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Abstract

A novel fast and automatic methodology for the hierarchical classification and similarity matching
of mid-infrared spectra of paint samples based on the principles of Soft Independent Modelling of
Class Analogy (SIMCA) and on the definition and properties of the Mahalanobis distance is here
proposed. This approach was tested in a so-called market study (i.e., targeting products largely
accessible to the general public and conceived for a considerably wide range of usages) conducted
across the surroundings of the city of Lille, in France, and has permitted not only to successfully
achieve the chemical characterisation of most of the analysed samples but also to discover specific
commonality patterns among specimens sharing the same chemical features.

Keywords: classification, matching, hierarchical methods, Soft Independent Modelling of Class
Analogy (SIMCA), Hotelling’s T 2, paints

1. Introduction

Crime scene investigation often involves the assessment and analysis of paint traces (e.g., graf-
fiti), which are generally carried out by means of spectroscopic and/or microscopic techniques
[1, 2]. Among these, Fourier Transform Infrared (FTIR) spectroscopy has proven to be one of
the most reliable and performant approaches, especially for paint discrimination and characterisa-
tion [3–6]. Paints, in fact, can be regarded as mixtures of two primary constituents: i) an organic
polymeric resin enabling its binding to the target surface and ii) organic/inorganic pigments dis-
persed in this polymeric resin (for instance, titanium dioxide, talc, kaolin or calcium carbonate),
regularly at sufficient concentration levels to allow FTIR determination. In such scenarios, two
of the basic tasks forensic agents and examiners usually need to address are i) the identification
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of the chemical composition of the unknown samples collected on-field through the interpretation
of the spectral profiles registered and ii) the comparison between these spectroscopic profiles and
those of databased specimens for similarity recognition. The former can provide essential infor-
mation on the primary source of a paint trace: commonly, in fact, paints of different nature have
diverse end-uses and the evaluation of their formulation might aid the identification of the items
or supports from which they come (motor vehicles, maintenance tools, etc.). The latter, instead,
may permit the direct association of the recovered evidence with objects available on the market
or found during the inspection of other crime scenes [7].
In order to get insights into the chemical composition of paint traces by FTIR analysis, practition-
ers typically resort to ad hoc flow-diagrams (like the so-called "automotive paint binder infrared
classification flow-chart") guiding the users throughout the visual interpretation of the individual
peaks detected [8]. On the other hand, database searching/matching is ordinarily performed either
manually through pairwise comparisons of spectra or by commercial software suites (like Know-
ItAll Spectroscopy Edition - John Wiley & Sons, Inc., Hoboken, United States of America - and
OMNIC Spectra Software - Thermo Fisher Scientific, Inc., Waltham, United States of America)
that rely on proximity measures directly estimated from the spectroscopic data at hand. Although
both these strategies constitute the state of the art in paint forensics, they suffer from severe draw-
backs which hamper their utilisation particularly when large amounts of spectral profiles are to be
handled and processed. Indeed, being mostly based on visual/manual procedures, such method-
ologies are extremely time consuming and prone to errors principally induced by the mood/fatigue
of the operators and/or by the complexity and the pronounced entanglement of the instrumental
response recorded [9]. Furthermore, even when computer algorithms are employed for this pur-
pose, it is well-known that chance matches are frequent and the risk of false positives/negatives
remains high, mainly when sample differentiation strictly depends on minor chemical components
[10]. For overcoming these limitations while guaranteeing a rapid, automatic and robust char-
acterisation of paint samples, multivariate (chemometric) methods can be alternatively applied.
Recent studies have already demonstrated that they can represent feasible solutions for the dis-
crimination of synthetic resins [11] and proteinaceous binders [12] contained in varnishes for art
purposes, architectural finishes (household paints [13]), automotive clear coats [14], and spray
paint specimens of distinct colours [9] as well as for developing spectral pre-filters to facilitate
library or database comparisons [15]. For this reason, the present article describes a novel hier-
archical approach based on Soft Independent Modelling of Class Analogy (SIMCA [16, 17]) and
on the definition and properties of the Mahalanobis distance [18, 19] to achieve the characteri-
sation of commercial spray paint samples, largely accessible to the general public and conceived
for a considerably wide range of usages - what is also known as a market study [9, 20–25] - and,
consecutively, discover similarity patterns among specimens sharing the same chemical features.
Tackling these two objectives sequentially is key in contingencies like this: seeking such similarity
patterns only for paints exhibiting the same composition, in fact, can significantly reduce the im-
pact of the aforementioned chance or false matches. To the best of the authors’ knowledge, works
targeting these two goals in a similar fashion and by the combination of FTIR spectroscopy and
multivariate statistics have never been reported in literature.
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2. Materials and methods

The proposed workflow for paint identification and matching encompasses two sequential
steps, whose detailed description will be given in the following subsections:

1. the SIMCA-based classification of paint specimens according to their FTIR spectral signa-
ture;

2. the recognition of the databased samples most spectroscopically similar to such specimens.
Notice that this assessment is conducted through the estimation of a pairwise Mahalanobis
distance metric representative of how resemblant the individual spectral response of these
latter is to the spectral profiles of paints with the same chemical composition.

2.1. Paint sample classification by Soft Independent Modelling of Class Analogy (SIMCA)
Let X be a N samples × J variables (wavenumber channels, in this case) dataset, made up of Z

blocks, Xz (Nz × J), each one containing spectral profiles of (paint) specimens of the same unique
category (i.e., a particular chemical composition). SIMCA separately decomposes every (cen-
tred) Xz array according to a Principal Component Analysis (PCA [26, 27]) model of appropriate
dimensionality (say Az) as:

Xz = TzPT
z + Ez (1)

where Tz (Nz × Az), Pz (J × Az) and Ez (Nz × J) denote the scores, loadings and residuals matrices
resulting from the factorisation of Xz. After having defined the individual class subspaces as in
Equation 1, the degree of outlyingness of any new generic measurement observation, xT

new (1 × J),
with respect to them can be assessed in terms of the so-called reduced distance [28] which is
calculated as:

dnew,z =

√√T 2
new,z

T 2
lim,z

2

+

(
Qnew,z

Qlim,z

)2

(2)

with T 2
new,z reflecting the (Mahalanobis) distance between the origin of the z-th model hyperplane

and the projection of xT
new onto it, and Qnew,z reflecting the perpendicular (orthogonal) distance

between xT
new and the z-th model hyperplane. T 2

lim,z and Qlim,z connote empirical thresholds for the
former and the latter statistical indices, respectively, usually corresponding to a significance level
of 95% and estimated based on the elements in Xz. In this article, the observation xT

new is consid-
ered an outlier for the model of the z-th class and, thus, not recognised as its member if dnew,z is
found to be larger than

√
2. Conversely, if dnew,z ≤

√
2, the corresponding sample is assigned to

the z-th category [29–31].
In SIMCA, the classification performance is commonly evaluated according to the following fig-
ures of merit:

sensitivityz =
TPz

TPz + FNz
× 100 ∀z ∈ [1, . . . , 3] (3)

specificityz =
TNz

TNz + FPz
× 100 ∀z ∈ [1, . . . , 3] (4)

efficiencyz =

√
sensitivityz × specificityz ∀z ∈ [1, . . . , 3] (5)
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with TPz, TNz, FPz and FNz standing for the amount of true positives (objects correctly identified
as belonging to the z-th category), true negatives (objects correctly identified as not belonging to
the z-th category), false positives (objects mistakenly identified as belonging to the z-th category)
and false negatives (objects mistakenly identified as not belonging to the z-th category) returned
by the classification procedure. The optimisation of the complexity (number of principal com-
ponents per class) of SIMCA class models, instead, can be carried out in various ways. Here, a
resampling strategy encompassing 300 repetitions of random subset cross-validation and aiming
at maximising the resulting efficiency values was resorted to [32–35].
Contrarily to standard discriminant approaches - such as Partial Least Squares Discriminant Anal-
ysis (PLSDA [36, 37]) - that strictly partition the multivariate space of the registered variables into
as many subregions as the number of categories of objects at hand, SIMCA (as well as other class
modelling techniques) independently defines a multivariate frontier for each individual category
under study, delimiting a specific region of the aforementioned multivariate space where speci-
mens belonging to it are more likely to be found (see also Figure 1 for a schematic representation
of this difference) [38]. In other words, discriminant strategies always assign each one of the data

Figure 1 – Schematic representation of the basic principle of A) a discriminant and B) a class-modelling techniques.
The former strictly partitions the multivariate space of the registered variables into as many subregions as the number
of classes of objects at hand and always assigns each one of such objects to a certain category. The latter independently
defines a multivariate frontier for each individual class under study, delimiting a specific region where specimens
belonging to it are more likely to be found. In this specific case, the observation lying on the upper right area of
the two plots would be recognised as member of the red square category by a discriminant approach, but would be
rejected by all the three independent class models one could possibly construct. Notice that empty symbols (as well
as the black star) denote hypothetical test samples, i.e. samples not taken into account when defining the classification
boundaries/rules.

items to a certain class (the one and only one within whose boundaries the point corresponding to
its measurement vector falls), while, in SIMCA, samples can be recognised as members of none,
one or multiple modelled categories, which renders the application of this methodology perfectly
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suited when such categories are expected to constitute only a reduced part of those that could
be potentially encountered and explored - a rather common case in paint forensics. Moreover,
once samples are identified as outliers by all the class models available at a given moment, their
respective spectral profiles can be further examined and investigated in order to get insights into
their chemical composition. If a new particular chemical composition gets sufficiently represented,
given the total independence among class models, an additional one can be at any time built with-
out necessarily having to modify those constructed in the initial training step. In principle, this
cannot be achieved through classical discriminant tools: first of all, as outlined previously, they
cannot easily spot outlying observations unless they are utilised in a so-called soft classification
framework; second, if new classes of objects become available, discriminant models always need
to be entirely recalibrated, which, in theory, also applies to these more recently developed soft
classification methods [39, 40].

2.2. Spectral similarity assessment based on pairwise Mahalanobis distance estimation
Once a sample (say again the observation xT

new) is successfully assigned to one or more of
the classes under study, its similarity with other specimens belonging to those (and only those)
categories can be assessed in terms of their pairwise Mahalanobis distance [41] as:

dM,z

(
xT

new, x
T
nz

)
=

√(
tT
new,z − tT

nz,z

)
S−1

z

(
tnew,z − tnz,z

)
∀nz ∈ [1, . . . ,Nz] (6)

where tT
new,z and tT

nz,z (both of dimensions 1×Az) are the row vectors containing the scores resulting
from the projection of xT

new and of each one of the Nz observations of Xz (xT
nz

- 1 × J) onto the

z-th class model subspace, while Sz =
TT

z Tz

Nz−1 connotes the Tz scores covariance matrix. Clearly, the

higher dM,z

(
xT

new, xT
nz

)
, the more dissimilar xT

new with respect to xT
nz

.
Three aspects are worth to be mentioned here. First of all, this procedure neglects the distance
of the compared samples from the z-th principal component hyperplane since such a distance is
assumed to exhibit in-control values (i.e., lower than its respective threshold) if these samples are
not rejected by the corresponding class model. Secondly, it reduces the chance of false matches
as the pairwise Mahalanobis distance estimation is uniquely carried out for specimens sharing the
same spectroscopic features. Finally, it is not limited to the set of Nz measurements exploited for
training purposes, but can be directly extended to any object having been previously recognised as
member of the z-th category.

2.3. Dataset
The dataset analysed to test the proposed methodology consists of 246 spectra of spray paints

(see Figure 2A) recorded in transmission mode by a Nicolet Continuµm infrared microscope cou-
pled to a NEXUS 670 FTIR platform for spectroscopic measurements (Thermo Fisher Scientific,
Inc., Waltham, United States of America) within the range 4000-650 cm−1 and at a resolution
of 4 cm−1 (128 scans per sample). All specimens proceed from as many commercial products
purchased - for the purpose of the study itself, i.e., to estimate the variety of their composition -
in a set of shops of the city of Lille, in France, and its surroundings, and manufactured by over
30 multinational companies active in the same area. Brands/family brands and colours (see the
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Figure 2 – A) Raw and B) reduced-preprocessed FTIR spectral data analysed in the present study.

supplementary material for a comprehensive list) were selected so as to span most of the spray
paints available on the market in the aforementioned region and, more specifically, those most
commonly sold by local distributors (as per the information received directly from sales repre-
sentatives). Sample preparation encompassed the following steps: every spray can was initially
shaken for 3 minutes in order to homogenise its content. The paint was then vaporised for 15 sec-
onds onto two glass slides (previously cleansed with anhydrous ethanol and placed at a distance of
30 cm from the actuator) which were let to dry horizontally for 72 hours. A dry paint sample was
afterwards collected by means of a scalpel and a hand lens, flattened by using a 10-ton hydraulic
press and deposited onto a potassium bromide (KBr) spectroscopic window.
105 of the investigated paint specimens were chemically characterised (by validating preliminary
information supplied by the providers through the direct interpretation of the registered profiles)
and identified as belonging to three different categories: 35 orthophtalic alkyd-based paints (chem-
ical composition #1), 52 orthophtalic alkyd-, nitrocellulose- and styrene-based paints (chemical
composition #2) and 18 poly-methyl-methacrylate-based paints (chemical composition #3). No
details on the constituents of the remaining 141 samples were instead available. The spectral data
related to the first 105 specimens were split into a training and a test set (constituted by approxi-
mately 70% and 30% of the total number of observations available, respectively - see also Table
1) by means of the Duplex algorithm executed category-wise [42]. The former was resorted to for
the calibration of three one-class SIMCA models (for chemical composition #1, #2 and #3), while
the latter was exploited in order to address an external validation of their performance in terms of
the figures of merit defined in Section 2.1.
For the sake of data processing and modelling, only the wavenumber interval between 1900 and
650 cm−1 (including the so-called fingerprint range that contains selective information for individ-
ual chemical constituents and, therefore, is usually exploited for the comprehensive characterisa-
tion of complex and heterogeneous chemical systems) was taken into account. Standard Normal
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Table 1 – Composition of the training and test set analysed in the present study.

training set test set

composition #1 class model 25 samples 10 samples
composition #2 class model 37 samples 15 samples
composition #3 class model 13 samples 5 samples

Variate [43] combined with Savitzky-Golay derivation [44] (spectral window size: 19 points; poly-
nomial function degree: second; derivative order: first) were utilised for spectral preprocessing
(see Figure 2B).

3. Results and discussion

The outcomes obtained from the application of SIMCA to the spectral data collected for the
samples of known composition are summarised in Table 2 and Figure 3. They clearly highlight
the accomplishment of a satisfactory differentiation among the paints exhibiting distinct chemical
characteristics. Moreover, the so-called Coomans plots [45] in Figure 4 (combined bivariate rep-
resentations of the graphs in Figure 3 which enable the visualisation of the degree of confusion
between every possible couple of classes) indicate that no sample was assigned to multiple cate-
gories at the same time, i.e., no symbol falls in their bottom-left region, delimited by the reduced
distance thresholds estimated for the two compared class models. Thereafter, for all the specimens
recognised as member of at least one of the categories at hand, the assessment outlined in Section

Figure 3 – Reduced distance plots for the training and test paint samples of known chemical composition. A) Class #1
model; B) class #2 model; C) class #3 model. Legend: filled blue dots - training specimens of chemical composition
#1; empty blue dots - test specimens of chemical composition #1; filled red squares - training specimens of chemical
composition #2; empty red squares - test specimens of chemical composition #2; filled green diamonds - training
specimens of chemical composition #3; empty green diamonds - test specimens of chemical composition #3. The
black dotted line denotes the classification threshold set at

√
2.
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Table 2 – Classification sensitivity, specificity and efficiency yielded by the three SIMCA class models in training,
cross-validation (CV) and external validation (test), respectively.
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Figure 4 – Coomans plots for A) class model #1 vs class model #2, B) class model #1 vs class model #3 and C) class
model #2 vs class model #3. Legend: filled blue dots - training specimens of chemical composition #1; empty blue
dots - test specimens of chemical composition #1; filled red squares - training specimens of chemical composition
#2; empty red squares - test specimens of chemical composition #2; filled green diamonds - training specimens of
chemical composition #3; empty green diamonds - test specimens of chemical composition #3. The black dotted lines
denote the classification thresholds set at

√
2 for all categories.

2.2 was conductedi. Figures 5A, 5B and 5C contain the waterfall representation of the derivative
spectra of three test samples assigned to the first, the second and the third class, respectively, and of
those of their 10 most similar training objects, coloured according to their corresponding pairwise
Mahalanobis distance values. Specific commonality patterns can be easily discerned [46–48]:

1. in Figure 5A, the signals at around 1450, 1270, 1130, 1070, 740 and 700 cm−1, generally
attributed to the vibration modes of the orthophtalic alkyd molecular groups;

2. in Figure 5B, together with those listed before, the signals at around 1650, 1280 and 840
cm−1, generally attributed to the vibration modes of the nitrocellulose molecular groups, and
the signals at around 1490, 1450 and 760 cm−1, generally attributed to the vibration modes
of the styrene molecular groups;

3. in Figure 5C, the signals at around 1450, 1380, 1270, 1240, 1150 and 970 cm−1, generally
attributed to the vibration modes of the poly-methyl-methacrylate molecular groups.

It has to be mentioned here that the developed methodology is capable of providing investigators
and forensic scientists with insights about the spectroscopic similarity between databased samples
(e.g. historical bodies of evidence) and newly collected ones. This would directly support them in
significantly narrowing the amount of target objects with respect to which additional comparisons
(in terms of other attributes like colour or production site) might be addressed. For example, in
this particular case, the two training paints exhibiting the highest commonality with the test ones
to which Figures 5A and 5B refer were found to share with them the same colour shade (brilliant
blue and night blue, respectively). The first can even be traced back to the same distribution chain.

iNotice that, as for all the class models the estimated number of components equals 1, Equation 6 reduces to

dM,z

(
xT

new, xT
nz

)
=

√
(tnew,z−tnz ,z)2

s2
z

, with tnew,z and tnz,z being two scalars and s2
z denoting the variance of the PCA scores

of the training samples.
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Figure 5 – A) Waterfall representation of the derivative spectral profiles of a test sample of known chemical compo-
sition assigned to the first class of paints (blue solid line corresponding to a Mahalanobis distance equal to 0) and of
its 10 most similar training specimens belonging to the same category; B) waterfall representation of the derivative
spectral profiles of a test sample of known chemical composition assigned to the second class of paints (red solid
line corresponding to a Mahalanobis distance equal to 0) and of its 10 most similar training specimens belonging to
the same category; C) waterfall representation of the derivative spectral profiles of a test sample of known chemical
composition assigned to the third class of paints (green solid line corresponding to a Mahalanobis distance equal to 0)
and of its 10 most similar training specimens belonging to the same category. The colour coding reflects the variation
of the pairwise Mahalanobis distance values across training objects.

Furthermore, it is important to stress that the Mahalanobis distance between two spectral profiles
(as calculated in this work) is not necessarily linked to their correlation coefficient (see Table
SM.2 for an indicative comparison). The latter, in fact, being estimated from raw data, does not
directly benefit from all the intrinsic properties of PCA modelling (which guarantees, for instance,
dimensionality reduction, white noise filtering, etc.).
The same hierarchical approach was finally applied to the FTIR data measured for the paints
with unknown chemical composition. Figures 6, 7 and 8 display the results yielded by its two

Figure 6 – Reduced distance plots for the external paint samples of unknown chemical composition. A) class #1
model; B) class #2 model; C) class #3 model. The black dotted line denotes the classification threshold set at

√
2.

When a specimen is assigned to a specific category (i.e., its estimated reduced distance value is lower than
√

2), its
respective symbol is coloured in accordance with Figure 1.
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Figure 7 – Coomans plots for A) class model #1 vs class model #2, B) class model #1 vs class model #3 and C) class
model #2 vs class model #3. The black dotted lines denote the classification thresholds set at

√
2 for all categories.

When a specimen is assigned to a specific category (i.e., its estimated reduced distance value is lower than
√

2), its
respective symbol is coloured in accordance with Figure 1. No multiple simultaneous assignation was observed.

sequential computational steps: out of a total number of 141 specimens, 50 were recognised as
characterised by chemical composition #1, 41 as characterised by chemical composition #2, 19
as characterised by chemical composition #3, while 31 were rejected as outliers by all the trained
class models (indeed, their spectroscopic fingerprint presents considerable differences from that of
the paints belonging to three categories under study - see Figure 9 for an exemplifying illustration).
No multiple simultaneous assignation was observed. Also in the light of what stated for Figures
3 and 5, it is evident how the proposed multivariate analysis pipeline was capable not only of
successfully achieving the chemical identification of such specimensii but also of unveiling their
most spectroscopically resemblant ones among those sharing the same chemical features. The
consistency of this conclusion was also verified for most of the other paint samples not explicitly
taken into account for the generation of Figure 8.

4. Conclusions

The chemical characterisation of paint samples as well as the discovery of their spectroscopic
similarities are tasks that forensic operators usually need to address manually, being potentially bi-
ased by subjectivity and human errors. In this article, a hierarchical chemometric approach based
on the principles of SIMCA modelling and on the definition and properties of the Mahalanobis
distance was proposed for sequentially tackling both of them. Such a method was tested on FTIR
data collected during a so-called market study conducted across the French city of Lille and its sur-
roundings and permitted not only to successfully achieve the aforementioned characterisation for
most of the analysed specimens but also to satisfactorily unveil common spectral signal patterns
shared by those exhibiting the same chemical features. Altogether, the performance it guaranteed,

iiPaints of unknown composition were, in fact, assigned to unique classes of samples which share with them
distinctive spectral bands, typical of specific chemical constituents underlying one of the three types of formulations
considered here and not observed for any of the other two.
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Figure 8 – A)-D)-G)-J) Waterfall representation of the derivative spectral profiles of four external samples of unknown
chemical composition assigned to the first class of paints (blue solid lines corresponding to a Mahalanobis distance
equal to 0) and of their 10 most similar training specimens belonging to the same category; B)-E)-H)-K) waterfall
representation of the derivative spectral profiles of four external samples of unknown chemical composition assigned
to the second class of paints (red solid lines corresponding to a Mahalanobis distance equal to 0) and of their 10
most similar training specimens belonging to the same category; C)-F)-I)-L) waterfall representation of the derivative
spectral profiles of four external samples of unknown chemical composition assigned to the third class of paints
(green solid lines corresponding to a Mahalanobis distance equal to 0) and of their 10 most similar training specimens
belonging to the same category. The colour coding reflects the variation of the pairwise Mahalanobis distance values
across training samples.
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Figure 9 – Average derivative FTIR profiles of the training samples of chemical composition #1, #2 and #3 (blue, red
and green solid line, respectively). Derivative FTIR profile of one of the paint specimens rejected as outlier by all the
three SIMCA classification models built in this study (black solid line).

its simplicity and its rapid, automatic and objective nature (i.e., mathematically grounded) consti-
tute promising aspects in the light of its potential implementation in more extensive investigation
campaigns and, possibly, for on-field applications. In complex scenarios like these, where paints
may exhibit more chemical compositions and more resembling instrumental responses, building
SIMCA models encompassing a larger number of categories and/or tuning differently their param-
eters [49] could in principle represent feasible strategies to accomplish a satisfactory resolution
of the identification/matching problems at hand. In the former case, in practice, one might get
insights into the chemical composition of a new sample by evaluating in parallel the responses
output for it by all the class models that have been trained.
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• A hierarchical approach for paint sample classification and 

matching 

 

• A market study conducted across the city of Lille, in France, and 

its surrounding 

 

• Automatic identification of the chemical composition of spray 

paint samples 

 

• Objective discovery of similarity patterns shared by paints of equal 

composition  

 

• Analysis speed compatible with on-field applications 
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