciency from central composite design

R2 = 0.9509. Adj- R2 = 0.9068. F-value = 21.53» F0.05 (9.10) tabu-
lar = 3.34

Source of variation Sum of squares Degree 
of free-
dom

Adjusted 
mean 
square

F value

Regression 1423.85 9 158.206 21.53
Residuals 73.48 10 7.348
Total 1497.33 19
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Student’s t-test magnitude and smaller p-values [30] as 
shown on the Pareto chart (Fig. 4). It is clear that the main 
significant reaction parameters followed a specific order 
(reported as most to least significant): quadratic of dye con-
centration > quadratic effect pH > effect of pH > interaction 
between pH and flow rate > effect of flow rate > interaction 
between initial concentration of the dye and pH.

3.3 � Response surface plots effect of factors 
and interactions on BR46 degradation

The effects of factors can be estimated from the second-
order polynomial equation and Student’s t-test, and syner-
gistic or antagonistic effects correspond to the positive or 
negative model coefficient.

The Student’s t-test (Table 7) was used to determine 
whether the effects differed significantly from zero accord-
ing to the following relation [15, 31]:

It is clear from Table 7 that the main significant reac-
tion parameters followed a specific order (reported a most to 
least significant): second-order effect of initial dye concen-
tration > second-order effect of pH > initial pH > interaction 
between the flow rate and initial pH > flow rate > interaction 
between the effect of initial dye concentration and pH.

Response surface and contour plots were generated by 
stat software (MINITAB 17) to study the effect of inter-
actions of the three variables tested on the decolorization 
and the degradation efficiency Y (%) as shown in Fig. 5 in 
which a disc-shaped contour scheme indicates that the inter-
action between factors was insignificant, while an ellipti-
cal form (egg-shaped) designated the importance of the 
interaction on either side of the selected factors [32, 33]. The 
results revealed that the decolorization yield Y (%) was more 
significant at low flow rate and acidic pH within the selected 
ranges of BR46 concentration while maintaining the reac-
tion time at 150 min in all experiments. This finding could 
be explained by the fact that the solution is more exposed 
to solar radiation, which generated more hydroxyl radicals 
(°OH) and led to increasing degradation efficiency. Also at 
high flow rates and under alkaline conditions, photodegra-
dation presents very significant results [16]. The presumed 
reason for that finding is that when the recirculated liquid 
flow is increased, the turbulence in the system was enhanced, 
which ensured better dispersion of particles (BR46 and 
TiO2) in the solution inside the reactor. Higher decolori-
zation efficiencies at higher flow rates were also attributed 
to the increase in the mass transfer coefficient [34]. Deg-
radation efficiencies of dyes were observed under alkaline 
conditions and at higher flow rates, which may have been 
due to cationic nature of BR46 dye; thus, in basic medium, 
hydroxyl radicals were produced on the catalyst surface via 
the reaction shown below:

High pH favors adsorption on the catalyst surface, which 
results in high decolorization efficiency [15].

3.4 � ANN modeling

The main objective of ANN modeling is to determine the 
optimal operational conditions (topology) in order to predict 
BR46 degradation; thus, several topologies were tested by 
varying the number of neurons in the hidden layer from 2 
to 20. The MSE and coefficient of determination (R2) were 
used to investigate the relationship between the neurons in 
the hidden layer and network error, and obtained results are 

(12)ti =
|ai|
�i

(13)TiO2

(
h+
vb

)
+ OH (ads)− →

◦OH

Fig. 4   Pareto chart for BR46 photodecolorization efficiency

Table 7   Regression results from the data of central composite design 
experiments

Coefficient Parameter estimate Standard error t-value P-value

a0 78.16 1.105 70.70 0.000
a1 0.28 0.73 0.39 0.701
a2 − 4.17 0.73 − 5.69 0.000
a3 3.34 0.73 4.56 0.001
a11 − 5.2 0.71 − 7.31 0.000
a22 4.66 0.71 6.53 0.000
a33 − 0.10 0.71 − 0.14 0.885
a12 − 3.13 0.95 − 3.27 0.008
a13 − 0.79 0.95 − 0.83 0.425
a23 4.51 0.95 4.70 0.001
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illustrated in Fig. 7a. The findings indicate that the MSE 
decreased and increased by changing the hidden neuron 
sizes. Accordingly, the optimal value of the corresponding 

number of inputs, hidden, and output layers was 3 × 4 × 1, 
which was selected as the optimum topography to model the 
BR46 decolorization process. The number of sessions for the 

Fig. 5   The response surface and contour plots of photocatalytic degradation efficiency (Y%)
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obtaining the best framework was established, and finally, 
after 897 iterations, the optimal network was achieved. The 
values of the regression coefficients were 0.9995, 0.9879, 
0.9651, and 0.9849 for training, validation, testing (Fig. 6b), 
and all parameters, respectively. The results indicated that 
the neural network approximation would perform better for 
a response that is not “smooth”, whereas the classical RSM 
does not perform well in these types of situations.

3.5 � Optimal conditions and plausible mechanism 
of photodegradation

In order to prove the power of the statistical tool used to 
optimize the operating conditions of the solar reactor which 
allowed maximum degradation of the BR46 azo dye; the 
process of obtaining optimum values for the maximum 
decolorization efficiency is easily determined by taking the 
derivatives with respect to each variable asnd solving for 
zero, and in our case, were 10.65 mg L−1 and 10.82 and 852 

Fig. 6   a MSE versus a number 
of neurons in a hidden layer. 
b Neural network showing the 
regression analysis of training, 
validation, and target for photo-
degradation efficiency of BR46
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L h−1 for initial dye concentration (X1), initial pH (X2), and 
flow rate (X3), respectively.

After using additional experimental test to verify the 
predicted values, the results indicate that the maximal 
decolorization efficiency was obtained when the values of 
each parameter were set as the optimum values, which is in 
good agreement with the predicted value from the regres-
sion model. This find implies that the strategy to optimize 
decolorization conditions and to obtain the maximal decol-
orization efficiency by RSM for the photocatalytic degrada-
tion of the dye Basic Red 46 in this study was successful. 
Furthermore, this study introduces a way to optimize such 
a photoreactor and will enable to apply in this device, a 
specific treatment for a real water obtained from Aurassi-
enne Spinning and Blankets (SAFILCO) Company, Algeria, 
charged by the dye, C.I. Basic Red 46 to impose the optimal 
results. The Fig. 7 shows the mechanism of BR46 photode-
colorization in the immobilized photocatalyst media. Solar 
UV light irradiation provides photons with adequate energy, 
which led to molecular excitation on the surface of TiO2 
resulting in the generation of mobile electrons in the higher 
energy conduction band and positive holes in the lower 
energy valence band (Eqs. 1–5). The reactions occur near 

the TiO2 surface between electrons as a scavenger of oxygen 
molecules in order to avoid the electron–hole recombination 
step, and the holes with adsorbed water allowed for genera-
tion of °OH radicals, which eventually degraded the RB46 
molecules. The efficiency of the immobilized catalyst could 
be explained by participation of all of the inner parts of the 
film in the generation of e − /h + pair the BR46 molecules 
that were in close enough proximity to the TiO2 particles 
[35–37].

4 � Conclusion

The response surface methodology and the Box–Wilson 
design and ANN were used for analysis of the decolorization 
of the industrial azo-dye, C.I BR46 in a solar photoreactor 
and to evaluate the individual effects of three independent 
parameters: initial concentration of the dye, pH and flow 
rate on photodegradation effectiveness. Analysis of vari-
ance (ANOVA) and the ANN approach revealed that predi-
cated models were perfectly fitted with the experimental 
data giving the highest value of coefficient of determination 
(R2 = 95% and = 0.999 for RSM and ANN, respectively) for 

Fig. 7   Plausible mechanism of 
photodecolorization of BR46 in 
the immobilized catalyst
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optimal topology consisting of the number of input, hid-
den, and output layers of 3 × 4 × 1, respectively. The optimal 
conditions found by RSM and ANN were initial concentra-
tion of colorant 10.65 mg L−1, pH 10.82, and rate of fluid 
flow 852 L h−1. The decolorization removal efficiency under 
these optimal conditions was 99%. Also, we think that such 
a device is perfectly integrated for a photocatalysis operation 
and can be easily extrapolated for specific water treatment 
containing pollutants resistant to conventional treatment.
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