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Featured Application: This review will offer a global overview of the chemometric approaches
most commonly used in the field of spectroscopy-based food analysis and authentication.
Three different scenarios will be surveyed: data exploration, calibration and classification.
Basic and simple descriptions of the main multivariate techniques exploited in such a domain
along with a comprehensive outline of their most recent and interesting applications will
be provided.

Abstract: In the last decades, spectroscopic techniques have played an increasingly crucial role
in analytical chemistry, due to the numerous advantages they offer. Several of these techniques
(e.g., Near-InfraRed—NIR—or Fourier Transform InfraRed—FT-IR—spectroscopy) are considered
particularly valuable because, by means of suitable equipment, they enable a fast and non-destructive
sample characterization. This aspect, together with the possibility of easily developing devices for
on- and in-line applications, has recently favored the diffusion of such approaches especially in
the context of foodstuff quality control. Nevertheless, the complex nature of the signal yielded by
spectroscopy instrumentation (regardless of the spectral range investigated) inevitably calls for the use
of multivariate chemometric strategies for its accurate assessment and interpretation. This review aims
at providing a comprehensive overview of some of the chemometric tools most commonly exploited
for spectroscopy-based foodstuff analysis and authentication. More in detail, three different scenarios
will be surveyed here: data exploration, calibration and classification. The main methodologies suited
to addressing each one of these different tasks will be outlined and examples illustrating their use
will be provided alongside their description.

Keywords: spectroscopy; food authentication; chemometrics; data exploration; calibration;
classification; data fusion; curve resolution; analysis of multivariate designed data

1. Introduction

In recent years, consumers’ attention towards the quality of foodstuff has become increasingly
lively. The awareness that there exists a close link between health and diet has spread dramatically,
leading a growing number of people to develop conscious eating habits. For this reason, and thanks
to the so-called food revolution, aliments (especially high value-added food products) are commonly
subjected to strict quality controls. These tests are of paramount importance, especially for attesting to
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some peculiar features (connected, for instance, to their geographical origin, their specific manufacturing
process, and/or the know-how of their producers) that might translate into the recognition of distinctive
labelling designations like the Protected Designation of Origin (PDO) or the Protected Geographical
Indication (PGI). In light of this, a plethora of analytical methodologies aimed at foodstuff authentication
and traceability have recently been developed, and a wide variety of applications of such methodologies
have been reported in the scientific literature. More specifically, given the notable market value of this
type of product, much effort has been put into the design of non-destructive characterization tools
for quality control, generally based on the principles of light–matter interaction and spectroscopy.
However, unfortunately, the signal profiles yielded by spectroscopy instrumentation (regardless of the
spectral range investigated) are often particularly complex and thus, their assessment and interpretation
are usually not straightforward. In this context, multivariate statistical approaches (also known as
chemometric approaches) have lately played—and currently still play—a crucial role: they have proven,
in fact, to be extremely powerful when large amounts of spectral data (characterized by a considerable
degree of intercorrelation among the recorded spectral variables) need to be coped with, and when
useful and meaningful information is to be extracted from these data for disparate purposes.

Given, therefore, the sheer relevance of such approaches in the field of spectroscopy-based
foodstuff analysis and authentication, this review aims at providing a comprehensive overview of
those most commonly exploited in real-world case studies. Specifically, three scenarios will be here
surveyed: exploration, calibration (necessary to carry out quantification) and classification (for, e.g.,
adulteration and/or fraud detection). The first one, intended to pursue direct insights into the data
with the possibility of revealing hidden/underlying structures and relationships between samples
and/or variables, and making extensive use of plots and graphs to highlight similarities, differences,
trends, clusters and/or correlations, relies on so-called unsupervised techniques, which do not require
any input other than the (spectroscopic) data themselves [1]. On the other hand, calibration and
classification problems call for the use of predictive models that exploit the spectroscopic information
to predict one or more properties of the objects under study; in order to be reliable, such models
have to be constructed by supervised approaches, i.e., techniques which actively take advantage not
only of the experimental (spectroscopic) data but also of, e.g., reference values of the aforementioned
properties or sample labelling [2]. The main chemometric methodologies suited to addressing each one
of these different tasks will be outlined, and examples illustrating their use will be provided alongside
their description.

2. Data Exploration

Prior to conducting a proper food authentication study, users might be interested in carrying
out preliminary investigations to assess, for instance, whether a particular spectroscopic technique is
capable of discerning products of distinct geographical origins or whether an instrumental response is
sensitive enough to detect the presence of compounds or adulterants of interest in the specific samples
at hand. In this regard, chemometric exploratory tools based on the reduction of the dimensionality of
the original data collected are of crucial importance, as they dramatically ease the visualization of these
data, allowing possible differences among specimens (related to one or multiple of the aforementioned
aspects, like the presence of undesired/unexpected substances) to be spotted in a straightforward way.
Given, in fact, the complex multidimensional and multivariate nature of spectroscopic measurements,
such differences are very often undiscernible when simply plotting raw spectral profiles since they
normally lie not in few scattered regions of the concerned wavelength domain, but in the correlation
structure intrinsic to the recorded spectral variables or descriptors (this is the case especially for
low-selectivity approaches as Near-InfraRed—NIR—spectroscopy). For this reason, one of the most
commonly exploited tools in similar scenarios to facilitate and improve the identification of diverse
groups of food samples is Principal Component Analysis (PCA) [3,4]. PCA makes it possible to
compress, describe and interpret large sets of multidimensional data. Its basic principle can be
summarized as follows: let X be a centered N × J matrix with J denoting the number of variables



Appl. Sci. 2020, 10, 6544 3 of 34

(e.g., J wavelengths of light scanned in a spectroscopy experiment) registered, for instance, at N time
instants or for N different objects. As specified, when J is very large, the useful and meaningful
information in X is usually intercorrelated among various of these variables over the whole set of
recordings. Then, for a chosen degree of acceptable accuracy, it is possible to reduce the J-dimensional
space of the original descriptors to an APCA-dimensional subspace in which data mostly vary and onto
which all the N samples under study can be projected and represented as new points. Mathematically
speaking, PCA is based on the bilinear structure model in Equation (1):

X = TPT + EPCA (1)

where P (J ×APCA) is an array of so-called loadings, which determine the APCA basis vectors (principal
components or factors) of the PCA subspace, T (N ×APCA) defines the projection coordinates or scores of
all the N rows of X on this lower-dimensional space and EPCA (N × J) denotes the matrix of unmodelled
residuals, i.e., the portion of X not explained at the chosen rank, APCA—in PCA, the optimal number of
principal components to extract can be estimated by a wide range of approaches that, broadly speaking,
can be classified into three distinct categories [5]: ad hoc rules (like Kaiser's eigenvalue-greater-than-1
rule [6], Velicer’s minimum average partial rule [7], and Cattell’s scree test [8]), statistical tests (like
Bartlett’s Chi-square test [9] and Tracy-Widom’s statistics-based test [10]) and computational criteria
(like cross-validation [11–13] and permutation testing [14–21].

The PCA solution may be formulated in many equivalent ways and attained by a variety of
algorithms, among which the most widespread and popular is certainly Singular Value Decomposition
(SVD [22]). SVD decomposes X as:

X = UDVT + E (2)

with the columns of U (N ×APCA) and V (J ×APCA) being the first APCA left and right singular vectors
of X, respectively, and D (APCA ×APCA) a square diagonal array whose diagonal elements correspond
to its first APCA non-zero singular values. Therefore, it holds that T = UD and P = V.

PCA shows the following property:
PTP = I (3)

where I is an identity matrix of dimensions APCA × APCA, which translates into the fact that the
dimensions of its subspace are orthogonal and, thus, can be inspected assuming that the information
they individually capture is mutually unrelated.

The assessment and interpretation of a PCA model is generally performed by examining both
scores and loadings profiles (i.e., the columns of T and P, respectively). The former yield insights
into existing relations among analyzed objects, while the latter enable the identification of correlation
patterns within ensembles of multiple spectral variables. The basic idea, here, is to simultaneously
analyze these profiles not only to possibly pinpoint the presence of distinctive clusters of samples, but
also to recognize sets of spectral features shared within each one of these clusters and responsible for
their differentiation. Nevertheless, as a consequence of the orthogonality imposed to the principal
components, PCA scores and loadings seldom provide physico-chemically meaningful information,
since they do not capture single phenomena or events affecting the registered measurements, but rather
heterogeneous effects resulting from combinations of such phenomena or events. To overcome this
limitation, alternative approaches like Independent Component Analysis (ICA [23,24]) can be resorted
to. Unlike PCA, ICA regards the rows of the data matrix X as a collection of observed signals that
are mixtures of a certain number of common unknown source signals or independent components and
decomposes it as:

X = ART + EICA (4)

with A (N ×AICA) being the so-called proportion matrix, carrying the mixing coefficients associated with
these independent components contained in every column of R (J ×AICA), and EICA (N × J) denoting
the ICA residual array.
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As for PCA, the interpretation of an ICA model rests on the simultaneous inspection of the
retrieved independent components and their respective proportion profiles. Independent components
are analogous to PCA loadings, but, differently from them, are not necessarily orthogonal, and therefore,
can be easily related to individual phenomena impacting the recorded spectral variables (e.g., Rayleigh
or Raman scattering) [25–28]. Subsequently, ICA proportions can give a quantitative idea of how they
influence the raw measured spectra.

There exist several algorithms by which the ICA solution can be attained. Examples are
Infomax [29], FastICA [30] and JADE (Joint Approximate Diagonalization of Eigenmatrices) [26,31].
Their basic principle, though, is common: source signals are estimated by maximizing their statistical
independence. In essence, they can be looked at as the outcome of a rotation of PCA loadings that
enhances their aforementioned interpretability properties.

PCA and ICA have been both extensively used in the field of food characterization (see Table 1);
by way of illustration, PCA has been coupled to (i) high-resolution 1H Nuclear Magnetic Resonance
(NMR) spectroscopy for the discrimination of three apple varieties (Bramley, Russet and Spartan),
making it possible to spot significant variations in their malic acid and sucrose content [32];
(ii) synchronous fluorescence spectroscopy for monitoring changes in the flavin composition of
beer during storage either under light exposure or in darkness [33]; and (iii) Attenuated Total
Reflectance Mid-InfraRed (ATR-MIR) spectroscopy and diffuse reflectance NIR spectroscopy in a
feasibility study on the detection of soybean oil adulteration in Camellia oil samples [34]. Conversely,
due to its particular methodological basis, ICA has mainly been applied to extract the individual
spectral contributions and proportion profiles of certain classes of analytes constituting heterogeneous
food matrices, e.g., primary oxidation and polyphenolic compounds, tocopherol, carotenoids and
chlorophylls in extra virgin olive oils [35], or fructose, sucrose and glucose in soft drinks [36].

Sometimes, in the context of unsupervised data analysis, one may be interested in having
information about the different degrees of similarity/dissimilarity among samples or, more specifically,
on whether the distribution of individuals enables the identification of groups or clusters. Clusters
correspond to sets of observations which are more similar to one another than they are with respect to
all the remaining objects. In this regard, the search for possible clusters of samples is the objective
of the so-called clustering techniques, whose basic idea is that similarity among individuals can be
inversely related to a distance measure in a multivariate space [37,38]. Based on this concept, clustering
techniques can operate non-hierarchically (partitioning methods) or hierarchically. The former [39],
encompassing also the popular k-means algorithm [40], distribute the samples among a pre-defined
number of groups (that can be either known a priori or inferred empirically from the data under study);
a sample is basically placed in the cluster with the closest barycenter. They are relatively straightforward,
but they suffer from the limitation of needing the number of groups, k, to be defined beforehand.

Conversely, as the name suggests, hierarchical approaches proceed iteratively through successive
agglomerations of smaller clusters into larger ones [41]—the same approach can be operated top down
by progressively dividing larger clusters into smaller ones, but it is more rarely used. Every object is
initially assumed to constitute a separate group of observations (singleton) and, afterwards, at each
iteration, the two most similar groups are joined into a single ensemble. The procedure continues
until a certain stopping criterion is met or when all the samples are gathered into a unique cluster.
Hierarchical approaches provide more detailed insights into the relations between individuals and/or
groups of individuals, but they have the disadvantage that, due to the nature of the agglomeration
process, the identification of the most plausible number of clusters may not be easy. The interested
reader can find more details on clustering techniques in [37,38,42].

3. Calibration

The analytical characterization of a foodstuff, especially with the aim of its authentication,
may imply the quantitative determination of one or more constituents of the samples at hand or of one
or more of their global properties, such as the sensory scores for some specific attributes, the iodine
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value or the dry matter content. Moreover, one would ideally want such a determination to be rapid
(in some cases, almost instantaneous, to allow controls to be conducted on- or in-line), non-invasive or
at least non-destructive, not needing the specimens to be subjected to clean-ups or pre-treatments, and,
possibly, not encompassing the use of auxiliary reagents or organic solvents. All these requirements
point in the direction of spectroscopic techniques, which, depending on the applications concerned,
possess most or all of the aforementioned characteristics. However, the possibility of using spectroscopy
to quantify the properties of a food product is conditional, on the one hand, to the existence of a
relation between the measured signal and the response to be estimated and, on the other hand, to the
postulation of a reasonable mathematical formulation to express (or at least approximate) this relation.
In other words, quantifying the value of a property, y, based on the measurement of a spectroscopic
signal, x, rests on inferring a functional relation, f , that connects them so that:

y = f (x) (5)

Unfortunately, the exact form of the function f (x) linking a measured spectrum to the property to
be determined is unknown and cannot be retrieved from first principles. A reasonable guess of f (x)
should be therefore empirically drawn, through a procedure which is called calibration [43–45].

Calibration makes use of known data to approximate the functional relation in Equation (5).
In particular, it requires that, for a sufficient number of samples (which are usually gathered in a
so-called training set), both the recorded spectra and the values of the property(-ies) of interest are
available. For example, if NIR spectroscopy is used for the quantification of the protein content in
wheat, in order to proceed with the calibration phase, one should not only collect the NIR spectra
of the training samples, but also determine their protein content by, e.g., reference methods such as
Kjeldahl [46] or Dumas [47]. Afterwards, a mathematical expression of the function f (x) is explicitly
assumed: this function will depend not only on x, but also on the values of some adjustable parameters
(coefficients), whose estimation is the core issue in calibration. In many cases, f (x) can be assumed
to be linear; this means that, if J spectral variables are recorded (i.e., if x is a J-dimensional vector of
light intensity/absorption measurements, with elements

[
x1 x2 , x3 · · · xJ

]
), Equation (5) can be

written as:
y = ŷ + e = b1x1 + b2x2 + b3x3 + · · ·+ bJxJ + e (6)

where ŷ is the approximation of y provided by the linear function defined by the coefficients
b1, b2, b3, · · · , bJ, and e is the residual, i.e., the difference between the true value of y and ŷ. In calibration,
the available (x, y) pairs constituting the training set of data are used to calculate the coefficients in
Equation (6) through regression, according to some user-defined criterion of optimality. Since the
aim of calibration is to use the measured signal x as the basis to obtain the best prediction of y, in the
majority of cases such a criterion involves the minimization of the residuals (least squares). In particular,
if the training set contains N samples for which both x and y are known, for each one of these samples
an equation analogous to Equation (6) can be written:

yn = ŷn + en = b1xn1 + b2xn2 + b3xn3 + · · ·+ bJxnJ + en (7)

where the subscript n indicates that the equality holds for the n-th training object—here, it should be
noticed that, since the same functional relation is valid for all the samples, the coefficients b1, b2, b3, · · · , bJ

are identical for all the individuals. By gathering all the training set recordings in the spectral matrix
X (whose rows contain the profiles of all the individuals) and the corresponding true values of the
property of interest in the column vector y, Equation (7) can be globally expressed for all the training
samples as:

y = ŷ + e = Xb + e (8)

where the column vector b carries the regression coefficients (b =
[

b1 b2 , b3 · · · bJ
]
),

the approximated values of the response are the elements of ŷ (= Xb), and the residuals constitute the



Appl. Sci. 2020, 10, 6544 6 of 34

vector e. As anticipated, the estimation of the optimal value of the coefficients b is usually carried out
by the so-called least squares approach:

argmin
b

∑N

n=1
e2

n = argmin
b

eTe = argmin
b

(y−Xb)T(y−Xb) (9)

where the operator argmin indicates that the optimal set of values is the one minimizing the overall
approximation error across all the training objects, i.e.,

∑N
n=1 e2

n = eTe = (y−Xb)T(y−Xb). Resolving
Equation (9) makes it possible to estimate the regression coefficients as:

bMLR =
(
XTX

)−1
XTy (10)

Since the calibration approach, which postulates a linear regression model and uses the least
squares criterion for the calculation of these regression coefficients, is also generally referred to as
Multiple Linear Regression (MLR [48,49]), the subscript MLR was explicitly added to Equation (10).

Once the values of the coefficients have been estimated using the training samples, it is possible to
predict the value of the response for any new (unknown) specimen, ŷnew, based on its spectral profile,
xnew, as:

ŷnew = xnewbMLR (11)

Sometimes, the same spectroscopic profile can be used to estimate the values of multiple properties;
for instance, one might want to determine, for the same individual, the protein, lipid, starch and
moisture content, based on its measured NIR spectrum. Mathematically, this would result in setting
up a calibration equation analogous to Equation (8) for each of the L responses to be predicted:

yl = ŷl + el = Xbl + el l = 1, . . . , L (12)

In the case of MLR, it is possible to demonstrate that there is no difference (in terms of estimated
values of the regression coefficients bl and, subsequently, of the predicted responses ŷl) between
building separate models for all the single properties of interest and constructing a unique global
calibration [50] that can be expressed as:

Y = Ŷ + E = XB + E (13)

where each of the L columns of the matrices Y, Ŷ, B and E contains the values of the corresponding
elements in Equation (12) for a particular response:

Y =
[

y1 · · · yl · · · yL

]
Ŷ =

[
ŷ1 · · · ŷl · · · ŷL

]
B =

[
b1 · · · bl · · · bL

]
E =

[
e1 · · · el · · · eL

] (14)

MLR has the advantages of a clear loss-function, which directly generalizes the least squares
criterion to the multivariate case, and of not requiring the tuning of any metaparameter (that is
to say, once the X-Y training pairs are identified, the solution is univocal) [45]. However, due to
the mathematical structure of Equation (10), this method cannot be applied in situations where the
matrix X is ill-conditioned, i.e., when the number of training samples is lower than the number of
recorded variables (wavelengths) and/or when such variables are highly correlated [51]. Unfortunately,
both these conditions are commonly met by spectroscopic data, and thus, MLR is seldom applied if
spectral profiles are concerned, unless some variable selection strategy is adopted [52–55].
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On the other hand, a solution to the problem of having to deal with ill-conditioned matrices of
descriptors is provided by the use of bilinear models based on the extraction of principal components
or latent variables [56]. Indeed, as already outlined in Section 2—where the use of principal components
to summarize the relevant information encoded in the data was discussed—an effective dimensionality
reduction can be achieved by identifying a reduced number of highly informative orthogonal directions
in the multivariate space of the original variables and projecting the data onto the subspace spanned by
them, obtaining a set of new coordinates or scores, T. Using T instead of X in a calibration framework
makes it possible to overcome all the issues related to ill-conditioning, since the number of relevant
components is usually lower than the number of samples and because, additionally, they are completely
uncorrelated due to their orthogonality. In light of these aspects, various bilinear regression techniques
have been proposed in the literature, the most commonly used of which are Principal Component
Regression (PCR [48,57,58]) and Partial Least Squares (PLS [59–66]) regression.

PCR, as the name suggests, is a two-step method which is based on the sequential use of PCA and
MLR, with the PCA scores, T, exploited as predictors:

Y = ŶPCR + E = TB+ E (15)

Here, B is the matrix of regression coefficients relating the scores to the predicted responses
through the MLR model. By resorting to the mathematical relationship defining the PCA projection
(T = XP, see also Equation (1)), it is possible to express the linear model in Equation (15) directly as a
function of X and Y, as:

ŶPCR = TB = XPB = XBPCR (16)

where the matrix of PCR coefficients, BPCR, is given by:

BPCR = PB (17)

With respect to the MLR solution reported in Equation (10), PCR is said to be biased, as not all the
information originally present in X is used to estimate the parameters of the regression model [67,68];
the calculation of BPCR, in fact, relies solely on the variability captured by the PCA scores in T, and a
different model will be returned depending on how many principal components are extracted from
the data matrix X. Accordingly, the number of principal components to retain in a PCR model is
a metaparameter which has to be optimized; normally, models with different numbers of principal
components are tested and the one resulting in the lowest prediction error (usually computed by
cross-validation or other resampling procedures) is selected [69–71] (see also Section 7.2).

PCR can be considered a highly performant statistical approach as it enables the possibility
of calculating regression models for ill-conditioned data matrices. Nevertheless, even in similar
contingencies it may not necessarily constitute the best option to choose: indeed, the two steps PCR
combines (i.e., data compression by PCA and regression by MLR) have different objectives, and it is not
always verified that the directions of maximum explained variance in X are also those corresponding
to the maximum correlation with the response(s) [72]. Conversely, PLS tries to overcome this issue, by
actively using the information in Y already at the data compression stage, so that the scores extracted
from X are relevant for describing at the same time the variance in the descriptors and in the properties
of interest.

PLS rests on the extraction of two sets of scores, one from the independent and one from the
dependent data block, having maximum covariance with one another:

argmax
ra,qa

uT
a ta,PLS = argmax

ra,qa

qT
a YTXra (18)
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where ta,PLS and ua are the X- and Y-scores along the a-th component, respectively, and ra and
qa represent the vectors of coefficients allowing to retrieve such scores from the corresponding
original matrices:

ta,PLS = Xra

ua = Yqa
(19)

The functional relation (usually a linear dependence), also known as inner relationship, between
the two data blocks is then implemented at the scores level; component by component, the Y-scores
are approximated by the X-scores through a univariate linear regression model:

ûa = ta,PLSca (20)

with ca being a proportionality constant (inner regression coefficient). Since more than a single component
is usually needed to summarize the relevant information in X and Y, Equations (19) and (20) can be
rewritten as:

TPLS = XR
U = YQ =⇒ Ŷ = UQT

Û = TPLSC
(21)

where the columns of the scores matrices TPLS and U and those of the coefficient matrices R (X-weights)
and Q (Y-loadings) are associated with the individual retrieved components (see also Equation (19)),
and C is a diagonal array whose non-zero elements are the coefficients ca. The overall regression model
can then be expressed as:

Ŷ = UQT = TPLSCQT = XRCQT = XBPLS (22)

Equation (22) shows that, despite the regression model be calculated at the level of the scores, due
to the linearity of the projection, it is possible to express it directly in terms of the original variables
(similarly to PCR, see also Equation (16)). At the same time, since only a part of the information in the
original data is used for the regression, and, in particular, for the estimation of the regression coefficients:

BPLS = RCQT (23)

PLS constitutes another case of so-called biased regression [67,68], requiring the determination of
the optimal number of components to be retained in the model (which, once again, is carried out by
selecting the value leading to the minimum prediction error, usually in cross-validation).

A fundamental aspect of PLS regression is that, contrarily to MLR and, therefore, to PCR, when the
problem involves the calibration of multiple responses, individual models yield different outcomes
compared to a single global model. Since PLS is also based on the extraction of latent variables from
the Y-block, in fact, the calculation of a single model for calibrating all the responses at the same time
entails their sharing part of their systematic variability, i.e., that they will exhibit a certain degree of
intercorrelation that is not due to chance or subsampling. Only in this case is it recommended to build
a single model for predicting all the responses; if this condition is not met, then it is suggested that
each response be calibrated separately [73].

Altogether, MLR, PCR and PLS represent the large majority of regression methods which are used
in scenarios demanding calibration based on spectroscopic data. However, all of them return linear
models, while circumstances where the complexity of the problem at hand may call for non-linear
functional relations might also occur. Given the nature of spectral data, a relatively popular way of
implementing a non-linear functional relation—if necessary—is to use locally linear models [74–76].
The concept behind local regression is that a problem which is globally non-linear may be approximated
by a combination of locally linear regressions, each one covering a relatively small portion of the variable
space. Other options are non-linear extensions of the PLS algorithm [77–82], support vector machines
encompassing non-linear kernel transformations [83–86], and artificial neural networks [87–91] (which,
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nonetheless, have more stringent requirements regarding the number of training objects needed for
constructing a reliable model).

Throughout the years, regression analysis has played and still plays a crucial role in the domain
of food characterization. In particular, PLS, together with its non-linear variants, has been widely
used for addressing a large number of issues in such a context (see Table 1), from the estimation of
lard content in chocolate specimens by ATR-Fourier Transform-IR (ATR-FT-IR) spectroscopy [92] to
the quantification of egg content and turmeric adulteration in egg-pasta by NIR spectroscopy [76,93],
the estimation of quality parameters of straw wine by FT-MIR spectroscopy (alcohol and sugar content
and acidity) [94], and the analytical profiling of sensory attributes of Trentingrana cheese by Proton
Transfer Reaction–Mass Spectrometry (PTR-MS) [95]. This last study, in particular, was conducted
as an attempt to relate specific flavor and odor features to characteristic compounds detected and
identified by the PTR-MS instrumental platform (the perception of boiled milk flavor, for instance, was
found to be connected to the presence of methanetiol in the samples at hand).

4. Classification

Apart from exploration and regression, another task that users and practitioners commonly
perform while conducting food authentication studies is classification. Classifying a sample or
object implies predicting one or more of its discrete properties based on the information collected
during its characterization [96]. An example would be the determination of the geographical
origin of a certain product from its spectral profile recorded within a certain wavelength range
(UltraViolet-Visible—UV-Vis—NIR, MIR, etc.). More specifically, classification would aim at assigning
such a product to one category or class constituted by objects sharing similar features (in this case,
objects sharing the same geographical origin). From a slightly different perspective, considering an
individual sample observation as a vector (e.g., a spectrum) corresponding to a point in the multivariate
space of the experimental variables (e.g., the wavelength channels), classification approaches can also
be regarded as tools for the identification of boundaries in this space separating the various categories
at hand: the aforementioned sample is therefore predicted as belonging to a particular class when the
respective point falls within its associated boundaries.

Given the extreme relevance of similar strategies in food authentication scenarios and the
importance they can have for the resolution of real-world issues, it does not come as a surprise that the
applications of existing classification methodologies along with the proposal and development of novel
ones have dramatically increased in the last decades [97,98]. Although these methodologies may differ
in complexity, requirements and assumptions, two broad groups of techniques can be distinguished:
discriminant and modelling techniques [99].

4.1. Discriminant Techniques

Discriminant approaches are probably the most classical solutions for dealing with classification-
related problems [97]. As their name suggests, they make it possible to highlight differences between
samples belonging to distinct classes. Their basic principle is simple: they divide the multivariate
space of the registered variables into several subregions equal to the number of categories of objects
considered (say Z) and they assign each one of such objects to a certain class if the point corresponding
to its measurement vector falls within the boundaries associated with that class. Subsequently, owing
to these characteristics:

1. discriminant classification models need to be calibrated on training sets composed by specimens
belonging to all the categories under study;

2. every analyzed sample is always assigned to one and only one of these categories;
3. samples coming from other classes (not considered in the study) will always be (erroneously)

recognized as members of one and only one of these categories.
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For all these reasons, discriminant techniques can be particularly useful, e.g., when the amount of
expected classes is limited and/or if it can be reasonably supposed that all the samples to be assessed
are drawn uniquely from them.

The mother of all discriminant classification strategies is undoubtedly Linear Discriminant
Analysis (LDA) [100]. In the simplest case encompassing two categories of objects, LDA estimates a
direction of maximum separation between classes (i.e., a so-called canonical variate) as:

wT = (m1 −m2)
TS−1 (24)

with m1 and m2 (both of dimensions J × 1) being the vectors of variable means (centroids) for class
#1 and class #2, respectively, and S (J × J) an estimate of the class covariance matrix (which, here, is
assumed to be the same for both categories (this assumption is relaxed in the most direct extension of
LDA known as Quadratic Discriminant Analysis (QDA) [101,102])). m1, m2 and S are computed from
training samples. A class delimiter, w0, is then calculated as:

w0 = wT (m1 + m2)

2
(25)

and the classification rule established such that if the projection coordinate of each observation vector,
say xn (J × 1), along w (tn = wTxn) is found to be lower than w0, the corresponding object is predicted
as belonging to class #1 and vice versa. The rationale behind LDA can also be interpreted by assuming
that data within each category are Gaussianly distributed so as to calculate the so-called posterior
probability of xn belonging to the z-th class, p(z

∣∣∣xn) , as:

p(z|xn) =
p0(z)

(2π)
J
2 |S|

e−
1
2 (xn−mz)

TS−1(xn−mz) (26)

with p0(z) equal to the probability of observing an individual from the same category before carrying
out any measurement (prior probability). Accordingly, the final classification rule can be reformulated
by stating that a sample should be assigned to the class it has the highest posterior probability of
proceeding from.

Even though LDA can be in principle extended to scenarios involving a larger number of categories,
it requires the inversion of the covariance matrix S, which can be singular or nearly singular in the
presence of highly collinear (inter-correlated) descriptors (as for spectral profiles) [51]. To overcome this
limitation, one can perform a proper selection of these descriptors (via, e.g., step-wise algorithms) [103],
apply LDA to the scores resulting from a preliminary PCA modelling of the collected data in what is
called PCA-LDA [101,104,105] or resort to regularized versions of LDA, like in Regularized Discriminant
Analysis (RDA) [106–111]. While, on the one hand, such approaches are capable of stabilizing the LDA
solution against collinearity, on the other hand, some of them might suffer from similar drawbacks as
seen before for PCR [104,105,112].

Alternatively, one can think of classification as a regression problem in which the class belonging of
a sample (i.e., the dependent variable) is to be estimated from the set of (independent) variables returned
by a particular analytical platform (e.g., a spectrum). Similarly to what was outlined in Section 3, such an
estimation can be carried out by an extension of PLS named Partial Least Squares Discriminant Analysis
(PLSDA) [112,113]. PLSDA regresses the entire data matrix X on a dummy binary-coded response
array, say again Y, made up of a set of piled Z-dimensional row vectors, constructed so that, if their
corresponding objects/samples are members of the z-th class, they have a 1-value in their z-th entry and
0-values in all the other ones. For instance, in a 2-class scenario, samples belonging to the first category
will be described by the dependent vector [1 0], while samples belonging to the second one by the vector
[0 1]. Notice that the model structure in Equation (22) applies also in this case and, thus, whenever
new objects/samples become available, their projection coordinates onto the PLS latent variables,
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as well as their Y-predicted values, can be retrieved as shown in Section 2. The class assignation can
be finally carried out based on an LDA model constructed either on PLS scores of training objects
(this approach is also known as PLS-LDA [112,114,115]) or on their Y-predicted values, according to a
highest-prediction rule or to a higher-than-a-threshold prediction rule [116]. As for PLS, more complex
variants of PLSDA are available for coping with strong non-linear relationships existing between X and
Y (e.g., Locally Weighted PLSDA—LW-PLSDA [117]—Kernel-PLSDA—K-PLSDA [118–120]). Support
vector machines and artificial neural networks can also be used for the resolution of classification-related
problems [83,91,121,122].

Table 1. Application examples of exploratory, regression and classification analysis of spectroscopic
data in the field of food science. PDO, PCA, ICA, PLS, LDA, PLSDA, LW-PLSDA, K-PLSDA and QDA
stand for Protected Designation of Origin, Principal Component Analysis, Independent Component
Analysis, Partial Least Squares, Linear Discriminant Analysis, Partial Least Squares Discriminant
Analysis, Locally Weighted Partial Least Squares Discriminant Analysis, Kernel-Partial Least Squares
Discriminant Analysis and Quadratic Discriminant Analysis, respectively.

Aim Method Reference

Exploration of apple varieties PCA [32]
Beer storage monitoring PCA [33]

Adulteration detection of Camellia oils PCA [34]
Chemical characterization of Mediterranean olive oils ICA [35]

Chemical characterization of honey samples ICA [36]
Chemical characterization of soft drinks ICA [36]

Determination of lard content in chocolate samples PLS [92]
Quantification of turmeric adulteration in egg-pasta PLS [93]

Straw wine quality parameter prediction PLS [94]
Sensory characterization of Trentingrana cheese PLS [95]
Egg content quantification in dried egg-pasta Local PLS [76]

Characterization of PDO Chianti Classico olive oil LDA [123]
Determination of the geographical origin of pistachios PLSDA [124]

Classification of rice varieties LW-PLSDA/K-PLSDA/Artificial
neural networks [117,125]

Classification of honey samples PLSDA [126]
Technological classification of egg white powders PLSDA [127]

Discrimination of distillates PLSDA [128]

Classification of tomato genotypes LDA/PLSDA/Support vector
machines/ [129]

Olive fruit classification QDA [130]
Insect infestation detection in stored rice PLSDA [131]

Characterization of Italian craft beers PLSDA [132]

For the particular type of problems they make it possible to tackle, discriminant methods have
had a long history in the field of food quality assessment and control (see Table 1). LDA, QDA,
linear and non-linear PLSDA, support vector machines and artificial neural networks have been
broadly used to discriminate foodstuff of different origins [123,124], different varieties [117,125,126],
different technological properties [127], different purity degree [128], exhibiting different genotypes
(i.e., transgenic/non-transgenic) [129] or affected by different diseases [130,131]. PLSDA has been
applied, for example, to NIR spectra of pistachios for their geographical authentication making it
possible to highlight that seeds from Turkey and USA show a typical absorption behavior between
8000 and 9000 cm−1 (second overtone of methylenic stretching vibrations) [124] and to UV-Vis spectra
of ale beers brewed by distinct producers pinpointing minimal variations in the tone and intensity of
their color which could indirectly influence customer perception [132].

4.2. Modelling Techniques

Contrarily to discriminant techniques, modelling approaches are capable of capturing similarities
among samples belonging to the same category [97,133]. They basically define a multivariate boundary
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for each considered class, which delimits a specific region of the multidimensional space of the original
descriptors where objects proceeding from it are likely to be found. If an analyzed sample falls within
this region, it is assigned to the respective class, otherwise it is considered to be a class outlier and
rejected as such [134,135].

A fundamental aspect that needs to be taken into account here is that categories are treated and
handled separately and that an individual model is constructed for every one of them. Subsequently,
(i) modelling methodologies can easily be applied in scenarios in which a unique class of interest exists
(a common contingency in food traceability or authentication studies), and (ii) new objects can be
predicted as members of one, none or multiple classes also in the light of the fact that the various class
spaces do not necessarily have to cover completely the whole original variable space [136].

Given their characteristic nature, class modelling strategies can all be regarded as outlier detection
methods. Nonetheless, mainly depending on the outlyingness criterion adopted, such strategies can
exhibit different advantages and disadvantages and be more or less suitable to be applied in certain
situations rather than others. Due to the flexibility that the selection of this outlyingness criterion
guarantees, a plethora of class modelling approaches have been proposed throughout the last 45 years.
Among those appearing in the chemometric literature (see Table 2), probably the most commonly
exploited since their development are UNEQual class spaces (UNEQ [137,138]) and Soft Independent
Modelling of Class Analogy (SIMCA [139,140]).

UNEQ was introduced by Derde and Massart in 1986 and constitutes the modelling version
of QDA. Briefly, UNEQ defines the class model by the centroid of the concerned category, while
the class space is represented by the multidimensional ellipsoid (hyperellipsoid) corresponding to a
user-defined confidence level, i.e., to a certain probability of finding samples of that category within its
boundary. Mathematically speaking, in its initial formulation UNEQ calculates for each investigated
object (xn − J × 1) its squared Mahalanobis distance from the z-th class centroid (mz − J × 1) as:

d2
n = (xn −mz)

TS−1
z (xn −mz) (27)

where Sz (J × J) denotes an estimate of the z-th class covariance matrix. Once again, mz and Sz are
computed from training objects. If d2

n is found to be larger than a critical distance value, the respective
sample is rejected by the class model as an outlier. Such a critical value can be retrieved as detailed
in [137,138,141]. Variants of both the distance statistic and the way its corresponding threshold
is determined have been proposed over the years; an alternative UNEQ framework based on the
principles of the Hotelling’s T2 statistic was, for instance, developed by Forina et al. in 1995 [142].

Despite its relative simplicity, as for MLR and LDA, UNEQ encompasses the inversion of a
covariance matrix, which is seldom attainable in case the registered variables show a high degree of
intercorrelation [51]—as a solution, UNEQ can be applied to the scores resulting from a preliminary
PCA modelling of the data at hand. In addition, UNEQ requires such variables to follow a multivariate
Gaussian distribution, an assumption that is rarely met when distinct sources of variability are present
in the data at hand (e.g., in the case of the traceability of a designated food product, these sources of
variability may be associated with different cultivars, harvesting years, producers, etc.) [133].

On the other hand, in SIMCA, the data associated with the z-th category of samples (Xz − Nz × J,
with Nz equal to the number of training objects belonging to the z-th class) are modelled by PCA as:

Xz = TzPT
z + Ez (28)

Every object to be classified (xn − J× 1) is afterwards projected onto the class principal component
subspace as:

tT
n,z = xT

nPz (29)
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and its distance from such a subspace (of dimensionality Az) is calculated as:

s2
n =

eT
n,zen,z

(J −Az)
(30)

with eT
n,z = xT

n − tT
n,zPT

z .
This distance value is compared with the average distance to the model subspace of the Nz

training samples (computed as s2
z =

∑Nz
nz=1

∑J
j=1

e2
nz , j,z

(J−Az)(Nz−Az−1) , where e2
nz, j,z results from the projection

of the nz-th training object onto the PCA class model subspace) by means of an F test with (J −Az)
and (Nz −Az − 1) degrees of freedom. If the null-hypothesis of the test is rejected, the corresponding
sample is labelled as an outlier and rejected by the class model.

This first implementation of SIMCA was proposed by Wold et al. in 1976 and was almost
immediately amended in order to additionally account for the sample distance within the principal
component subspace and not only from the principal component subspace [140]. In addition, together
with this alternative formulation, many others have been reported in literature generally based on
diverse ways of defining the class space and/or the classification rule (see, e.g., [143]).

Finally, it is important to note that the performance of class modelling approaches mainly depends
on the settings of several metaparameters such as the confidence level at which the class space
is constructed and/or the number of latent variables extracted from the original data. Different
approaches for the optimization of these metaparameters exist, whose efficiency and robustness can
vary according to the specific scenario faced (e.g., high class overlap, presence of outliers in the training
set, etc.) [144–149].

For their particular nature and for the main implication resulting from their use (i.e., each category
of objects is handled independently and separately), modelling classification strategies are nowadays
regarded as ad hoc solutions for coping with food authentication problems (see Table 2). In particular
SIMCA has lately been widely resorted to for the traceability of high value-added foodstuffs like wine,
beer, extra virgin olive oil, olive seeds, walnuts, coffee and rice [132,150–163], and has been found to
guarantee extremely satisfactory performances when PDO and/or PGI products are to be discerned
from lower-quality ones. In this regard, several application studies involving the combination of NIR
spectroscopy and SIMCA for the characterization of Avola almonds [164], Gragnano pasta [165], Italian
hazelnuts [166] and Vallerano chestnuts [167] have been recently reported in literature.

Table 2. Main class modelling methods and application examples in the field of spectroscopy-based
food analysis. PGI and PDO stand for Protected Geographical Indication and Protected Designation of
Origin, respectively.

Methods

Name Aim Reference

UNEQual class spaces (UNEQ) Exploratory [137,138]
Soft Independent Modelling of Class Analogy (SIMCA) Regression [139,140]

Non-parametric class modelling Regression [151]
Neural networks-based class modelling Regression [152,153]

Partial Least Squares Density Modeling (PLSDM) [154]
Potential function (kernel density) method (POTFUN) Regression [168–170]

Pattern Recognition by Independent Multicategory
Analysis (PRIMA) Regression [171]

Multivariate Range Modeling (MRM) Regression [172]
Support Vector Domain Description (SVDD) [173]
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Table 2. Cont.

Applications

Aim Method Reference

Traceability of rice varieties UNEQ/SIMCA/Neural networks-based
class modelling [152]

Authentication of wine samples UNEQ/SIMCA/MRM/Neural
networks-based class modelling [153,155,156]

Authentication of beer samples UNEQ/SIMCA/POTFUN [132,157,158]
Traceability of extra virgin olive oils SIMCA/Non-parametric class modelling [151,159,160]

Authentication of olive seeds UNEQ/SIMCA/PLSDM [154,161]
Traceability of coffee SIMCA/POTFUN [150,162]

Traceability of walnuts SIMCA [163]
Authentication of Avola almonds SIMCA [164]

Authentication of PGI Gragnano pasta SIMCA [165]
Authentication of Italian PDO hazelnut SIMCA [166]

Authentication of Vallerano chestnut SIMCA [167]
Plant ripening monitoring PRIMA [174]

Wheat straw fermentation monitoring SVDD [175]

5. Data Fusion

Although all the illustrated methods certainly represent suitable tools to achieve the purposes they
are conceived for, sometimes, the complexity of an analytical problem requires to be regarded from
several different perspectives to be comprehensively embraced. As an example, many present-day
food chemistry issues cannot be easily addressed unless distinct instrumental techniques (e.g., Gas
Chromatography–Mass Spectrometry—GC-MS—and MIR spectroscopy) are combined for a more
extensive characterization of the samples at hand. Similar strategies are commonly defined multi-block
and the chemometric approach used for the concerted analysis of multi-platform data is known as
Data Fusion (DF).

Broadly speaking, DF enables the simultaneous extraction of meaningful and useful information
from diverse analytical sources. In recent years, DF has been found to provide more exhaustive
descriptions of studied systems compared to when single datasets are assessed separately. For this
reason, in the last decades, numerous DF methodologies have been proposed in the literature
with the three tasks surveyed in the previous sections of this article in mind: data exploration,
regression and classification. Nonetheless, despite the ultimate purposes behind their development,
such methodologies are usually classified according to the level at which the data fusion is implemented.
In the so-called low-level DF, for instance, raw datasets are simply concatenated and analyzed at
the same time as a unique global ensemble. Mid-level DF extracts specific features (e.g., principal
components or latent variables) from each considered dataset which are subsequently gathered and
investigated concurrently. Finally, in high level DF, the outcomes of individual models constructed
for every concerned dataset are pooled in a unique solution. Another common distinction among
DF strategies is based on the nature of their underlying algorithms (sequential—if joint information is
retrieved iteratively—or parallel—if joint information is retrieved collectively) [176].

Due to the large number of existing DF approaches, the following subsections will offer only a
basic and brief description of those most commonly used in the field of food authentication. In Table 3,
a detailed list of applications of DF in this domain is also reported.

5.1. Multi-Block Data Exploration

One of the first exploratory multi-block methods dates back to 1987. It was proposed by Wold
and Hellberg and it is called Consensus PCA (CPCA) [177]. CPCA is the natural extension of PCA
for the analysis of multiple datasets. Basically, the algorithm searches for directions of maximum
variance common to all the data blocks at hand. CPCA encompasses four different steps: (i) one
measured variable is selected as super-score; (ii) block loadings and scores are estimated from such a
super-score; (iii) block scores are gathered in an updated super-score block which is used to calculate
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a set of super-weights; and (iv) super-weights are normalized and a new super-score is computed.
The procedure is iterated until convergence.

A few years later, in 1996, Wold himself, together with Kettaneh and Tjessem, developed a novel
version of multi-block PCA, called Hierarchical PCA (HPCA), sharing similar algorithmic features
with CPCA [178]. Their main difference, though, relates to the fact that in HPCA the super-scores
are normalized instead of the super-weights. It was observed that both CPCA and HPCA exhibit
severe convergence issues, eventually overcome through the modifications proposed by Westerhuis
and Coenegracht [179].

Later on, in 2001, a new sequential exploratory approach (Generalized PCA—GPCA [180])
appeared in literature. GPCA constructs a PCA model on the matrix resulting from the concatenation
of the datasets under study and extracts normalized super-scores. These super-scores are resorted
to for the retrieval of block scores and loadings. The outcomes of a comprehensive comparison of
different variants of CPCA, HPCA and GPCA are reported in [181].

Almost concomitantly, in 2000, Qannari et al. implemented Common Components and Specific
Weights Analysis (CCSWA) [182,183]. CCSWA seeks the shared information underlying all the
investigated datasets. Specifically, Acom orthogonal common components are extracted from a
combination of the cross-product matrices corresponding to the I data blocks coped with (XiXT

i ∀i ∈ [1, I]),
which is weighted according to their so-called salience, i.e., the portion of variance they explain in
each one of them. Over the years, different formulations of CCSWA have been designed. CCSWA has
nowadays become very well-known with the name ComDim.

More recently, many alternative multi-block techniques (thoroughly reviewed in [184,185]),
based on the extraction of common factors, but at the same time also aimed at the recognition of the
distinctive information carried by each of the individual considered datasets, have been proposed
(e.g., DIStinctive and COmmon Simultaneous Component Analysis—DISCO-SCA [186]—or 2-block
Orthogonal Projections to Latent Structures—O2PLS [187]).

5.2. Multi-Block Regression and Classification

The chemometric literature is rich in multi-block methods for regression and classification. One of
the most commonly used is undoubtedly Multi-Block-PLS (MB-PLS). MB-PLS constitutes the direct
extension of PLS to the data fusion field. Different variants of its algorithm have been proposed all
over the years [179], the most recent being developed by Qin et al. in 2001 [188]. The basic idea
behind this latest formulation is that multiple predictor blocks can be concatenated and modelled
simultaneously by PLS. Although extremely intuitive and yielding accurate predictions, this strategy
does not provide information about the single datasets. Conversely, the solution implemented by
Westerhuis and Coenegracht can be exploited for the interpretation of block scores and loadings [179].
In this regard, it is important to stress that MB-PLS requires the datasets at hand to be scaled separately
(by, e.g., their individual sum-of-squares or their Frobenius’ norm), to prevent structures with greater
variance from preferentially driving the model and blurring the information carried by the others [179].

Due to its remarkable flexibility, MB-PLS is nowadays probably the most widely applied multi-block
regression approach. It is also often used in combination with LDA for addressing classification
problems—MB-PLS is here known as MB-PLS-LDA or MB-PLSDA. So far, many applications of MB-PLS
have been reported in the field of food analysis (see Table 3); it has been resorted to (i) for the investigation
of sensory parameters of different nature and of their relationships with technological properties of
cheese and bread samples [189,190], (ii) for the prediction of meat spoilage time, wine ageing time
and crude protein and moisture content in soybean flour by MIR and NIR spectroscopy [191–193],
(iii) for the discrimination of botanical varieties of extra virgin olive oil, lemon essential oils and
wines of different geographical origin by MIR, NIR and Raman spectroscopy [194–196], and (iv) for
distinguishing added-value from low-quality products [132].

Despite all the aforementioned advantages MB-PLS offers, usually redundant information and/or
the presence of categorical regressors may jeopardize the predictive capability of MB-PLS. In these
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situations, techniques like the recent Sequential and Orthogonalized-PLS (SO-PLS [197,198]) could
represent feasible options to overcome such limitations. SO-PLS enables the sequential modelling of
each regressor set. The keystone of this methodology is a preliminary orthogonalization step performed
to filter out redundancies among blocks. Briefly, taking into consideration the case where a generic
response Y is to be estimated from two predictor matrices, say X1 and X2, the SO-PLS algorithmic
scheme encompasses the following four steps (readers are addressed to [140,141] for a more detailed
description of the SO-PLS algorithm):

1. Y is regressed onto X1 by PLS;
2. X2 is orthogonalized with respect to the X1-scores calculated in step 1, yielding the array X2,orth.

This ensures the common information shared by X1 and X2 is removed from the latter;
3. The PLS residuals resulting from step 1 are regressed onto X2,orth by PLS;
4. The SO-PLS predictive model is expressed by combining the outcomes of steps 1 and 3 as:

Y = X1B1 + X2B2 + ESO−PLS (31)

where B1 and B2 contain the regression coefficients for X1 and X2, respectively, and ESO−PLS carry
the final Y-residuals.

As a consequence of the deflation of the common information shared by the different datasets
under study, SO-PLS provides useful insights into the unique and distinctive sources of variation
within each one of them. Analogously to MB-PLS, SO-PLS has already been broadly employed in food
science (see Table 3), also coupled to LDA for tackling classification tasks [199]; it has been used (i) to
correlate sensory perception and chemical composition descriptors [200], (ii) for the quantification of
particular compounds in dietary supplements [201], (iii) for the authentication of spirits (i.e., Italian
grappa—Italian grape marc spirit) by MIR and NIR spectroscopy [202], and (iv) for the determination
of the geographical origin of foodstuff (e.g., red garlic, semolina and saffron) by multiple spectroscopic
modalities (UV-Vis, NIR, MIR and ATR-FT-IR) [203–205]. Furthermore, the robustness and versatility
of SO-PLS has recently led to the design of hybrid techniques conceived for very disparate purposes:
Sequential Multi-Block PLS (SMB-PLS [206]), merging features of both MB-PLS and SO-PLS; Sequential
and Orthogonalized-N-PLS (SO-N-PLS [207]), for the multi-block analysis of multi-way structures;
Sequential Preprocessing through ORThogonalization (SPORT [208]), for the pretreatment of the
SO-PLS predictor blocks; Sequential and Orthogonalized Covariance Selection (SO-CovSel [209]),
for the low-level DF of preselected variables; and all their discriminant extensions. Yet, one of the main
drawbacks associated with SO-PLS regards the fact that a deep and complete inspection of the factors
shared by the regressor matrices cannot be easily carried out.

In similar scenarios, P-ComDim, the predictive version of CCSWA, constitutes the designated
approach [210–212]. The algorithmic procedures behind P-ComDim and CCSWA are strictly resemblant
with the difference that, in the former, for each regressor block, the cross-product matrices XiXT

i are
replaced by the core matrices XiXT

i YYT. Common components (together with their salience values) are
iteratively retrieved as in ComDim, but, here, also Y-scores are computed. Additionally, P-ComDim
has been rather often applied for tackling complex food authentication problems, not only due to its
generally high prediction accuracy, but also because it may open wide horizons for the identification of
commonalities underlying regressors proceeding from very diverse sources.
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Table 3. Additional data fusion methods and application examples in the field of spectroscopy-based
food analysis. MB-PLS, SO-PLS, SO-CovSel and OnPLS stand for Multi-Block-Partial Least Squares,
Sequential and Orthogonalized-Partial Least Squares, Sequential and Orthogonalized Covariance
Selection and n-block Orthogonal Projections to Latent Structures, respectively.

Methods

Name of the Method Aim Reference

Hierarchical PLS (H-PLS) Regression [178]
Joint and Individual Variation Explained (JIVE) Exploratory [213]

Multiblock PLS serial extension Regression [214]
Network-Induced Supervised Learning (NI-SL) Regression [215]

Parallel Orthogonalized Partial Least Squares (PO-PLS) Regression [216]
Multiblock Redundancy Analysis Regression [217]

OnPLS Regression [218]

Applications

Aim Multi-Block method Reference

Prediction of bread sensory properties MB-PLS [190]
Prediction of wine ageing time MB-PLS/H-PLS/NI-SL/SO-PLS [192]

Quantification of protein and moisture in soybean flour MB-PLS [193]
Discrimination of lemon essential oils MB-PLS [194]

Determination of the geographical origin of wine MB-PLS [196]
Authentication of spirits SO-PLS/SO-CovSel [128,202]

Determination of the geographical origin of saffron SO-PLS/SO-CovSel [205]
Path modelling SO-PLS [219]
Path modelling SO-PLS [220]

6. Other Approaches

Data exploration and predictive modelling represent the large majority of chemometric applications
in the context of spectroscopy-based assessment of the quality of foodstuff. Nevertheless, there also
exist other strategies which may provide relevant insights into the products or raw materials under
investigation when the aim is their characterization and/or authentication. In this section, these
techniques will be briefly illustrated.

6.1. Curve Resolution

In the previous sections, it was shown how a spectral data matrix X can be decomposed according
to a bilinear model and how this decomposition can be regarded as its projection onto a subspace
of latent (abstract) directions. However, under normal experimental conditions, it is well known
that spectroscopic data can also be approximated by a bilinear model whose elements are directly
interpretable in chemical terms. Indeed, by assuming that X contains the spectral intensities or
absorbance values for the various analyzed samples at different wavelengths, and, without any loss of
generality, that the optical path is unitary, Beer-Lambert-Bouger law can be expressed as:

X = CST (32)

where C and S are the arrays collecting the concentrations of the chromophores constituting the spectral
mixture across all the specimens and their individual spectroscopic signatures (molar absorbivities),
respectively [221]. Based on the relation described by Equation (31), the aim of curve resolution methods
is to perform a data-driven unmixing of the matrix X, i.e., to estimate the number of constituents in the
aforementioned mixture and obtain their pure concentration and spectral profiles from the information
encoded in the recorded data. Among the possible approaches for accomplishing such a task, the most
popular (due to its flexibility and to the possibility of being applied also to multi-set or multi-way
data) is Multivariate Curve Resolution–Alternating Least Squares (MCR-ALS [222–227]). As the name
suggests, MCR-ALS is an iterative algorithm based on the alternating least squares concept, which
involves the following steps:
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1. The number of components (mixture constituents) is estimated (e.g., according to a priori
knowledge of the systems under study or by SVD/PCA).

2. A first guess of either C or ST is calculated by methodologies like Evolving Factor Analysis
(EFA [228]) or SIMPLe-to-use Interactive Self-Modeling Analysis (SIMPLISMA [229]).

3. C and ST are iteratively updated using alternating least squares under appropriate constraints
(e.g., non-negativity of the values in C and/or ST) as:

C = XS
(
STS

)−1

ST =
(
CTC

)−1
CTX

(33)

4. Step 3 is repeated until a certain convergence criterion is met.

It is evident for the algorithmic procedure outlined before that one of the main features of
MCR-ALS is its “self-modeling” nature, i.e., in principle, it does not require any specific preliminary
information about the data at hand: it is only needed that the bilinear model in Equation (31) is satisfied
and that some very generic characteristics of the pure concentration or spectral profiles (e.g., their
non-negativity) are known. If further information is also available, though, it can be actively exploited
in the form of additional mathematical restrictions. Basically, it is the possibility of implementing in a
rather straightforward way a large variety of these restrictions what has made and still makes MCR-ALS
very popular compared to other curve resolution strategies. Indeed, they not only reduce the ambiguity
associated with the final model (that is to say the range of possible C/ST sets returning the same fit when
approximating X) but, at the same time, they render the resolved profiles more physico-chemically
meaningful [230,231]. Examples of possible restrictions are unimodality (if the constrained profiles are
expected to exhibit a unique global maximum), closure (if a mass or concentration balance among all
or part of the mixture constituents holds), and selectivity (if some of the resolved species are absent in
some experiments or do not absorb at specific wavelengths) [222,226,232–234].

Moreover, as already anticipated, MCR-ALS can easily be applied to multiple data matrices in
a multi-set configuration. This provides a different way of analyzing multi-block data with respect
to what discussed in Section 5, as here the information shared by the different investigated arrays is
resorted to for improving the unmixing of the pure constituents. Concurrently, since some of these
constituents can be present only in one or a few matrices and some others may be present in all,
multi-set MCR-ALS is one of those multi-block techniques by which information about both common
and distinctive components can be obtained [235].

Similarly to ICA, MCR-ALS has mainly been employed in order to retrieve the spectral
contributions of particular compounds constituting complex food samples and to determine how their
abundance/concentration varies during, e.g., a renneting process (see Table 4). In [236–238], for instance,
the dynamic evolution of various forms of milk (liquid, sol-gel, coagulated) over the progression of a
lactic acid fermentation reaction was monitored and their individual FT-NIR fingerprints disentangled.
In [239], a similar study was conducted on beer fermentation: here, maltose, maltotriose, fructose,
sucrose, dextrins and ethanol spectral and concentration profiles were retrieved for enabling a better
understanding of the various phenomena behind their biotransformation.

6.2. Analysis of Multivariate Designed Data

The rational design of the experiments to be conducted is a fundamental step in any scientific
discipline and the only way in which it can be guaranteed that the information sought be present
in the collected data. The design of experiments involves four steps: (i) identifying some critical
variables (factors) which could affect one or more properties of interest (responses), (ii) defining their
range of variability that could be worth inspecting, (iii) planning the trials to be performed (so as
to be at the same time as informative and as low in number as possible), and (iv) interpreting the
final results [240–243]. In this subsection, attention will be essentially focused on this last step, as it
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is the one where traditional statistical approaches commonly fail when instead of measuring a few
(uncorrelated) responses for each experimental condition setting, a full spectroscopic signature is
registered to characterize the concerned samples [244].

As summarized before, based on a rational design, experiments are conducted under different
conditions, characterized by the fact that the factors whose effect is investigated are fixed (or controlled)
at specific values (levels). In other words, each combination of factor levels is a so-called design point,
at which the measurement of the responses is carried out. For instance, one could be interested
in studying how the spectroscopic profile of a specific product varies as a function of temperature
and pH, and then decide to run experimental trials only at three levels of temperature (25 ◦C, 40 ◦C
and 55 ◦C) and at two levels of pH (5 and 9). In case all possible combinations of factor levels are
explored, the design is called full-factorial. In the example sketched before, a full-factorial design would
encompass six distinct experiments: 25 ◦C and pH = 5; 40 ◦C and pH = 5; 55 ◦C and pH = 5; 25 ◦C and
pH = 9; 40 ◦C and pH = 9; 55 ◦C and pH = 9. At each condition setting, the desired responses should
be measured; if the aim is a spectroscopic characterization, the response is highly multivariate and
it is represented by the spectroscopic signature of the respective sample. Moreover, very often, the
whole design is replicated at least twice to have an estimate of the variability not to be ascribed to the
controlled factors.

Given a particular design and having collected the data corresponding to every one of its points,
the successive step is to analyze such data to first evaluate whether any of the controlled factors exhibits
a statistically significant effect on the responses and (if this is the case) to interpret and describe in
greater detail how this effect occurs (for instance, which spectral regions change with the increase of
the temperature and how). The traditional statistical tool used in this type of contexts is the analysis of
variance—univariate (ANOVA [245–248]) or multivariate (MANOVA [58,241,244,249–252]), depending
on the nature of the response(s) measured. However, when dealing with a high number of possibly
very correlated descriptors (like spectral variables) and, therefore, with ill-conditioned data matrices,
MANOVA suffers from the same drawbacks as MLR or LDA. To overcome these limitations, in the
last 15 years, various approaches for the assessment of multivariate or megavariate data resulting
from designed experiments have been proposed, all of them having in common the same initial
partitioning of the experimental data array, which follows the classical ANOVA scheme based on the
linear additivity of the effects. In particular, by assuming that the experimental design at hand involves
two factors (generically named A and B), the data matrix X made up of all the spectra collected at the
different design points after mean centering (i.e., after subtraction of the mean spectrum calculated
across the entire dataset) is partitioned as follows:

X = XA + XB + XAB + Xres (34)

where XA, XB, and XAB account for the effect of the two factors and their interaction, respectively, while
Xres contains the residual variance in X not explained by the model. More specifically, XA, XB, and XAB

carry identical replicates of the mean spectra corresponding to the different factor or interaction levels.
Starting from the common ground defined by Equation (33), the various methods developed for the
analysis of multivariate designed data proceed along different directions. Among these techniques,
the most popular is surely ANOVA–Simultaneous Component Analysis (ASCA [253,254]), due to its
relative simplicity and remarkable interpretability properties. In ASCA, the effect of each design term
(factor or interaction) is estimated through the sum of squares of the elements of the corresponding
matrix in Equation (29). For example, the effect of factor A is quantified as:

SSQA =
∑

n

∑
j
x2

n, j,A = XA
2 (35)

and its statistical significance is evaluated non-parametrically by comparing SSQA with its
null-distribution retrieved by permutations [255,256]. The interpretation of the significant effects is
finally carried out by applying PCA to the respective matrices.
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Alternative techniques described in the literature are ANOVA-PCA (APCA [257,258]),
ANOVA-Target Projection (ANOVA-TP [259–261]), ANOVA–Common Dimensions (AComDim [262])
and regularized MANOVA (rMANOVA [263]).

Considering their underlying model structure, the methodologies outlined in this subsection have
been widely exploited to obtain insights into how certain technological factors affect food-related
processes like ageing (see Table 4); ASCA, for instance, has often been coupled to MIR and/or
NIR spectroscopy to determine and examine the influence of (i) drying temperature and time on
dried egg-pasta manufacturing [76], (ii) varietal origin and roasting time on coffee bean spectral
properties [150], and (iii) storage temperature and conditions on Cheddar cheese ripening [264].
In all these case studies, the application of ASCA has generally permitted to highlight in a rapid,
non-destructive, relatively cheap and green fashion the occurrence of specific phenomena (e.g., proteo-
and lypolisis) ongoing along with the evolution of the monitored process itself.

Table 4. Examples of applications of curve resolution and analysis of variance-based techniques in
the fields of spectroscopy-based food analysis. MCR-ALS and ASCA stand for Multivariate Curve
Resolution-Alternating Least Squares and ANOVA-Simultaneous Component Analysis, respectively.
The abbreviation ANOVA denotes the analysis of variance.

Aim Method Reference

Chemical characterization of milk lactic acid fermentation MCR-ALS [236]
Milk renneting characterization and monitoring MCR-ALS [237,238]
Chemical characterization of beer fermentation MCR-ALS [239]

Assessment of coconut oil purity/adulteration degree MCR-ALS [265]
Chemical characterization of chocolate samples MCR-ALS [266]

Egg-pasta characterization ASCA [76]
Coffee bean roasting monitoring ASCA [150]

Cheddar cheese ripening monitoring ASCA [264]
Eggplant chilling injury characterization ASCA [267]

7. Additional Fundamental Aspects of Chemometric Modelling: Data Preprocessing
and Validation

In the previous sections, the main chemometric approaches for tackling data exploration, calibration
and classification were critically discussed and examples of their application were illustrated both for
single- and multi-block cases. Nevertheless, data analysis is not limited to the model building phase
only; rather, there exist at least two further steps (before and after the construction of a chemometric
model itself) that play a fundamental role in determining the quality of the obtained outcomes and
their reliability: preprocessing and validation.

7.1. Data Pre-Processing

Raw data are almost always not suited to be analyzed as such, i.e., directly in the form in which
they are yielded by the instrument, and spectroscopic profiles in particular result from multiple
contributions, and only a few of these contributions might be relevant for the problem under study.
The combination of multiple sources of unwanted variability can have a significant impact both on the
model performance and on its interpretation; for instance, bilinear approaches extract components
according to some variance/covariance-based criteria which may lead to nuisance artifacts in the
presence of a high amount of spurious/uninteresting information. Accordingly, data are preliminarily
subjected to one or more transformations (preprocessing), so as to remove or reduce their so-called
detrimental fraction [268]. When considering the possible ways of pretreating experimental data, it is
necessary to point out that there are some strategies which are valid independently from the nature of
the registered signal, while others are conceived for more specific types of instrumental responses.
Within the first family of techniques, the two most commonly used operations are centering and
scaling [269]. Centering aims at removing variable offsets; normally, mean-centering is adopted, i.e.,
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the mean value computed across each column of a data matrix is subtracted from all the elements of
that column. This makes it possible to discard what is shared by the entire set of samples and magnify
the differences among individuals. On the other hand, scaling is frequently applied to guarantee that
the scales of the different recorded variables are comparable as well as their a priori contribution to
the chemometric model. Mathematically, it consists of dividing all the elements of each column of
the data matrix by a constant term (usually its standard deviation), and it is highly recommended
when the descriptors have been collected using distinct analytical platforms and, therefore, have been
reported in different measurement units. It goes without saying that scaling is rarely performed on
spectral profiles.

As mentioned before, there also exist several other preprocessing strategies which directly focus on
the nature of the instrumental response itself and are designed to correct/remove unwanted sources of
variability that are related to its specific characteristics, such as stochastic noise, non-linearities, baseline
or wavelength shifts, or undesired variations due to particular chemical and physical phenomena
(such as light scattering). The impact of stochastic noise can be reduced by the use of methods
which filter high-frequency contributions out of the investigated signal. Fourier [270] or wavelet [271]
transforms or Savitzy-Golay smoothing [272] are possible solutions to cope with such an issue.
The Savitzky-Golay approach, in particular, is worth mentioning in greater detail, as it can also be
exploited for signal or spectral differentiation: it fits successive subsets of adjacent variables with a
low-order (usually second or third) polynomial and approximates the variable around which each
subset is centered with the value resulting from the respective estimated function.

Differentiation methodologies make it possible to remove additive (first derivative) and
multiplicative (second derivative) effects from the registered profiles and to deconvolve, at least
partially, overlapping peaks. However, they exhibit the drawback of significantly decreasing the
signal-to-noise ratio. This is why they often require a preliminary smoothing operation—Savitzky-Golay
differentiation, for example, couples the smoothing procedure described before to the point-to-point
calculation of the derivative of the interpolating polynomial.

The impact of light scattering on spectroscopic data, especially in the NIR domain, can also
be regarded as a multiplicative effect and corrected by the use of second-order derivation.
Alternatively, scatter correction can be achieved by techniques like Standard Normal Variate
(SNV) [273], Multiplicative Scatter Correction (MSC) [274] and Extended Multiplicative Signal
Correction (EMSC) [275], which enables the simultaneous removal of the effects of scattering, baseline
and potential interferents (if their spectroscopic signatures are available).

Finally, for the correction of a non-constant baseline, detrending [273] and penalized asymmetric
least squares regression [276] represent feasible options. The former corresponds to fitting a polynomial
function to all the variables constituting the spectral signal, but in those cases in which the baseline
does not account for a large portion of the overall data variance, severe artifacts may be produced.
The latter is underlain by a more effective weighted fitting procedure that automatically identifies
the variables most likely to be affected by the baseline contribution and weights them more for the
calculation of the approximating curve.

7.2. Validation

Having built a chemometric model does not guarantee per se its quality and/or validity, as these
two aspects are strictly influenced by user-dependent factors like the chosen analysis technique
or the values of certain metaparameters [2]. To assess whether it can lead to solid conclusions,
the outcomes/predictions resulting from it are reliable and generalizable and its interpretation is sound
and meaningful, such a model needs, therefore, to be validated [277]. Operationally, validation consists
in evaluating the model’s performance on a dataset (called a test set) different from the one used in
the training or calibration phase (referred to as a training or calibration set, as also specified before),
but reflecting as closely as possible the distribution of future individuals and accounting for all potential
sources of expected variability (e.g., in terms of geographical origin, composition, manufacturing
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process, etc.)—it is fundamental not to use for validation the same data exploited for model building as
this could lead to overoptimistic considerations (being data-driven, chemometric models are conceived
so as to return the best performance on those data). Unfortunately, in many real-world scenarios, it is
not possible to design additional sampling campaigns and assemble completely new test sets. In these
circumstances, it is common practice to split all the recorded measurement observations into two
different blocks, one for model building and the other for model validation. However, for the validation
procedure to be effective, the sample splitting scheme should ensure that both training and test sets
span a representative amount of the overall data variability: in this sense, one should avoid random
partitioning and, instead, resort to targeted subset selection algorithms like Kennard-Stone [278],
Duplex [279,280] or D-optimal design-based approaches [281].

An alternative is constituted by internal resampling strategies [282], like cross-validation [70],
in which the original data are repeatedly divided into a training and a test set and the procedure is
iterated either until each object has been left out at least once from the former or until a maximum
number of computational cycles has been reached. Cross-validation is often exploited when small
sample sizes are concerned but, due to its underlying principle, usually yields optimistically biased
outputs, as training and test sets are never completely independent from one another. Nevertheless,
cross-validation can be fruitfully adopted to estimate optimal values for model metaparameters like
the number of latent variables in PLS regression or PLSDA classification.

8. Software

Nowadays, multiple software tools for chemometric modelling, both commercial and open-source,
are available and easily accessible. A detailed list can be found in [1]. In particular, a collection of
freely downloadable Matlab (The Mathworks Inc., Natick, MA, USA) functions for the implementation
of most of the methods described in this review can be found at https://www.chem.uniroma1.it/
romechemometrics/research/algorithms/.

9. Conclusions

This article offers a global overview of the chemometric approaches most commonly used in the
field of spectroscopy-based food analysis and authentication. Three different scenarios were surveyed:
data exploration, regression and classification. Basic and simple descriptions of the main multivariate
techniques employed in such a domain along with a comprehensive outline of their most recent and
(as far as the authors are concerned) interesting applications were provided. Data preprocessing- and
model validation-related issues were also thoroughly covered.
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