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A B S T R A C T   

Fluorescence microscopy is an extremely powerful technique that allows to distinguish multiple labels based on 
their emission color or other properties, such as their photobleaching and fluorescence recovery kinetics. These 
kinetics are ideally assumed to be mono-exponential in nature, where the time constants intrinsic to each flu-
orophore can be used to quantify their presence in the sample. However, these time constants also depend on the 
specifics of the illumination and sample conditions, meaning that identifying the different contributions in a 
mixture using a single-channel detection may not be straightforward. In this work, we propose a factor analysis 
approach called Slicing to identify the different contributions in a multiplexed fluorescence microscopy image 
exploiting a single measurement channel. With Slicing, a two-way dataset is rearranged into a three-way dataset, 
which allows the application of a trilinear decomposition model to derive individual profiles for all the model 
components. We demonstrate this method on bleaching - recovery fluorescence microscopy imaging data of 
U2OS cells, allowing us to determine the spatial distribution of the dyes and their associated characteristic 
relaxation traces, without relying on a parametric fitting. By requiring little a priori knowledge and efficiently 
handling perturbation factors, our method represents a general approach for the recovery of multiple mono- 
exponential profiles from single-channel microscopy data.   

1. Introduction 

Fluorescence imaging is a well known and widely used technique in 
life sciences, because of its non-destructivity and selectivity. A limiting 
factor for the technique is the difficulty with which several fluorescent 
labels can be visualised at once. For this reason many techniques have 
been developed that focus on the separation of signals from different 
labels recorded simultaneously, e.g. using differences in their spectral 
signature or in their temporal dynamics [1–3]. In the recent work by 
Hugelier et al. [4] the signal of two probes have been successfully un-
mixed based on their temporal dynamics: U2OS cells stained with 
DiBAC4(3) and Concanavalin A - Alexa Fluor 488 were analyzed with a 
sequential illumination strategy where a first photodestruction phase 
was followed by a fluorescence recovery period. The two dyes exhibit 
similar spectral signatures (thus cannot be separated using different 
color channels) but have different recovery behaviours, allowing three 
different cellular structures to be separated from a single-channel 

measurement using factor analysis. 
Multi-exponential analysis has seen a long history in exploratory 

data analysis and curve resolution approaches. In 1997, Windig and 
Antalek [5] introduced a method called direct exponential curve reso-
lution analysis (DECRA) to resolve series of NMR mixture spectra in 
which the contribution of the components varies with a decaying 
exponential. The proposed approach exploits the natural property of 
exponential curves to be proportional to the lagged version of them-
selves, a procedure that was later denominated Slicing [6]. This pro-
cedure makes it possible to add a new pseudo-dimension to the 
measured two-way data set and decompose the resulting three-way data 
set using trilinear methods such as direct trilinear decomposition 
(DTLD) [7] and parallel factor analysis (PARAFAC) [8]. This strategy has 
also been successfully used for multivariate curve resolution - alter-
nating least squares (MCR-ALS) in the recent work by Devos et al. [9] to 
unmix time-resolved emission spectroscopy data of a photoswitchable 
fluorescence protein. A key feature of MCR Slicing is the ability to create 
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hybrid models, where trilinearity is enforced only on some of the com-
ponents or on a subset of the original dataset. The data can therefore be 
described by a combination of exponential and non-exponential decays, 
whereas in PARAFAC Slicing, the same assumptions has to be made for 
all the components in the data. 

In this work, we show that the Slicing approach can be applied to 
photobleaching imaging data for which exponential behavior is assumed 
for the decaying fluorescence signal. The clear advantage is that it en-
ables the application of multilinear models without requiring in-depth 
knowledge of the specific system analyzed, yielding a single compre-
hensive model obtained in a non parametric way. Also, when a multi-
linear decomposition is applicable, the methodology can often be 
applied directly with no parameter optimization required by the user 
other than the selection of number of components, which can be 
determined using dedicated tools [10]. We demonstrate the applica-
bility of MCR Slicing approaches to the unmixing of sequential illumi-
nation fluorescence microscopy imaging data of different levels of 
complexity. Moreover, if the laser power is controlled during sequential 
illumination, we show that quadrilinear PARAFAC models can be fitted 
resulting in a very robust description of the signals’ behaviour in the 
pixel, time and repetition modes. In another illumination scenario, a 
hybrid bilinear-trilinear MCR Slicing model allows the combined 
description of both exponentially and non-exponentially decaying con-
tributions, showing that deviation to the ideal exponential behavior 
occurring when, e.g., analyzing images covering a very large field of 
view, can be coped with. Overall, multilinear Slicing has an important 
potential for data analysis and unmixing in fluorescence microscopy 
imaging with integrative (single-channel) detection. 

2. Materials and methods 

2.1. Sample preparation 

Samples were obtained by adding 1 mL Concanavalin A - Alexa Fluor 
488 (ConA) solution (500 μg mL− 1; Thermo-Fisher; n◦ C11252) to a dish 
of U2OS cells prior to fixation, incubated at 37 ◦C for 30 min and washed 
twice with 1 mL Hank’s balanced salt solution (HBSS; Gibco; n◦ 14 065- 
049). The DiBAC4(3) was added several minutes before imaging the 
sample so that an equilibrium could be achieved. 1 mL of a 10 μM 
DiBAC4(3) solution (Biotium; n◦ 61 011) was added after washing with 
HBSS. This fixation protocol is the same used for the preparation of 
samples in Ref. [4]. 

2.2. Imaging 

To form an image of these samples, a Nikon Ti-E2 microscope 
equipped with a × 100 CFI apo TIRF objective, a ZT405/488/561/ 
640rpcv2 dichroic (Chroma) paired with a ZET405/488/561/640 m 
emission filter (Chroma) and a PCO edge 4.2 CMOS camera was used 
(virtual pixel size of 118 nm; 1024 × 1024 pixels). As an excitation light 
source, a 488 nm Oxxius laser was used. 

2.3. Measurement schemes 

The below described measurement schemes were used to obtain the 
data; each datapoint was followed by an image acquisition (exposure 30 
ms with a laser power setting of 0.17 mW). 

Dataset 1: fixed laser power. i) 60 × 0.3 s of photodestruction with 
2.23 mW 488 nm laser power (denoted as section A1 in Fig. 2); ii) 10 
× 5 s fluorophore recovery; iii) 60 × 0.3 s of photodestruction with 
2.23 mW 488 nm laser power (section B1); iv) 30 × 5 s fluorophore 
recovery; v) 60 × 0.3 s of photodestruction with 2.23 mW 488 nm 
laser power (section C1). 
Dataset 2: increasing laser power. i) 120 × 0.15 s of photodestruction 
with 0.57 mW 488 nm laser power; ii) 60 × 30 s fluorophore 

recovery; iii) 120 × 0.15 s of photodestruction with 2.23 mW 488 nm 
laser power (denoted as section A2 in Fig. 5); iv) 60 × 30 s fluo-
rophore recovery; v) 120 × 0.15 s of photodestruction with 3.91 mW 
488 nm laser power (section B2); vi) 60 × 30 s fluorophore recovery; 
vii) 120 × 0.15 s of photodestruction with 6.2 mW 488 nm laser 
power (section C2). 

For both datasets only the photodestruction parts were used for the 
data analysis. 

2.4. MCR-ALS 

MCR-ALS [11] is a bilinear data decomposition algorithm, following 
the model expressed (element-wise) in Equation (1). 

di,j =
∑N

n=1
ci,nsj,n + ei,j i = 1…I, j = 1…J (1) 

Or, more commonly, in its matricial form as in Equation (2). 

D = CST + E (2) 

Here D is the dataset (with dimensions I rows and J columns); C is the 
(I x N) matrix formed by the N pure contribution across the row mode, ST 

is the (N x J) matrix formed by the N pure contribution across the col-
umn mode and E is the (I x J) matrix of errors associated to the model. 
The algorithm is widely used and more in depth information can be 
found in Ref. [12]. 

The profiles are optimized alternatingly in C and ST in an iterative 
fashion, until a convergence criterion is achieved, usually defined as the 
stabilization of the lack-of-fit (LOF), as expressed in Equation (3): 

LOF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
i,je2

i,j
∑

i,jd
2
i,j

√

(3)  

where e2
i,j and d2

i,j are the (i x j)th element of D and E respectively. Another 
metric commonly used in conjunction with the LOF is the explained 
variance, defined as in Equation (4): 

r2 = 1 −

∑
e2

i,j
∑

d2
i,j
= 1 − LOF2 (4) 

Constraints, defined as corrections apported to the profiles to 
conform to specific properties [11], are applied at each iteration. Con-
straints are decided by the operator and ensure that the solution selected 
by the optimization is in accordance with the information known about 
the system. The ability to impose constraints selectively to only some of 
the components grants a substantial flexibility to the resolution, allow-
ing the user to leverage all the information available on the system [9]. 
In this work, a non-negativity constraint is always applied to all the 
components’ profiles. We refer to the sections below for the more spe-
cific implementation of a trilinearity constraint. 

2.5. PARAFAC 

PARAFAC [8] is a multilinear factor analysis method that can be 
considered as a multi-way generalization of the principal component 
analysis (PCA) for two-way data. For three-way data, the decomposition 
can be expressed by Equation (5): 

di,j,k =
∑N

n=1
ci,nsj,npk,n + ei,j,k i = 1…I, j = 1…J, k = 1…K (5)  

where di,j,k is the (i x j x k)th element of the D datacube; ci,n, sj,n, and pk,n 
are the pure contributions across the three modes, and ei,j,k is the (i x j x 
k)th error associated to the model. The model can also be written in a 
matricial form, as in Equation (6), although this is not as common 
because of its complexity. 

D(I×JK) = C(P ⊙ S)T
+ E(I×JK) (6) 
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Here D(I×JK) is the matricised form of the datacube (the superscript (I 
× JK) identifies the way the cube is matricised) and ⊙ represents the 
column-wise Khatri-Rao product [13]. 

PARAFAC decomposition has a few advantages, notably that it is 
more robust and easier to interpret compared with lower dimensional 
models needing unfolding [8]. PARAFAC can also be applied to higher 
dimensional datasets, as in four- or five-way data, with adjustments to 
the decomposition model provided in Equation (5) and Equation (6). 
Applications of higher-order decomposition models (e.g. quadrilinear) 
exist in chemometrics and analytical chemistry [14], however, to our 
knowledge there has been no result reported on the decomposition and 
exploratory analysis of fluorescence microscopy imaging data. In the 
PARAFAC decomposition, in contrast with the aforementioned MCR 
bilinear decomposition, the problem of rotational ambiguity (model 
identification) does not exist, given that the analyzed data are indeed 
multilinear [[15], Chapter 5]. However, the model might be more easily 
estimated by applying constraint to the loadings [16] and, in this work, 
PARAFAC is always performed under a non-negativity constraint. 

2.6. Slicing 

Slicing has been proposed as a method to leverage the intrinsic 
mathematical properties of exponential decay functions to build multi- 
way datasets. More specifically, the shifting property of exponential 
functions is expressed in Equation 7 

Ae− (t+l)/τ = Ae− t/τe− l/τ = A′ e− t/τ (7)  

where l is an arbitrary lag along the time axis. In this way, by applying 
lags of different durations to an exponential decay signal, the pre- 
exponential amplitude factor A varies while the characteristic time τ 
remains constant. This translates into a linear relationship that can be 
exploited to create a new pseudo-mode. When Slicing is applied to two- 
way data, different slabs are produced by taking sequential subsets of 
the matrix: a window of fixed dimension is moved along rows, each time 
starting at a different column (i.e. different temporal lags). The slabs are 
then concatenated to produce a three-way datacube. Several specific 
Slicing algorithms have been developed and tested, mostly differenti-
ated by the choice of the specific lags applied. In this work the lags used 
are equal to the powers of 2 (l = [1, 2, 4, 8 …]), as in the approach 
proposed in Ref. [17]. 

2.7. Multilinear Slicing on images 

To decompose images applying factor analysis techniques, a pre-
liminary unfolding of the image datacube has to be applied to provide a 
two-way data set. Slicing is then applied to the unfolded dataset to 
produce slabs. Once the slabs are created, they can be concatenated 
either in the slab direction to produce a three-way datacube suitable for 
PARAFAC decomposition, or in the row direction to produce a row- 
augmented multiset suitable for MCR Slicing analysis [9]. After 
unmixing, the concentration profiles obtained can be refolded to get the 
individual images corresponding to each pure recovered component. 
Fig. 1 schematizes and summarize this process. In both cases the core 
trilinearity property will be used for the decomposition, but in the first 
case by the trilinear model itself (PARAFAC Slicing), while in the second 
case a constraint of equal shape is applied to the component profiles 
within each iteration of an MCR-ALS bilinear model (MCR Slicing). The 
choice between these two alternative approaches should be driven by 
the data themselves. While a trilinear model is more robust, trilinearity 
is not always verified in the data and therefore its applicability is more 
limited compared to a bilinear model. Thus, a clear asset of MCR Slicing 
for analyzing fluorescence imaging data of complex systems is that it is 
better suited to handle perturbation factors, since MCR-ALS decompo-
sition model can embed components whose profiles do not show ideal (i. 
e. exponential, in this work) behaviour [18]. 

3. Results and discussion 

The first dataset (Dataset 1) consists of U2OS cells stained with ConA 
and DiBAC4(3). The data is shown in Fig. 2. A sequential strategy 
comprised of alternating periods of photodestruction by laser illumi-
nation and fluorescence recovery was applied, and only the sections 
corresponding to the illumination phases were analyzed (see Materials 
and Methods). The laser power used for illumination was kept constant. 
The averaged image of the full field of view is shown in Fig. 2a, while the 
recovered time traces of the three photodestruction blocks (which we 
will call A1, B1 and C1) are shown in Fig. 2c. 

Each block was individually sliced into five slabs, and then the fifteen 
slices were concatenated in a row-wise augmented multiblock structure 
to which MCR Slicing was applied. In Fig. 3, the results of a three- 
component MCR Slicing decomposition of the multiblock structure are 

Fig. 1. Schematic representation of Slicing applied to fluorescence imaging data. The image datacube is unfolded by considering each pixel as a different row of a 
two-way dataset. Slabs are then produced and are rearranged either as a three-way datacube to be decomposed applying PARAFAC or as a two-way multiset data 
structure analyzed applying MCR Slicing. After refolding, both approaches yield the distribution maps (images) and monoexponential decays of the individual 
pure components. 
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reported. The images in Fig. 3a–c provide the distribution maps corre-
sponding to the three components extracted. The data in Fig. 3d corre-
sponds to the “reassembled” profiles obtained for the three sections 
(“raw” results of the MCR Slicing before the rearrangement are added in 
the Appendix, Fig. 7). These rearranged profiles show clear mono-
exponential behavior and the overall bleaching behaviour can thus be 
described by considering three components characterized by mono-
exponential decaying time profiles (it should be noted that the applied 
trilinearity constraint forces the profiles to have the same shape, but not 
necessary an exponential one). Among the three components extracted, 
the first one (marked in blue) can be clearly distinguished from the other 
two by its slower destruction rate and by the fact that it shows no re-
covery, a behaviour that can be attributed to ConA [4]. The image in 
Fig. 3a confirms this hypothesis, since most of the contribution is found 
in the space between cells, which can be attributed to an affinity for 
Lamin [4]. The remaining two components can then be assigned to two 
different behaviours of the DiBAC4(3), where the differences in 

destruction rate are due to influences by the local environment. As 
previously observed in Ref. [4], the fastest among the two (corre-
sponding to DiBAC4(3)-B in Fig. 3) is mainly localized around the nu-
cleus. Comparing the results obtained in the three blocks (Fig. 3d) it 
appears clearly that while the characteristic destruction rates corre-
sponding to the three individual components are similar (because of the 
constant laser power used for the three blocks), the longer recovery time 
before C1 translates into a higher relative availability of fluorophores, 
and therefore in a higher response signal compared to B1. Indeed, this 
reveals that another linear relationship exists within the data which can 
be leveraged as an added dimension for the model. In practice, this 
means that a four-dimensional hypercube can be built, where the fourth 
dimension will be obtained by concatenating the blocks A1 to C1, which 
can then be decomposed using a quadrilinear PARAFAC model. 

We now report the results obtained applying a three-component 
quadrilinear PARAFAC Slicing model. The uniqueness property of the 
PARAFAC model results (except for scaling and permutation of the 

Fig. 2. First dataset of U2OS cells. a. Image averaged across all acquisition times. Image size 120 × 120 μm, scalebar 10 μm. b. Averaged time traces, shown to 
illustrate the illumination scheme: three sections of 18 s of photodestruction using 2.23 mW laser power, with 50 s of fluorophore recovery between section A1 and 
B1, 150 s between B1 and C1. Only the photodestruction sections were used for the analysis. c. Time traces relative to the three photodestruction sections. 
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component matrices) is a key feature and one of the most attractive 
feature of the method for its applications [15, Chapter 5]. However, as 
previously mentioned, a quadrilinear model is strict, and slight de-
viations from the ideal multilinear behaviour of the data will results in 
the lack of convergence of the model. Due to spatial local differences, 
one model could not fit the whole field of view of the image. This can be 
explained by the fact that, ideally, to evaluate the photobleaching rate of 
fluorescent probes the data should be acquired under strictly identical 
illumination conditions. However this can always be questioned, in 
particular when considering large field of view images. To circumvent 
the issue, patches of the full images were considered. Patching is a 
commonly used approach to extract spatial features in image processing. 
We show here that local models constructed on different patches can be 
more suitable for multilinear modelling in situations where the image 
suffers from perturbating effects/artifacts such as uneven illumination 
or out of focus regions. Considering patches of the full images, quadri-
linear PARAFAC Slicing models could be fitted locally. It should be 
noted that, once a patch has been selected, the procedure is automatic 
and does not necessitate any further input from the operator. Fig. 4 
provides the results obtained for a three-component model fitted over 
four different patches (see Fig. 4a). As previously, five slabs were used. 
Fore example, for patch 1 Fig. 4b shows the distribution maps for the 
three components extracted from the first patch, while the relative time 
traces are shown in Fig. 4c. Again, the slow component (blue trace in 4c) 
attributed to ConA is distinguishable from the faster components (red 
and yellow traces in Fig. 4c) attributable to DiBAC4(3), which can be 
found mostly around the nucleus and the endoplasmic reticulum. The 
fourth mode of the model is represented in Fig. 4d, where the variation 
across the three different sections of the recovery rate of each compo-
nent is described. The first loading of this mode (blue trace in Fig. 4d) 
clearly confirms the fact that ConA does not recover between successive 
bleaching periods. On the contrary, the loadings extracted for the two 
DiBAC4(3) components show again that, when more time is allowed for 
the dye to recover (50 s recovery time between A1 and B1; 150 s be-
tween B1 and C1), more dye is available at the start of the following 
destruction section. The results displayed in Fig. 4c–j are very similar, 

with slight variations that can be expected in cell imaging due to local 
environment, and confirm the proposed interpretation. However, 
locally, as for the results displayed in Fig. 4k-m, significant deviation to 
the ideal quadrilinear model can sometimes be observed. 

The second dataset (Dataset 2) is another U2OS cell sample stained 
with ConA and DiBAC4(3) but a different measurement scheme was 
applied. The data is shown in Fig. 5. The averaged image of the full field 
of view is shown in Fig. 5a (a smaller region of interest with a particu-
larly visible structure has been chosen) and the recovered time traces of 
the three photodestruction blocks (this time referred as A2, B2 and C2) 
are shown in Fig. 5c. In this case, the sequential illumination did not use 
the same laser power in all the sections, having instead increasingly 
higher laser powers for each block. For this reason, in contrast with 
Dataset 1, the characteristic rates constant of each component will not 
be comparable among the different blocks. Indeed a closer look at Fig. 2c 
reveals that overall time traces decay faster going from A2 to C2. Hence, 
no common mode exists between the three blocks and therefore PAR-
AFAC Slicing cannot be used. By contrast, MCR Slicing, which allows to 
impose the trilinearity constraint per block, can still be applied. More-
over, an additional component was considered in the MCR Slicing 
decomposition. The trilinearity constraint was not applied to this fourth 
component in any of the three blocks. This is a way to handle some 
deviation from the ideal bilinear behavior of the system [18]. 

As previously, each block was individually sliced into five slabs, and 
then the fifteen slices were concatenated in a row-wise augmented 
multiblock structure to which MCR Slicing was applied. However, 
different from Dataset 1, the trilinearity constraint was imposed sepa-
rately on each individual block since they are not expected to follow the 
same exponential behavior due to the illumination scheme applied. The 
results obtained for a four-component decomposition are shown in 
Fig. 6. As can be seen, these results translate a more complex behavior 
than the one observed for Dataset 1. The first three components, to 
which the trilinearity constraint was applied, are similar to the ones 
previously attributed to ConA (Fig. 6a) and DiBAC4(3) (Fig. 6b and c). 
However, the time trace of the fourth component (dashed trace in 
Fig. 6e) shows a pattern that translates a clear deviation from the ideal 

Fig. 3. Three-component MCR Slicing decomposition of Dataset 1. a-c. Distribution maps attributed to contribution from ConA (a) and DiBAC4(3) (b-c) respectively; 
d. Corresponding monoexponential time traces. LOF:4.66%, r2 

= 99.78%. 
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well-behaving exponential signal for the fluorophores, the correspond-
ing distribution map (Fig. 6d) showing similarities with the one attrib-
uted to ConA (with some background contribution). Despite the 
difficulty in fully interpreting the complexity of the system, these results 
highlight the flexibility of MCR Slicing when faced with difficult 
analytical problems. 

4. Conclusions 

In this work we implemented a methodology for exploratory analysis 
and unmixing of fluorescence microscopy imaging data using Slicing 
and multilinear decomposition approaches, namely PARAFAC Slicing 
and MCR Slicing. In contrast to lifetime fitting methods (see e.g. 
Ref. [19]) where the model is thought a priori (before the data are even 
acquired), in the proposed methodology the hypothesis of exponential 
behavior comes from the data structure itself. 

We applied this strategy to two samples of U2OS cells stained using 
both DiBAC4(3) and Concanavalin A - Alexa Fluor 488. Both samples 
have been acquired using a sequential illumination strategy in which 
several photodestruciton phases were interspersed by a fluorophore 
recovery phase. The laser power used during the photodestruction 
phases influences the characteristic decay time exihibited by each flu-
orophore, while the fluorescence recovery time determines which per-
centage of the total fluorophore molecules will be available for the next 
illumination phase (if the fluorophore shows the ability to recover). 

In the first dataset, the illumination power was kept fixed, while the 
recovery time was increased between the photodestruction sections. 
This allowed both a trilinear MCR model and a quadrilinear PARAFAC 
model to be used to describe the dataset, yielding the characteristic time 
traces for each fluorophore, their associated distribution maps and the 
recovery ratio at the start of each photodestruction section. The analysis 
was repeated on several patches across the field of view yielding 

Fig. 4. Three component four-way PARAFAC Slicing decomposition of Dataset 1, replicated on different patches across the full field of view. a. Averaged image of 
the full field of view with the localization of the four patches highlighted. b-d. Distribution maps (b), attributed to ConA and DiBAC4(3) respectively, with the 
corresponding monoexponential time traces (c) and recovery ratio (d) of pure components retrieved from Patch 1, r2 = 99.83%. e-h. Reconstructed distribution 
maps, recovered time traces and recovery ratios for Patch 2 (r2 

= 99.82%), Patch 3 (r2 
= 99.79%) and Patch 4 (r2 

= 99.87%), shown in similar fashion. 
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comparable results. Also, these quadrilinear models were obtained 
directly, without the use of previous assumptions or operator knowledge 
of the system, except for the overall structure of the dataset. 

In the second dataset the laser power was increased in each photo-
destruction phase throughout the experiment. A clear perturbing effect 
was successfully dealt with by adding an additional component in the 
MCR Slicing model used to describe the dataset. 

Multilinear Slicing has therefore been proven effective in the 

unmixing of photobleaching fluorescence imaging data using single- 
channel detection, and the several different approaches used show-
cased its ability to be effectively applied to a variety of experimental 
situations. Overall, this work provides future opportunities for the 
analysis of more complex multiplexed fluorescence imaging scenarios 
and for robust blind unmixing of fluorescence lifetime imaging (FLIM) 
data. In this context, comparison to other exploratory approaches could 
be performed, such as phasor analysis [20], which provides a graphical 

Fig. 5. Second U2OS cells dataset. a. Image averaged across all capture time. Image size 40 × 45 μm, scalebar 10 μm. b. Averaged time traces, shown to illustrate the 
illumination scheme: 18 s of photodestruction at 2.23 mW laser power for section A2, 30 minutes of fluorophore recovery, 18 s of photodestruction at 3.91 mW laser 
power for section B2, 30 minutes of fluorophore recovery, 18 s of photodestruction at 6.2 mW laser power for section C2. Only the photodestruction sections were 
used for the analysis. c. Time traces relative to the three photodestruction sections. 
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representation of the pixel distribution in a polar plot to help dis-
tinguishing between different lifetime populations when different point 
clusters can be observed. 
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Fig. 6. Four component MCR Slicing decomposition of Dataset 2. a-d. Distribution maps; e. monoexponential time traces. LOF:4.65%, r2 
= 99.78%.  
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Appendix A

Fig. 7. Three component MCR Slicing on Datased 1. a. Raw data, were the three photodestruction blocks are concatenated. b. After each block is sliced (five slice are 
produced), the slices are concatenated row-wise and the sliced data is analyzed using MCR-ALS under trilinearity constrain. c. Full time traces of the three com-
ponents extracted from the sliced data. d. The first slice for each block is shown. 
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