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Abstract: Petrochemical companies aim at assessing final product quality in real time, in order
to rapidly deal with possible plant faults and to reduce chemical wastes and staff effort resulting
from the many laboratory analyses performed every day. In order to answer these needs, the main
purpose of the current work is to explore the feasibility of multiblock regression methods to build
real-time monitoring models for the prediction of two quality properties of Acrylonitrile-Butadiene-
Styrene (ABS) by fusing near-infrared (NIR) and process sensors data. Data come from a production
plant, which operates continuously, and where four NIR probes are installed on-line, in addition to
standard process sensors. Multiblock-PLS (MB-PLS) and Response-Oriented Sequential Alternation
(ROSA) methods were here utilized to assess which of such sensors and plant areas were the most
relevant for the quality parameters prediction. Several prediction models were constructed exploiting
measurements provided by sensors active at different ABS production process stages. Both methods
provided good prediction performances and permitted identification of the most relevant data blocks
for the quality parameters’ prediction. Moreover, models built without considering recordings from
the final stage of the process yielded prediction errors comparable to those involving all available
data blocks. Thus, in principle, allowing final ABS quality to be estimated in real-time before the end
of the process itself.

Keywords: Acrylonitrile-Butadiene-Styrene; low-level data fusion; multiblock-partial least squares
(MB-PLS); multivariate statistical process control; polymer production; quality prediction; real-time
monitoring; response-oriented sequential alternation (ROSA)

1. Introduction

Nowadays, in several different domains like precision agriculture as well as pharma-
ceutical, food and chemical manufacturing, it is very common to utilize many analytical
sensors to comprehensively characterize complex systems under study and to monitor
processes while they evolve over time [1]. Analyzing the data yielded by such sensors by
means of appropriate statistical tools is challenging but crucial in order to obtain meaning-
ful physico-chemical information and design efficient production monitoring and control
schemes. In particular, in industrial applications, a relevant issue is how to integrate or
fuse the data resulting from sensors of different nature, potentially installed at different
locations in the plant and in real time.

Multivariate Statistical Process Control (MSPC) is a well-established tool to accomplish
real time monitoring and control of industrial production, in particular Latent Variables-
Based MSPC (LV-MSPC) [2–7]. Most LV-MSPC relies on so-called engineering process
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variables [8], i.e., measured by on-line sensors controlling machinery settings (such as
flow-meters, temperature and pressure probes, etc.) to build reference multivariate models
for normal operating conditions (NOC), which are afterwards used to derive multivariate
control charts and/or predicting quality attributes of finite product. More recently, thanks
to technological developments, spectroscopic probes, especially near-infrared (NIR) ones,
are extensively exploited [6,7,9–13] to monitor process evolution, or, in other words, to
determine intermediate and final product quality parameters. Many studies in literature
report on these aspects. Their results mainly refer to pilot scale plants [9,11,12,14] as well
as to batch types of processes and seldom are engineering process variables and NIR
measurements combined for constructing LV-MSPC models [6,10,14,15].

Fusing spectra with engineering variables is not a trivial task. However, process
monitoring and control can greatly benefit from fusing these diverse data types, since, in
this way, chemical composition-related information and physical and mechanical behav-
ior/properties can be integrated.

This work focuses on a continuous styrenic polymer production process [16], moni-
tored by means of NIR probes installed on-line in a production plant, as well as by standard
process sensors. The main aim is to build real-time monitoring models to predict two
of the main quality attributes of the final polymeric product by fusing NIR and process
sensors’ data. A preliminary feasibility study was recently conducted by the authors at the
pilot-plant level [14].

Two aspects are particularly relevant for industry: (i) the possibility of estimating in
real time the quality of a finite product, thus reducing the operational time and the amount
of chemicals commonly required for laboratory off-line assessments by reference methods;
and (ii) to reach the anticipated assessment of departure from desired quality before the end
of production itself, in order to plan possible early modifications of the operating settings.

To this end, we investigated the application of multiblock chemometric methods [17–25]
which are suitable to accomplish data fusion at low-level [26,27] and might bring inter-
esting advantages with respect to alternative mid-level and high-level data integration
strategies [26] especially in terms of model training, maintenance and interpretability. In
fact, original variables are directly used without any compression steps, and it is possible to
assess the salience of each block/type of sensors in the model, i.e., inspecting their degree
of uniqueness or redundancy.

In particular, we compared a well-established multiblock MSPC approach, such as
MultiBlock Partial Least Squares (MB-PLS) regression [21], with Response-Oriented Se-
quential Alternation (ROSA) [22]. The distinctive features of ROSA, which is also based on
PLS regression [28,29], are: (i) to be invariant to block scaling and not to be affected by the
spurious bias resulting from the combination of data blocks of different size (similarly to se-
quential orthogonal PLS (SO-PLS) [20]); and (ii) to be computationally efficient and capable
of dealing with any number of blocks, also a very high number (differently from SO-PLS).

We tested models constructed on measurements yielded by sensors that were active at
all different process stages (up to the process production end), as well as models where
measurements from the last stage were excluded. This was in order to evaluate if polymer
quality could be forecasted prior to the end of production. The results achieved, by both
MB-PLS and ROSA, show satisfactory predictive performance for the determination of
the two quality parameters investigated. At the same time, the most relevant data blocks
were assessed.

2. Materials and Methods
2.1. Process Description

Data presented in the current work were collected on-line in an Acrylonitrile-Styrene-
Butadiene (ABS) industrial production plant (full scale) operating in continuous process,
owned by Versalis (ENI group). For the sake of simplicity, the plant can be regarded as
divided into five different areas: (i) pre-poly/mixer, where the three precursor monomers
(acrylonitrile, styrene and butadiene) are mixed together; (ii) reaction point A; (iii) reaction
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point B; (iv) reaction point C; and (v) devolatilizer/cut zone, where the finite product is
cut. Throughout all these areas seventy process sensors (PS), which measure temperatures,
pressures, flow rates and motor speed, and four NIR probes are installed. The NIR probes
are placed in four specific and crucial areas of the production plant: one where dissolution
of butadiene in styrene occurs, before the addition of acrylonitrile; one in the pipe for the
recovery of condensed reagents; one between the first and the second reaction points; and
one at the very end of the process, just before the cut zone. Overall, both PS and NIR probes
record data/spectra with a frequency of about one minute. In this study, data registered
from January 2020 to May 2021 were analyzed, even if not all the data recorded during this
period were considered in model building, due to production pauses and deviations from
the operative conditions relevant for the current study.

2.2. Reference Analysis

Two different parameters have been considered for the evaluation of ABS quality.
Nonetheless, because of confidential agreement restrictions with the company, their actual
names will not be disclosed, but they will be referred to as Property 1 and Property 2.
Properties 1 and 2 are assessed off-line by collecting ABS samples, i.e., final product, two
(Property 1) and three (Property 2) times per day. Property 1 is related to ABS composition,
i.e., the percentage of a certain chemical compound in the final product. On the other hand,
Property 2 gives information about physical features of the product and the values of the
related reference analysis are expressed in grams. In the period covered by this study 597
and 904 laboratory tests (homogeneously distributed all over the time period) were carried
out to determine Property 1 and Property 2, respectively. Property 1 values ranged from 20
to 21.8%; Property 2 values ranged from 3.9 to 6.1 g.

2.3. NIR Spectroscopy

A Matrix FT-NIR spectrometer (Bruker Optics, Milan, Italy) was used to acquire
spectra in the four different acquisition sites. The instrument was equipped with optical
fibers (length: 100 m, diameter: 600 µm), whose probes (HT immersion probe, Drawing-no.
661.2350_1, Hellma GmbH and Co. KG, Müllheim, Germany) were directly connected to
the four different acquisition sites located on the process pipe. Spectra were collected in
transmission mode over the 12,500–4000 cm−1 spectral range, with a nominal resolution of
4 cm−1 (64 scans per sample).

2.4. Data Analysis
2.4.1. Data Block and Multiblock Arrangement

The ensemble of collected data was arranged into nine distinct data blocks, according
to the data type and the acquisition area along the process: on the one hand, PS measure-
ments were gathered in five blocks, one per every area of the plant (see also Section 2.1);
on the other hand, NIR spectra were arranged into four blocks, each corresponding to an
individual optical probe. In Table 1, the names and abbreviations (which will be hereafter
used) of all the blocks are shown, together with their size and the location along the plant.
This is also an indication of how they are ranked in time, being a continuous process.

For both multiblock approaches, the data blocks were assembled considering the
chronological progression of the ABS production process and, therefore, based on the
location of the different sensors along the production line. In other words, each data point
present in the datasets refers to information collected at different times, but it is correctly
matched to the same processed material (i.e., data are synchronized).

Figure 1 displays a schematic representation of the low-level data fusion strategy adopted.
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Table 1. Data block description.

Block Full Name Block Abbreviated
Name Data Type No. of Variables 1 Order

NIR dissolution NIR-diss NIR Spectra 390 1
Prepoli/Mixer Prep/mix PS 7 2

NIR condensation NIR-cond NIR Spectra 390 3
Reaction Point A RP-A PS 15 4

NIR Reaction Point A NIR-RP-A NIR Spectra 390 5
Reaction Point B RP-B PS 10 6
Reaction Point C RP-C PS 8 7

Devolatilizer/cut zone Devo/cut PS 30 8
NIR cut zone NIR-cut NIR Spectra 390 9

1 For NIR data blocks, the number of variables is equal to the spectra wave numbers, whereas for PS data blocks it
is equal to the number of PS present in the respective plant area. The column “Order” highlights how the process
evolves chronologically.
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Figure 1. Schematic representation of the low-level data fusion approach resorted to in this study.
Values in brackets indicate the chronological order of the data blocks.

2.4.2. Preprocessing

Individual block preprocessing
Prior to the multiblock modeling phase, each data set was preprocessed individually.

In particular, variables in each PS data block were scaled to unit variance (different in
nature and scales) whereas spectra, in each NIR data block, were baseline-corrected by
using automatic weighted least squares [30]. Moreover, only the spectral range from 6500 to
5000 cm−1 (the sole one exhibiting spectral bands ascribable to either reactants or products)
was taken into account for subsequent model training. Figure 2 shows the effect of the
baseline correction executed on the NIR spectra of the NIR-RP-A data block.
Multiblock preprocessing

After the individual preprocessing of the single blocks, each data set was scaled to unit
block variance (including column mean-centering) prior to MB-PLS [21]. In fact, MB-PLS
operates directly on row-wise concatenated data blocks and a fair block contribution has to
be assured.

Concerning ROSA, the individual pre-processed blocks were just mean-centered since
such a method treats one block at a time, as it will be detailed in the following sections.
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2.4.3. MB-PLS

We exploited here the MB-PLS implementation originally proposed by Westerhuis and
Coenegracht [31] which can be looked at as standard PLS with appropriate block scaling
steps as described in [21]. Thus, MB-PLS is an extension of the classical PLS regression [28]
for applications involving different data blocks that share the same number of rows (ob-
servations), relating to the data matrix X, resulting from the row-wise concatenation of N
different data blocks (Equation (1)):

X = [X1, X2, . . . , XN] (1)

to the response(s) of interest.
This method provides global (also called super-) scores, weights, loadings and regres-

sion coefficients, as well as local (also called block-) scores and weights for each data block,
as it is shown in Equations (2)–(5):

wb = XT
b ∗ u/uTu (2)

tb = (Xb ∗ wb)/
√

nb (3)

w = TT ∗ u/uTu (4)

t = T ∗ w/wTw (5)

where nb is the number of variables in a given block, tb and wb are the local scores and
weights, respectively, whereas t and w are the global (super) scores and weights. T is yielded
by the concatenation of all tb.

This way, it is possible to assess the contribution of each data block (analyzing wb for
the prediction of the response variable/s y/Y, improving the process understanding).

2.4.4. ROSA

Response-Oriented Sequential Alternation (ROSA) is a multiblock regression method
proposed by Liland et al. [22] that is also based on PLS regression. Different from MB-PLS,
in that ROSA is a sequential algorithm, similar to, e.g., SO-PLS [20], which renders the
method invariant with respect to block-scaling (blocks are just mean centered), as well as to
block ordering, differently from SO-PLS. These features allow dealing with a large number
of blocks of different dimensions.

Moreover, ROSA exhibits a high computational efficiency, as it does not require the
iterative convergence of an optimization criterion, and because only the response is deflated,
not all the blocks. In fact, each PLS component is selected from a single block, picking
among the various covariance-maximizing candidate components, estimated from each
data block, the one returning the smallest prediction residuals. Successive components
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are constrained to be orthogonal to the subspace spanned by the previously winning
components. Thus, scores’ and loadings’ orthogonality is ensured.

The ROSA algorithm for a single response variable, y, is summarized in the follow-
ing equations:

wb = Xb
T ∗ y (6)

tb = Xb ∗ wb (7)

rb = y − tb tb
Ty (8)

where Xb is a single data block, while wb, tb and rb are block weights, scores and residuals,
respectively. The first component is selected as the one computed from the bth-block yielding
the smallest residuals (rb), and t1 are taken to be equal to tb of the winning block. The
corresponding weights and scores are normalized (and also orthogonalized with respect
to the preceding components from the second component on). The y-loadings are finally
estimated as:

qa = yT ta (9)

where ta are the scores previously selected for the ath LV.
X-loadings (P) and PLS regression coefficients (b) (and possibly a constant term b0)

can be estimated according to the Equations (10)–(12), after selecting the number of optimal
LVs and collecting the corresponding scores, weights, y-loadings in matrix array T, W
and Q.

P = XT T (10)

b = W(PTW)−1Q (11)

b0 = ym − xm ∗ b (12)

where ym is the mean of y and xm is a vector with the mean for each variable of X.
Thus, each selected LV in ROSA encodes information proceeding only from the win-

ning bth-block (the one achieving smallest residuals according to Equation (8)), and all
LVs are orthogonal. It is important to notice that all blocks are always candidates at each
algorithmic step. Therefore, consecutive LVs can depict information from the same block
previously selected, or from a different one.

2.4.5. Multiblock Models Building

With the aim of developing predictive models for the two parameters taken into
account in this study and assessing which are the most important data blocks for their
estimation, both MB-PLS and ROSA were investigated.

All the available data were split into calibration and validation sets for both Property 1
and Property 2. In order to assess models’ performance in a scenario mimicking a real-time
application, the calibration sets comprised data collected during the year 2020 (~70% of
total data), whereas the validation sets comprised data collected in 2021. Clearly, only
samples, i.e., time points, for which the offline reference measurement were available were
taken into account.

The two optimized best-performing models were finally utilized for assessing the
values of Property 1 and 2 at time points where no reference data were acquired, in order
to check whether the resulting estimations spanned a similar properties values range with
respect to close time points.

In order to establish the complexity, i.e., number of PLS components, of each model,
venetian blinds cross-validation with ten cancellation groups for Property 1 and four
cancellation groups for Property 2 was resorted to. Model reliability was determined in
terms of both root mean square error in cross-validation (RMSECV) and root mean square
error in prediction (RMSEP).

Data blocks were preprocessed as described in Section 2.4.2.
For both MB-PLS and ROSA, the contribution of each block and block variables in the

final predictive model was assessed by investigating the PLS regression coefficients and
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Variable Importance in Prediction (VIP) [32,33]. PLS block-weights were also inspected but,
for the sake of brevity, the related figures are not reported, as the provided information was
similar to that obtained by regression coefficients.

2.5. Software

All the chemometric analyses were performed using routines and toolboxes imple-
mented in the MATLAB environment (the Mathworks Inc., Natick, MA, USA).

MB-PLS has been calculated through the PLS-Toolbox version 8.9 (Eigenvector Re-
search Inc., Wenatchee, WA, United States).

ROSA (with options for venetian blind cross-validation, VIP calculation and validation
sample response prediction) was implemented by the authors based on the MATLAB code
provided in ref. [22].

3. Results
3.1. Property 1 Prediction

When all the available data blocks (PS and NIR measurements for all plant areas)
were simultaneously modelled ROSA resulted to be the most performant method for the
prediction of Property 1, yielding a RMSEP of 0.14%. On the other hand, MB-PLS returned a
RMSEP value of 0.2%. This difference, however, is not substantial. The results are shown in
Table 2 and Figure 3. ROSA selected only three of the nine blocks under study, two of which,
Devo/cut and NIR-cut, relate to the last stage of the process, where the polymerization
is over and the product is ready to be cut. Furthermore, among the 13 latent variables
selected through the cross-validation procedure (aimed at minimizing RMSECV), eight
were calculated from the NIR-cut block, which highlights a crucial relevance of the final
NIR sensor, in this case, for the quality prediction. Figure 3a shows how the predictions
for the objects of the validation set are homogeneously distributed within the expected
range of the quality parameter concerned. In Figure 3b–d the PLS regression coefficients
associated to the three blocks selected by ROSA are represented (the red stars denote
variables/spectral regions whose VIP scores were higher than one). In the RP-A data block
(selected only one time out of 13) only three temperature sensors were found relevant
for Property 1 prediction, whereas in Devo/cut and NIR-cut data blocks all the sensors
and nearly all the spectral regions sampled were somewhat important. In Figure 3d it is
evident that the largest (in absolute value) regression coefficients are those corresponding
to bands centered at 5900 cm−1 and 5250 cm−1 that can be ascribed to the investigated
ABS compound.

Table 2. Results yielded by MB-PLS and ROSA for the prediction of Property 1.

Model ID Blocks Entering
the Model LVs RMSEC

(%)
RMSECV

(%)
RMSEP

(%)

MB PLS all All 11 0.12 0.16 0.20
MB PLS no cut zone 1 to 7 11 0.13 0.17 0.23

MB PLS only PS 2–4–6–7–8 11 0.24 0.26 0.38
MB PLS only NIR 1–3–5–9 10 0.13 0.15 0.22

MB PLS only NIR no cut zone 1–3–5 8 0.14 0.15 0.22
ROSA all 1 4(1)–8(4)–9(8) 13 0.11 0.14 0.13

ROSA no cut zone 3(6)–4(1)–5(3)–6(2) 12 0.15 0.18 0.2
ROSA only PS 2(1)–4(6)–7(3) 10 0.23 0.25 0.31

ROSA only NIR 9(8) 8 0.12 0.13 0.14
ROSA only NIR no cut zone 3(12)–5(2) 14 0.16 0.18 0.19

1 the values in brackets indicate the number of times a certain block was selected by the ROSA algorithm.
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Although such results might already be considered relatively satisfactory from a
predictive point of view, two additional aspects would be worth investigating: (i) whether
reasonably good quality prediction of Property 1 values could be obtained before the
product is cut (i.e., without relying on sensors installed within the cut area); and (ii) whether
the exclusive use of spectral sensors or process sensors could be sufficient for a reliable
estimation of this quality index. To this end, in addition to the dataset containing all
the blocks, MB-PLS and ROSA models were calculated using fused datasets comprising
only the blocks before the cut zone, only PS data and only NIR data (both including and
excluding the spectra contained in the NIR-cut block), respectively.

Table 2 reports the results of all the computed multiblock prediction models related
to Property 1. It is possible to observe that prediction errors resulting from ROSA are
systematically lower than the one obtained by means of MB-PLS. It is also clear how NIR
data are far more important for the prediction of Property 1 than PS data. In fact, when
ROSA is run on both block types, components from NIR data sets are more often selected
than those computed from PS data sets. Moreover, in MB-PLS models, variables related
to NIR blocks are always relevant for Property 1 prediction. In addition, the RMSEP of
models that are calculated using only NIR data is comparable to that of models using both
PS and NIR data, while using only PS data blocks results in a significant increase of the
prediction error in calibration, cross-validation and external validation. This is somehow
expected, as Property 1 is linked to ABS chemical composition and, therefore, an analytical
technique like NIR spectroscopy is definitely more suitable for its determination than
more standard engineering PS probes, which only indirectly reflect how fluctuations in the
process operating conditions may affect the polymer characteristics.

Since ROSA models always selected components estimated from the blocks located on
the plant cut area, i.e., blocks eight and nine, we also decided to calibrate ROSA models
(using both PS and NIR data and only NIR data) excluding completely such blocks from
the computational procedure (see ‘ROSA no cut zone’ and ‘ROSA only NIR no cut zone’ in
Table 2, respectively). In both cases, RMSEP values for models not including the cut area,
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were found higher, yet acceptable by process operators. This clearly makes it possible to
retrieve reasonable Property 1 value estimate before the completion of the ABS production
process. Moreover, similar prediction errors were obtained by using only NIR blocks or
when combining NIR and PS blocks. Hence, two possible pathways can be envisioned
for the real-time prediction and control of Property 1: (i) resorting to both data types and
getting a clearer idea of the important process areas/sensors all along the production plant;
or (ii) just exploiting NIR spectra for more efficient data management and to deal with less
noisy data.

In order to evaluate the role of all types of sensors, Figure 4 displays the results yielded
by the ‘ROSA no cut zone’ model. It is worth mentioning that half of the blocks selected
by the ROSA algorithm relate to the reaction points A and B, whereas the other half to the
NIR-cond data block, whose respective probe is right before these reaction points. Looking
at the order (not reported for the sake of brevity) in which blocks were selected by ROSA, it
can be observed how the winning blocks for the first five latent variables were RP-B (picked
only one time) and NIR-RP-A (picked four times). For the remaining model dimensions,
NIR-cond was selected six times in a row, while RP-A and RP-B one each. Details about the
selection order are useful to assess which blocks, i.e., areas of the plant, encode the most
important information for the prediction of the investigated quality parameter.
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Figure 4b,d show the regression coefficients for the two aforementioned NIR blocks,
with NIR-RP-A exhibiting a larger number of spectral variables characterized by VIP scores
higher than one, especially in the region between 5400 cm−1 and 5250 cm−1, that are
ascribable to the stretching of a functional group of one of the three precursor compounds
on which Property 1 directly depends. Conversely, in Figure 4c,e the regression coefficients
for the PS data blocks are graphed: the most significant variables, according to their
respective VIP values, are almost all related to temperature and motor speed sensors
installed in different subzones of the reaction points A and B.

3.2. Property 2 Prediction

The same model building strategy described before was finally followed for the
prediction of Property 2. Table 3 reports the results obtained by means of both MB-PLS
and ROSA. ROSA, when all the available data blocks were simultaneously modelled, did
not select any cut area block, therefore the ‘ROSA no cut zone’ model was not trained in
this case.

Table 3. Results yielded by MB-PLS and ROSA for the prediction of Property 2.

Model ID Blocks Entering
the Model LVs RMSEC

(g)
RMSECV

(g)
RMSEP

(g)

MB PLS all All 10 0.25 0.27 0.34
MB PLS no cut zone 1 to 7 8 0.27 0.29 0.37

MB PLS only PS 2–4–6–7–8 9 0.27 0.29 0.35
MB PLS only NIR 1–3–5–9 7 0.34 0.34 0.48

MB PLS only NIR no cut zone 1–3–5 6 0.36 0.37 0.5
ROSA all 1 2(1)–4(1)–5(1)–6(1) 4 0.32 0.33 0.46

ROSA only PS 2(1)–4(1)–6(1) 3 0.32 0.33 0.45
ROSA only NIR 5(6)–9(3) 9 0.33 0.34 0.52

ROSA only NIR no cut zone 5(8) 8 0.33 0.34 0.52
1 The values in brackets indicate the number of times a certain block was selected by the ROSA algorithm.

MB-PLS models calibrated by using (i) all the data blocks or (ii) only PS data returned
the most satisfactory results, contrary to the results obtained for Property 1. In fact, the
influence NIR spectra have on the estimation of Property 2 prediction is not predominant,
except for the NIR-RP-A block, which was selected many times by the ROSA algorithm
and whose variables always showed VIP scores higher than one in MB-PLS. These results
can be interpreted in the light of the fact that Property 2 is not linked to the chemical
composition of ABS but evaluates the performance of the finite product as determined by
mechanical/physical tests. Subsequently, it is undoubtedly more affected by variability
occurring in the processing steps, and can change significantly even if the aforementioned
chemical composition does not change. RMSEP increased up to 0.52 g when no PS block
was considered. However, for models built without PS data, MB-PLS achieved a slightly
better performance than ROSA (0.48–0.5 g vs. 0.52 g). These results suggested how the
exclusive use of NIR sensors is not sufficient for a reliable estimation of Property 2.

Overall, MB-PLS showed a better prediction performance for Property 2. The best
results were obtained by the ‘MB PLS all’ model (RMSEP = 0.34 g), even though ‘MB PLS
no cut zone’ and ‘MB PLS only PS’ provided similar results.

In Figure 5 is where the predicted vs. measured value plot resulting from the ‘MB-
PLS all’ model is shown. By inspecting the corresponding residuals plot (not shown for
the sake of brevity) it can be observed that, on average, the 2021 production campaign
(validation set), yielded lower values of Property 2 than that conducted in 2020 (calibration
set). This deviation explains the relatively high difference between RMSEP and RMSEC
and RMSECV. However, the presence of a reasonable amount of validation samples in the
whole calibration range was guaranteed and the company deemed the prediction error
acceptable for routine monitoring.
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In Figure 6 the ‘MB-PLS all’ model regression coefficients are reported. All PS were
found to be important for the prediction of Property 2 based on their VIP scores values.
For what concerns the NIR blocks regression coefficients, the NIR-RP-A is confirmed to be
the block with the largest number of highly predictive spectral regions, which are mainly
related to the three precursors monomers of ABS. For the other NIR blocks, relevant regions
of interest were found in correspondence of the absorption bands centered at 5900 cm−1

and 6100 cm−1, respectively.
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Figure 6. Regression coefficients resulting from the ‘MB-PLS all’ model for each data block the letters
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VIP scores higher than one.

3.3. Real-Time Predictions

Finally, Figure 7 illustrates the predicted values of Property 1 obtained through the
ROSA model constructed on all data blocks (Table 2, row 1) for the time points for which
reference response measurements were not acquired.
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Figure 7. Real time predictions of Property 1 (i.e., time evolution of the measured and predicted values).
The predictions were obtained by means of the ‘ROSA all’ model. Legend: black circles—calibration set
measured values; green circles—calibration set predicted values; blue squares—validation set measured
values; red squares—validation set predicted values; magenta dots—predicted values related to time
points for which no reference response measurements were available. For ease of visualization only
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These predicted values span a range very similar to that covered within both the
calibration and the validation set. A few slight deviations were observed, interestingly
right after specific shut-down time periods: such deviations may, in fact, arise from the
fact that many industrial processes (including polymerization processes) take a certain
time to readapt to NOC conditions after particular external interventions (e.g., cleaning,
maintenance, etc.).

Similar results were obtained for real-time predictions with the model ‘MB-PLS no cut
zone’ for Property 2, as shown in Figure 8.
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Figure 8. Real time predictions of Property 2 (i.e., time evolution of the measured and predicted
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are shown.
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4. Conclusions

This work demonstrated how multiblock approaches could be used for the construc-
tion of reliable and robust real-time monitoring models for the on-line prediction of in-
dustrial quality parameters of ABS. In fact, the data partition in different blocks and the
low-level data fusion strategy adopted here permitted to improve ABS production process
understanding, enabling the assessment of the most crucial plant areas and the relevant
sensors for the prediction of such specific parameters. Moreover, the application of these
approaches is essential when two or more different analytical platforms of different nature,
like the NIR spectrometer and more standard engineering process sensors, are simultane-
ously used to control any generic production process.

More specifically, in this article, both MB-PLS and ROSA allowed performant predic-
tive models to be constructed for the two properties under study (i.e., Property 1 and 2). In
particular, for the prediction of Property 1, ROSA resulted in a lower RMSEP compared to
MB-PLS, highlighting the importance of NIR data over process sensor data when a chemical
composition-related quality index is to be estimated. On the other hand, Property 2 was
more efficiently predicted by a MB-PLS method, which pointed out a higher relevance of
process sensors compared to NIR data when, instead, physical features need to be assessed.

Furthermore, models computed without taking into account measurements related to
the final area of the plant (cut zone) provided comparable prediction errors with respect
to the best models built on all the ensemble of available data. This is of great industrial
interest, since, in principle, ABS quality could be determined before its production is
completed, which might allow possible modifications of the plant settings and/or changes
in the operating conditions to be planned in advance and with reduced costs.

In conclusion, these approaches could help in: (i) accelerating decision making and
troubleshooting; (ii) reducing the amount of chemical waste generated in full-scale plants;
(iii) decreasing the number of off-line laboratory tests required for quality control; and
(iv) facilitating any type of operation along the production line as well as possible fault
detection and diagnosis.
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