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Abstract

Least squares-based estimations lay behind most chemometric methodologies.

Their properties, though, have been extensively studied mainly in the domain

of regression, in relation to which the effect of well-known deleterious factors

(like object leverage or data distributions deviating from ideal conditions) on

the accuracy of the prediction of an external response variable has been thor-

oughly assessed. Conversely, much less attention has been paid to what these

factors might yield in alternative scenarios, where least squares approaches are

still utilised, yet the objectives of data modelling may be very different. As an

example, one can think of multivariate curve resolution (MCR) problems

which are usually addressed by means of multivariate curve resolution-

alternating least squares (MCR-ALS). In this respect, this article wants to offer

a perspective on the basic principles of MCR-ALS from the regression point of

view. In particular, the following critical aspects will be highlighted: (i) in the

presence of minor components, if the number of analysed data points is too

large, the leverage of those that may be essential for a MCR-ALS resolution

might become too low for guaranteeing its correctness, and (ii) in order to

overcome this black hole effect and improve the accuracy of the MCR-ALS out-

put, data pruning can be exploited. More in detail, this communication will

provide a practical illustration of such aspects in the field of hyperspectral

imaging where even single experimental runs may lead to the generation of

massive amounts of spectral recordings.
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1 | INTRODUCTION: THE BLACK HOLE EFFECT

Several application studies recently reported in literature have highlighted how least squares-based methods for multi-
variate curve resolution (MCR), like multivariate curve resolution-alternating least squares (MCR-ALS1,2), might suffer
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from critical limitations when coping with mixture datasets featuring so-called minor components, for example, chemi-
cal compounds observable only in correspondence of few pixels of a hyperspectral image.3,4 In order to fully grasp the
main reasons behind this particular issue, imagine a specimen composed by three different compounds (A, B and C) is
actually to be characterised through a hyperspectral imaging experiment (see, e.g., Figure 1A,B). If the resulting
(unfolded) hyperspectral data structure (say, X) is decomposed by principal component analysis (PCA5,6) as follows:

X¼TPTþE ð1Þ

and the PCA scores obtained from Equation (1) are normalised so that all the columns of T are divided element-wise by
the first column of T, denoted as t1:

~T¼T�t11T ð2Þ

with 1T being a row vector of ones of appropriate dimensionality and � the element-wise (Hadamard) division operator,
then the representation of the second- and third-component normalised scores enables an immediate and easy visuali-
sation of the geometry of the specific MCR problem at hand.7,8 In fact, under this normalisation constraint, provided
that the whole set of image pixels spans all the possible mixture combinations of A, B and C, the second- versus third-
component scores point cloud assumes a triangular (simplex) shape whose vertices actually correspond to the three
pure-compound spectral pixels (labelled as ‘A’, ‘B’ and ‘C’, respectively; see Figure 1C). For any linear resolution
approach, therefore, it would only be needed to somehow identify such vertices for accomplishing the spectral
unmixing of X. For the sake of illustration, the blue solid lines in Figure 1C connote the solution yielded by MCR-ALS
in this contingency (see also Figure 1D).†

Suppose now that the concentration of C gradually decreases all over the scanned surface, but that a single pure
pixel for it still exists (see Figure 1E,H). This translates into peculiar distributions of the normalised projection scores
yielded by the PCA decomposition in Equation (1) (see Figure 1F,I): the original simplex becomes, indeed, only par-
tially covered, with scores more and more compacted along the direction connecting the pure A and pure B spectral
pixels and a single scattered observation in the upper right part of the graph (the pure C spectral pixel).‡ Here, the per-
formance of MCR-ALS progressively worsens (see Figure 1F,G,I,J): in the scenario illustrated in Figure 1I, in spite of
the fact that MCR-ALS is initialised with the spectral profiles of pure A, pure B and pure C, an accurate factorisation of
the analysed data cannot even be attained—it has to be noticed that this can occur even in the absence of selective
information for C (see supporting information). Such a phenomenon could also be interpreted in the following way: the
increasing density of data points between ‘A’ and ‘B’ somehow attracts to a growing extent the MCR-ALS solutions
towards the center of mass of the displayed data clouds, similarly to the effect of a black hole. The main reasons behind
it are to be found in the least squares nature of the MCR-ALS algorithmic procedure.

2 | A LEVERAGE PROBLEM

If one were coping with a multivariate regression problem, looking at Figure 1I, the data point ‘C’ would appear as
exhibiting a strong outlying behaviour. Nevertheless, given the high sample size, this outlying behaviour would not dra-
matically affect the results provided by the application of any least squares methodology.10,11 In order to clarify this
aspect, the concept of leverage needs to be introduced. The leverage of a given data item is commonly defined as the
n-th diagonal element of the squared matrix H12:

H¼X XTX
� ��1

XT ð3Þ

In general, it is said that the higher a leverage value, the more a least squares estimation based on X is influenced
by the corresponding data point. H is characterised by a key property.13–15 Its trace (i.e., the sum of all its diagonal ele-
ments), indeed, is always equal to the rank of X:

†In this article, MCR-ALS is always applied imposing only nonnegativity constraints.
‡Notice that the number of data points represented in Figure 1C,F,I is constant.
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FIGURE 1 Legend on next page.
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tr Hð Þ¼
XN
n¼1

hn,n ¼ rank Xð Þwith 0≤ hn,n ≤ 1 ð4Þ

with N being the number of observations in X. Subsequently, if N grows while rank Xð Þ is kept constant, tr Hð Þ does not
vary, but

PN
n¼1hn,n involves a larger number of hn,n values. Therefore, on average, all hn,n decrease unless the leverage

of the new objects included in X equals 0 (which barely happens in real case-studies). This property basically explains
why increasing N (as per the common statement the more the samples, the better the model) is often exploited as a strat-
egy to intrinsically reduce the bias that high-leverage data objects (if outliers) may generate and why, in the aforemen-
tioned situation, the influence of ‘C’ on the least squares procedure is limited. In an analogous way, here we propose to
determine the leverage of a particular data point in the normalised scores subspace mentioned in Section 1 as the n-th
diagonal element of the array H~T:

H~T ¼ ~T ~T
T~T

� ��1
~T
T ð5Þ

It is worth noticing that H and H~T share the same mathematical features. In fact,

tr H~T

� �¼
XN
n¼1

h~T,n,n ¼ rank ~T
� �

with 0≤ h~T,n,n ≤ 1 ð6Þ

and all h~T,n,n usually decrease with N . Therefore, it is exactly for the same reason outlined before that, if N is too large,
the leverage of data points that may be essential16–18 in a MCR-ALS case-study (e.g., ‘C’) might become too low for a
correct resolution to be achieved and that decreasing N could help improving the quality of the MCR-ALS output.

3 | A POSSIBLE WAY OUT: INFORMATION SELECTION

Given the properties of the diagonal elements of H and H~T, one potential strategy to somehow indirectly increase the
leverage values of certain data points and, therefore, their importance in least squares-based algorithmic procedures is
pruning the original set of measurements by reducing N while keeping rank Xð Þ or rank ~T

� �
unchanged. In the scenario

illustrated in Figures 1I and 2B, for instance, if a relatively large portion of the observations in X (say, 65%) is randomly
filtered out (ideally, without excluding the pure A, pure B and pure C spectral pixels; see Figure 2D), a significant
improvement in the MCR-ALS solution could already be achieved (see Figure 2E,F). Nonetheless, in most cases, ran-
dom pixel selection might be a suboptimal approach when MCR-ALS is to be run for hyperspectral image analysis.3 A
more adequate strategy to identify the most relevant spectral pixels for MCR relies on the estimation of the convex hull
of the aforementioned normalised projection scores cloud.19–21 When convex hull-based pruning is performed before
the application of MCR-ALS to the data of Figure 2A, strikingly, the considerable reduction of the number of data
points (see Figure 2G) leads to a correct and reliable unmixing of A, B and C (see Figure 2H,I). As also pointed out in

FIGURE 1 A simulated three-component hyperspectral imaging case-study: (A) illustrative wavelength-averaged hyperspectral image;

(B) selection of pixel spectral profiles of a simulated image underlain by all possible mixture combinations of three compounds or

ingredients (A, B and C); (C) normalised scores space representation of the resolved spectra (blue solid lines) returned by a multivariate

curve resolution-alternating least squares (MCR-ALS) decomposition of the dataset Figure 1B relates to; (D) resolved spectra returned by a

MCR-ALS decomposition of the dataset Figure 1B relates to; (E) selection of pixel spectral profiles of a simulated image generated

accounting for a relatively low concentration of C all over the scanned scene and a single pure C spectral pixel; (F) normalised scores space

representation of the resolved spectra (blue solid lines) returned by a MCR-ALS decomposition of the dataset Figure 1E relates to;

(G) resolved spectra returned by a MCR-ALS decomposition of the dataset Figure 1E relates to; (H) selection of pixel spectral profiles of a

simulated image generated accounting for an extremely low concentration of C all over the scanned scene and a single pure C spectral pixel;

(I) normalised scores space representation of the resolved spectra (blue solid lines) returned by a MCR-ALS decomposition of the dataset

Figure 1H relates to; (J) resolved spectra returned by a MCR-ALS decomposition of the dataset Figure 1H relates to. It is important to notice

that, from a theoretical perspective,9 (F) and (I) do not even reflect MCR solutions strictly fulfilling the nonnegativity constraint
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Section 1, a similar improvement can be observed even in the absence of pure C spectral profiles and irrespectively of
the MCR-ALS initialisation strategy resorted to (see supporting information).§

We believe this to be the formal explanation of the effect observed in earlier studies.3,4

FIGURE 2 Performance of multivariate curve resolution-alternating least squares (MCR-ALS) before and after data pruning: (A) same

as Figure 1H; (B) same as Figure 1I—the leverage of the observation labelled as ‘C’ is equal to 0.20 here (N ¼ 57, 600); (C) same as Figure 1J;

(D) selection of spectral profiles drawn from a random subset of 35% of the original hyperspectral image pixels; (E) normalised scores space

representation of the resolved spectra (blue solid lines) returned by a MCR-ALS decomposition of the dataset Figure 2D relates to; the

leverage of the observation labelled as ‘C’ is equal to 0.44 here (N ¼ 20, 160); (F) resolved spectra returned by a MCR-ALS decomposition of

the dataset Figure 2D relates to; (G) spectral profiles of the most relevant pixels of the original hyperspectral image retrieved by the convex

hull-based selection approach described in earlier studies16–18; (H) normalised scores space representation of the resolved spectra (blue solid

lines) returned by a MCR-ALS decomposition of the dataset Figure 2G relates to—the leverage of the observation labeled as ‘C’ is equal to
0.99 here (N ¼ 12); (I) resolved spectra returned by a MCR-ALS decomposition of the dataset Figure 2G relates to. In (H), the data points

actually considered for the MCR-ALS factorisation are highlighted by the magenta dots. For easing the comparison among Figure 2B,E,H,

the same normalised scores subspace is preserved. It is important to notice that, from a theoretical perspective,9 (B) and (E) do not even

reflect MCR solutions strictly fulfilling the nonnegativity constraint

§It should be stressed that, in situations of higher measurement noise, it might be useful to retain not only the first but the first few convex layers of
the normalised scores point cloud for a more robust estimation of the MCR-ALS solution from the reduced set of data.
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4 | CONCLUSIONS

This featured communication was conceived in the attempt of clarifying an aspect (that, at a first glance, might
seem counterintuitive) related to the effect that the number of analysed data points can have on the quality and the
reliability of the solutions that least squares-based unmixing approaches may provide: in MCR scenarios, enhancing
the importance of extreme measurement observations (increasing directly or indirectly their respective leverage
values) can aid such approaches in achieving more accurate outcomes. Here, such an enhancement was accom-
plished by data pruning and information selection, but alternative strategies like object weighting based on measures
of essentiality for the sake of curve resolution are currently being explored.17,19,20 The implications of these strategies
on the uncertainty and stability of the final results are, of course, of interest and will be investigated in future
research.
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