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Introduction  
This file contains information about the high-pressure cell design (Figure S1), 

additional microstructural information for the recovered samples (figures S2 to S7), and 
further comparison of our results with the literature (Figure S8). 
  



 
 

Stress balance in synthetic serpentinized peridotites deformed at subduction zone pressures 
N. Hilairet, J. Guignard, T. P. Ferrand, et al., subm. to JGR, 2023
  2 
 

 
 
Figure S1. High-pressure cell design. 
  

3mm

2.5mm

2mm

3mm

1.5mm

1.5mm

machinable alumina

6 mm

3.8mm

1.5mm

1.5mm

1.5mm

1.5mm

zirconia

amorphous B + epoxy 5:1

graphite

hBN

9mm

reference olivine powderreference olivine powder

two-phase powder

Au



 
 

Stress balance in synthetic serpentinized peridotites deformed at subduction zone pressures 
N. Hilairet, J. Guignard, T. P. Ferrand, et al., subm. to JGR, 2023
  3 
 

 

 
 

Figure S2. Micrographs of recovered samples. The two-phase aggregates parts are 
indicated by the proportion of antigorite in the aggregate. The samples are surrounded 
with conductive paste for electron microscopy analysis.

serp6 serp7

serp9 serp10

50 % 
vol. atg

20 % 
vol. atg

5 % 
vol. 
atg

10 % 
vol. atg



 
 

Stress balance in synthetic serpentinized peridotites deformed at subduction zone pressures 
N. Hilairet, J. Guignard, T. P. Ferrand, et al., subm. to JGR, 2023
  4 
 

 
 
Figure S3. Microstructures in antigorite as seen by BSE (darker grey is antigorite, lighter 
gray is olivine, rare bright crystals are oxydes), for the samples recovered from run serp6 
(images on the left) and serp7 (on the right). The images at the top show preservation of 
some large crystals of antigorite and grain size reduction to submicron sizes. The images 
at the bottom are larger views of the same area, showing microcracking of olivine at the 
crystal scale. 
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Figure S4. The starting LPO (lattice preferred orientations) of olivine have been 
retrieved from in situ diffraction analysis on the two-phase aggregates taken under 
pressure and temperature, and before deformation, using the MAUD software (Lutterotti 
et al. 2007).  
They are presented as inverse pole figures for the maximum compression direction, in 
multiples of random deviation (1 = random).  
The features are at very first order similar for all samples after pressurization, with a 
strong minimum probability of having the a axes along the compression direction. With 
some variability between the samples, minima are also found for b and c axes.  
A qualitative comparison with figure 5 shows that deformation induced, in all two-phase 
samples, rotation of the b axes and a axes closer to the maximum compression direction.  
  

serp6 serp7 serp9 serp10

001 100

010



 
 

Stress balance in synthetic serpentinized peridotites deformed at subduction zone pressures 
N. Hilairet, J. Guignard, T. P. Ferrand, et al., subm. to JGR, 2023
  6 
 

 
Figure S5. J-index (Bunge, 1982) of CPO from EBSD measurements on recovered 
samples. For olivine in 5 and 10 vol. % serpentine aggregates, the J-index is 1.07 and 
increases to 1.12 for 20 vol. % of serpentine. The 5 vol % atg. aggregate compared to the 
reference olivine aggregate deformed under the same P and T, at a similar amount of 
strain (19 vs. 21% strain), shows a weaker CPO. The 20 vol. % serpentine aggregate, 
deformed up to 24% strain, shows a slightly weaker CPO than its reference olivine 
counterpart deformed only to 13% axial strain.   
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Figure S6. Inverse pole figures for misorientation rotation axes, for low angle grain 
boundaries (2°-10°) in olivine.  
 
Interpretation: The misorientation analysis for low-angle grain boundaries (2-10°) 
appears here as the best way to examine the slip systems at play for intracrystalline 
plasticity in olivine grains. In all samples, the strongest maxima are generally seen along 
[001] and [010].  A secondary maximum around [100] appears for low antigorite volume 
contents and reference aggregates with no antigorite. These strongest maxima around 010 
and 001 poles correspond to rotation axes accommodating misorientations parallel to 
[010] and [001]. At first order, following relationships outlined by Lloyd et al. (1998), 
(001)[100], (100)[001], and (010)[100] slip systems correspond to these orientations. The 
secondary maximum around [100] for low antigorite volume contents (5 and 10 vol. %) 
and 100% olivine aggregates could correspond to activation of the (010)[001] slip system 
at higher stresses either locally and/or globally.  
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Figure S7. Median KAM and GOS values as a function of stress, final strain and atg vol. 
fraction in the aggregate.  
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Figure S8. Differential stress vs. pressure for antigorite+olivine aggregates and for 
olivine and antigorite aggregates from the literature. Note the amount of total strain 
reached and the mean stress in these data is diverse. The values for sD (i.e. s1-s3) are not 
normalized to the same pressure, temperature or strain rate. 

Discussion on figure S8. 
For olivine, data that were obtained between room T to 400°C (Druiventak et al, 2011; 
Long et al, 2010; Proietti et al, 2016) are used. Other data on olivine (Mei et al, 2010; 
Raterron et al, 2004) fall well below the Goetze criterion, and are less relevant for 
comparisons. Druiventak et al. (2011) stress levels on natural peridotites fall below those 
measured in the other studies. Their experiments have been conducted on natural samples 
with pyroxene as secondary phases (lower than 5 and 10% depending on the starting 
material), and larger grain sizes than the present experiments (100s of microns while ours 
are ca. 1 up to 40 microns), that could partly explain the discrepancies. Finally, the 
temperature during the course of our DDIA experiments can be overestimated, as 
explained in the methods section. 

The results of Proietti et al (2016) at ambient T, on polycrystalline olivine show a similar 
trend but plot about 2 GPa above the others. The starting grain size (ca. 200 nm) may be 
responsible for this difference, as aggregates with sub-micron grain size could have 
different mechanical properties. Again, our data for reference aggregates are well within 
the trend for olivine aggregates under increasing pressure.  

For antigorite-bearing aggregates our data are closer to the Goetze criterion but 
remain well above the values for pure antigorite aggregates taken from the literature, 
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under similar pressure and temperature conditions, except for the aggregate at 50% vol. 
antigorite which may be seen as extending the data on pure antigorite by Proctor and 
Hirth (2016). 
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