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Abstract: The present work investigates the potential of developing bio-composites based on ther-
moplastic polymers reinforced with natural fibres by using hybrid yarns. The hybrid yarns were
produced by the wrapping technique, in which a multifilament of polyamide 11 (PA11) was wrapped
around an untreated low-twisted hemp roving to produce a yarn with sufficient tenacity and stiffness
for the next step of weaving. The tensile behaviour of the wrapped yarns was identified both in the
dry- and thermo-state. Then, two different fabrics were woven and tested to study the influence
of yarn densities and weave diagrams on the tensile and flexural properties. At this fabric scale,
properties of fabrics made from hybrid yarns were compared with those of fabrics from a previous
study made from 100% hemp roving. Composites made from these fabrics, with stacking of two
cross-plies, were produced by thermocompression and characterised regarding mechanical strength.

Keywords: hybrid yarns; hemp; PA11; woven fabric; bio-based composite; mechanical characterisa-
tion

1. Introduction

Among plant fibres, flax (Linum Usitatissimum L.) and hemp (Cannabis Sativa) fibres
are now the two most-produced bast fibres in Europe [1]. Due to their properties, such
as important environmental advantages, good specific mechanical properties, and often
a viable cost [1], these fibres have emerged as an alternative to synthetic fibres, and the
use of plant fibre composites (PFCs) has become a market reality [2–4]. Despite numerous
similarities (cell wall, thicknesses, and numbers of layers/sub-layers, biochemical composi-
tion, cellulose microfibril angle, MFA), these two bast fibres generally exhibit differences
in their tensile properties and their global tensile behaviour. Flax fibres generally have
slightly better tensile properties than hemp fibres, especially in terms of tensile strength
and stiffness; on the other hand, they reach a lower tensile strain at failure than hemp [5]. If
a lot of studies are conducted at the scale of fibres to explain these differences [1,5–7], few
papers are dedicated to the development of hemp-continuous fabrics used as reinforcement
of composite samples [4,8,9]. This deficit for hemp could be attributed to technological
barriers, such as fibre separation and the alignment of fibres throughout the transformation
process and consequently the unavailability of these products on an industrial scale [10].
Hemp fibres are naturally discontinuous; therefore, hemp reinforcements have so far been
based on twisted yarns of staple fibres by means of long-staple spinning techniques, mainly
ring spinning. However, the high twist level in the yarns leads to fibre misalignment in
composite materials and thus reduced stiffness. Furthermore, the high twist level compacts
the yarn section and reduces the inter-fibre gaps, making it very difficult for the resin to
penetrate inside the yarn structure [11]. Therefore, the use of very low twisted yarns is
advised for composite application [12,13]. However, a low twist implies poor inter-fibre
cohesion, and the yarn loses its otherwise good weaveability properties which are due to
good tenacity and low hairiness.
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Along with this fibrous reinforcement, the challenge is to identify new combinations
of raw materials for the production of green composites whose performance is good
enough to propose their use in suitable applications. Among the various bio-based ther-
moplastic resins, polyamide 11 (PA11) is a semi-crystalline bio-polyamide produced using
11-aminoundecanoic acid derived from castor oil and has gained a special industrial interest
due to a good combination of mechanical properties and chemical resistance [14]. In partic-
ular, PA11 exhibits good toughness, compared to other bio-based thermoplastic resins, such
as, polylactic acid (PLA), which is often proposed as a matrix for bio-composites [15,16]. The
natural fibre/PA11 combination has been used to study the performance of bio-composites.
Haddou et al. [17] associated long bamboo fibres with PA11 films to analyse the tensile
behaviour. Gourrier et al. [18] studied the tensile, impact, and thermal properties of unidi-
rectional flax tape with PA11 films. In these studies, composites were made by film stacking,
but other processes offer a route for efficient manufacturing of thermoplastic composites
due to the reduced flow distance of resin in reinforcement to optimise impregnation. Awais
et al. [19] compared tensile, flexural and impact behaviour of commingled fabrics (woven
and knitted) based on jute/flax/hemp fibres with PP yarns. To improve the impregnation of
thermoplastic resin into fibre yarns, Kobayashi et al. [20] used the micro-braiding method
to mix hemp roving and PLA multifilament in the yarns. These micro-braided yarns
were placed in a pre-heated moulding die for consolidation by compression moulding to
produce composite specimens. Zhai et al. [21] compared yarn morphologies, structures,
mechanical tensile properties, and braidabilities of commingled flax/PP yarns obtained
by micro-braiding or wrapping methods. In the wrapping process [22,23], a thermoplastic
multifilament is wrapped around hemp roving, resulting in increased inter-fibre friction
and improved yarn cohesion. This manufacturing process was successfully used by Corbin
et al. [8] to produce a commingled yarn based on hemp roving and PA12 multifilament
and associated woven fabrics and composite samples. In all of these studies, although
the mechanical and thermal properties of thermoplastic polymers are described, as in Di
Lorenzo et al. [24], few papers [25] deal with the identification of the thermomechanical
properties of commingled yarns, which can be essential to improve parameters of impreg-
nation during the thermocompression process. This paper deals with hemp roving and
PA11 multifilament and describes the wrapping process, and how the hybrid yarns are
used to weave fabrics. Composite samples reinforced by these fabrics were manufactured
by thermocompression. The tensile properties of these commingled yarns were studied
according to temperature and strain rates, and the mechanical properties of the woven
fabrics and the composite samples were identified.

2. Materials and Methods
2.1. Materials

An extruded PA11 multifilament yarn produced at GEMTEX Laboratory was used as
the matrix material and as the wrapping material for the production of the hybrid yarn. The
PA11 yarn was made from Rilsan® PA11 pellets supplied by Arkema, Colombes, France.
This thermoplastic matrix has a density of 1.03 g/cm3, a melt temperature of 190–195 ◦C,
and a glass transition temperature of 55–60 ◦C. Hemp roving with a twist of 37 turns per
meter (TPM) was used as the core yarn of the hybrid yarns. This untreated roving was
supplied by the Italian company Linificio e Canapificio Nazionale, Villa d’Almè, Italy. The
main properties of these yarns are shown in Table 1.

Table 1. The main properties of the raw materials.

Yarns Density (g/cm3)
Linear Density

(Tex) Twist Level (tpm) Tenacity (cN/Tex) Deformation at
Break (%)

Hemp roving 1.50 312 ± 19 37 ± 2 10.09 ± 2.48 3.67 ± 0.42
PA11 1.03 111 ± 3 – 27.02 ± 0.95 35.02 ± 5.43
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Their linear density was measured according to the NF G07-316 standard [26], the
twist level according to the NF G07-079 standard [27], and tenacity at break according to
the NF EN ISO 2062 standard [28].

2.2. Methods
2.2.1. Manufacturing of Hemp/PA11 Hybrid Yarns

The hemp/PA11 hybrid yarns were produced by the wrapping process, on a hollow
spindle machine, Gualchieri e Gualchieri shown in Figure 1. In the wrapping process, the
thermoplastic multifilament yarns (PA11) are wrapped around low twisted and untreated
hemp roving. These wrapping yarns will melt during the thermocompression process, thus
forming the matrix part of the composite material. The wrapping process is mainly used to
increase the inter-fibre cohesion of the core yarn to sustain the tension loads applied during
the transformation into reinforcement. Furthermore, the outer wrapped yarn protects
the core yarn from rubbing aggression when passing machinery surfaces during these
processes. These manufacturing loads represent the basic required weaveability conditions.
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Figure 1. The wrapping process.

During production, the hemp roving passes through a roving condenser and drafting
rollers and then is guided inside the hollow spindle together with the PA11. The PA11 is
wrapped around the core roving by rotational movement of the hollow spindle to obtain
the wrapped hemp/PA11 yarn. During the wrapping process, the ratio between hollow
spindle rotational speed and yarn delivery speed determines the PA11 wrapping turns
per meter and the mass proportion of two yarns for a given linear density. As output, to
obtain the desired hybrid yarns with a mass ratio of hemp between 43% and 60% and a
tenacity allowing its weaveability, the wrapping turn number and spindle speed are fixed
at 500 tpm and 5000 turns/min, respectively. The linear densities of the hybrid yarns were
measured according to the NF G07-316 standard [26], and the twist level according to the
NF G07-079 standard [27].

2.2.2. Weaving Process with Hemp/PA11 Yarns

The hybrid yarns were woven on a Leclerc Weavebird manual loom in the GEMTEX
laboratory (Roubaix, France). After the different preparation steps of the weaving process
(warping and drawing-in), two woven fabrics with different weaving diagrams were
produced, twill 6 weft effect and satin 6 weft effect. The two fabrics were woven with the



Coatings 2021, 11, 770 4 of 16

same hybrid yarns in both directions and have the same warp density at 6 yarns/cm but
different weft densities, namely, 11 yarns/cm for twill 6 and 6 yarns/cm for satin 6.

The textile properties of these fabrics in terms of yarn densities, areal density, thick-
ness, and air permeability were identified and will be presented later. Areal density was
measured according to the NF EN 12127 standard [29], thickness according to NF EN ISO
5084 standard [30], and air permeability according to the NF EN ISO 9237 [31]. The crimp
level of warp and weft yarns after weaving was measured for both fabrics according to the
NF ISO 7211-3 standard [32].

2.2.3. Composite Manufacturing

Composite plates based on hemp/PA11 satin 6 fabric and hemp/PA11 twill 6 fabric
were manufactured by thermocompression moulding on an Agila Press 100 kN hot-press
(Menen, Belgium). The fabrics were cut into 300 × 300 mm2 squares and conditioned at a
temperature of 23 ◦C and relative humidity of 50% for at least 24 h prior to the composite
manufacturing. For the two types of fabrics, two cross-plies (0/90◦) were stacked, as
shown in Figure 2a. Then, they were placed between two Teflon-coated plates. The
melting temperature of PA11 is 190 ◦C and the degradation temperature of hemp roving is
276 ◦C [8]; therefore, to produce the composite plates, the process temperature was fixed at
200 ◦C to preserve the hemp fibre properties and avoid its degradation. The composites
were then prepared by pressing the layers at a temperature of 200 ◦C and according to
the cycle presented in Figure 2b. These temperature and pressure cycles are specific to
the combination of constituents involved (hemp/PA11) in the commingled yarn and to
the stacking chosen in this study (two cross-plies of woven fabrics). Specimens for the
mechanical testing were cut according to the appropriate standard, given later, and before
the testing, they were conditioned for at least 24 h at 23 ◦C and 50% relative humidity.
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2.3. Characterisation Steps
2.3.1. Properties of the Hybrid Yarns

First, dry-state tensile tests were performed on the hybrid yarns at different test speeds
in order to investigate the influence of this parameter on the behaviour of the hybrid yarns.
The tests were performed on an MTS Criterion 45 universal tensile apparatus (Eden Prairie,
MN, USA) according to the NF EN ISO 2062 standard [28] with a gauge length of 200 mm,
without pretension, and with three different test speeds: 20, 100, and 200 mm/min. For
each crosshead speed, the test was repeated 20 times. In addition, tensile tests were
also conducted on the hemp roving, but only at 200 mm/min test speed, to compare its
behaviour with the hybrid yarns.

Then, thermo-state tensile tests were performed on these yarns in order to study the
effect of temperature on the yarn properties and to understand the behaviour of these
hybrid yarns at the chosen temperature. Tensile tests were then conducted on the same
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machine as the dry-state tests, using an isothermal oven. Due to the size of the oven, the
gauge length of the yarn was 100 mm, the crosshead speed was 100 mm/min, and the
temperature was set at 50, 70, 100, 120, and 150 ◦C. The single yarn was first inserted in
the oven and clamped between the two jaws, and then the desired temperatures were set.
Once the temperature was reached and stabilised, the test started.

2.3.2. Properties of the Produced Fabrics

Tensile tests were performed on the woven fabrics according to the NF EN ISO
13934-1 standard [33] and were carried out on an MTS Criterion 45 machine at ambient
temperature. The two main directions of the woven fabrics were tested and for each
direction, five samples were used, with a length of 300 mm and a width of 50 mm. For
the tensile test, the gauge length was 200 mm, the test speed was 20 mm/min, and the
preload wad 5 N. To present the properties of the two woven fabrics, we studied the
maximum load/yarn and strain at maximum load for each fabric in order to eliminate the
effects of the density of yarns. The bending rigidity of the fabrics was also identified by
using a cantilever apparatus according to the ISO 4604 (05) standard [34], with the same
samples used for the tensile tests (Figure 3). As described in the literature [35,36], the fabric
sample is progressively advanced until the end, under its own weight, is in contact with
the inclined plane at 41.5◦. Then, the overhang length of the fabric is measured and the
bending stiffness is computed according to Equation (1) as follows:

G = 9.81 × ms ×
(

lm
2

)3
(1)

where G is the bending stiffness coefficient (N·mm), ms is the areal density of the fabric
(g/m2), and lm is the overhanging length (m).
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2.3.3. Properties of the Composite Plates

The tensile and flexural behaviours of hemp/PA11 composites were tested in an
MTS Criterion 45 universal testing machine. The tensile properties of the composite
specimens were performed according to the ASTM D3039-00 standard [37], while the
flexural properties were tested according to the NF EN ISO 14125 standard [38]. The tensile
tests were carried out over a gauge length of 150 mm and a test speed of 1 mm/min. The
reported modulus was calculated (between 0% and 1% strain) for all composite samples.
Thus, the strength and strain at break were calculated from the recorded force–displacement
curves. For flexural behaviour, tests were performed at a test speed of 1 mm/min, with
specimens of 25 mm width and 64 mm span length. For both tensile and flexural tests,
five samples were tested in the two main directions of the composite plates which are



Coatings 2021, 11, 770 6 of 16

direction 1 (associated with the warp direction of the upper ply) and direction 2 (associated
with the weft direction of the upper ply).

3. Results and Discussion
3.1. Yarn Properties
3.1.1. Textile Properties of the Hybrid Yarns

The measured textile properties of the hybrid hemp/PA11 yarns and hemp roving are
listed in Table 2. The hybrid yarn has a higher linear density than hemp roving, as a result
of the addition of the thermoplastic multifilament PA11 (111 ± 3 Tex). Moreover, adding
the wrapped PA11 multifilament leads to a decrease in the hybrid yarn hairiness. This
decrease is due to the removal of most impurities during the wrapping process. Figure
4 presents the visual aspect of the core untreated hemp roving and the wrapped yarn.
There are no more defects on the surface of the hybrid yarn in comparison to the hemp
roving. After wrapping, the yarn structure becomes more compact and uniform, and its
section is more circular. In addition, the wrapping process preserves the structure of the
core roving and its properties by creating a mechanical bond between the two materials,
unlike conventional methods used to improve the interfacial bond with polymer matrices,
which use chemical, physical or biological treatments instead [39]. This hybrid yarn has, in
weight, 50% of hemp fibre and 50% of PA11.

Table 2. The textile properties of the hybrid yarns and hemp roving.

Yarns Linear Density (Tex) Twist Level (tpm) Hairiness (H ± sh) Hemp Fibre Mass
Fraction (%)

Hybrid yarns 486 ± 9 400 10.05 ± 2.86 50
Hemp roving 313 ± 19 37 ± 2 18.96 ± 3.31 100
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3.1.2. Dry-State Tensile Behaviour

• Comparison of Hemp Roving and Hemp/PA11 Hybrid Yarn Behaviour

Figure 5 shows the tenacity–strain curve of the hybrid yarn and the hemp roving at
ambient temperature and at a speed of 200 mm/min. The behaviour of the hybrid yarn has
the first peak of tenacity at a strain of around 3%, corresponding to the roving breakdown.
At this first peak, tenacity reaches 8 cN/Tex. This peak is followed by a high deformation
phase before the full breakdown of the hybrid yarn at a strain of 35% (Figure 6a), the same



Coatings 2021, 11, 770 7 of 16

as that of the PA11 multifilament (Table 1). This part of the curve can be attributed to the
elongation of the PA11 multifilament, with compacting of the hemp roving around which
it is wrapped, as the load increases. By increasing the elongation, occasional slippage can
occur between the PA11 filaments and the broken hemp roving, and the filaments can be
stretched unevenly, leading to their rupture that appears on the tenacity–strain curve as a
non-smooth part. In this part of the curve, some small breaks are detected by the load cell
and involve a high standard deviation between samples on the measured load.
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Figure 5. The tensile behaviour of the hybrid yarn and hemp roving alone.

From these results, it can be concluded that the wrapped multifilament PA11 does not
induce a significant increase in the roving tenacity and rigidity. During the first phase (low
tenacity), the roving curve corresponds to the fibre redressing in the axial load direction.
This results from the roving tension applied during the wrapping process. Thus, even if the
hybrid yarn did not reach the required tenacity for weaving, which is 15 cN/Tex, it can be
woven because adding PA11 during the wrapping process increases the inter-fibre cohesion
and protects them from damage during the weaving process. Weaveability of natural fibre
reinforcement can be also improved by other methods, as described in [8,40,41].

• Tensile Behaviour of the Hybrid Yarns at Different Test Speeds

Figure 6a shows the tensile behaviour of the produced hybrid yarns for different test
speeds (20, 100, and 200 mm/min) at ambient temperature. For these different speed
tests, the shape of the tenacity–strain curve remains the same. High rigidity is observed
in the first phase up to a peak, followed by a non-smooth part characterised by a high
elongation and fluctuation of the tenacity around the tenacity of the first peak. However,
a dependence of the tenacity at the first peak on the test speed can be seen in Figure 6b.
At the 200 mm/min speed, the tenacity is 70% higher than at 20 mm/min. In addition,
the behaviour of yarns at 100 and 200 mm/min is almost the same: in the range of 0 to 5%
strain with a difference of 10% for the tenacity. These results match the results obtained in
previous studies conducted on commingled glass/PP and on flax/PA12 yarns at different
test speeds and in which the tenacity increases with increasing the test speed [25,35].
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3.1.3. Thermo-State Tensile Behaviour

The tensile behaviour of the hemp/PA11 yarns at different temperatures is shown
in Figure 7a. The tensile tests for the different temperatures were performed at the same
test speed of 100 mm/min. Depending on the temperature, the results obtained can
be divided into three groups, namely, around the glass transition of PA11 (T = 50 ◦C),
above the glass transition (T = 70, 100, and 120 ◦C), and below the melting temperature
(T = 150 ◦C). The first phase of the different curves at the studied temperatures differs from
the one at room temperature, as does the second phase. In contrast, the curves obtained
at T = 100 and 120 ◦C show almost similar trends in the first and second phases. Hence,
the tensile behaviour of these yarns depends strongly on the temperature setting. When
the temperature is increased to 50 ◦C (upper glass transition), the tenacity of the wrapped
yarn decreases as a result of the modification in the multifilament around the hemp roving,
which becomes softer by passing the transition temperature and the interaction between
hemp fibres and PA11 filaments changes. As the temperature increases (but is still far from
the melting temperature), the PA11 filaments keep slipping over the core hemp roving. This
is because adhesion between the filaments and fibres increases with increasing temperature.
This increased adhesion strengthens the yarn and increases its tenacity, Figure 7b. Then,
at T = 150 ◦C, the maximum tenacity of the first phase decreases significantly because the
temperature nears the melting temperature, which strongly affects the structure of the
hybrid yarn: the PA11 begins to stick locally to hemp fibres without creating a continuous
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medium to distribute the efforts between the hemp fibres. This was observed on the
structure of the yarn once extracted from the climatic chamber after the tests. In the sections
where the yarn had become solid in comparison to the original wrapped yarn, it accordingly
displayed decreased extensibility.
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According to previous results obtained on flax/PA12 hybrid yarns [25], when the
temperature increases and nears the melting value, the strain at break decreases, compared
to the strain obtained at ambient temperature, whereas the deformation of hybrid yarns
increases with increasing temperature above the melting temperature because below this
temperature, the PA12 is fluid enough to increase the slippage between broken fibres. The
same trend is observed in the presented results for tests below the melting temperature
(Figure 7a). This can be attributed to the helical path of the wrapped PA11 filaments and
the change in the interaction properties with the hemp fibres. At the ambient temperature,
the spiral filaments stretch until they become aligned with the longitudinal axis of the yarn
(unfolding). However, as the temperature increases, the PA11 filaments stick more locally
to the hemp fibres, and that leads to concentrating the deformation at weak places on the
wrapped yarn instead of having complete unfolding. Figure 7b shows the evolution of
the tenacity at the first peak at different temperatures. As explained before, this tenacity
increases initially with increasing temperature up to 100 ◦C and then decreases, but at
higher temperatures (120 and 150 ◦C), the standard deviation is greater than at lower
temperatures (50◦ and 70 ◦C), which is mainly due to the irregular behaviour of these yarns
at high temperature.
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3.2. Fabric Properties
3.2.1. Textile Properties

At this scale, the properties of the fabrics developed in this study will be compared to
the properties of fabrics made in a previous study from 100% hemp roving. Table 3 shows
the textile properties of these produced woven fabrics. For fabrics based on hybrid yarns,
the twill 6 fabric has the higher weft density, its areal density and thickness are greater than
satin 6. The areal density of this woven fabric depends mainly on the weft density, which,
in turn, depends on how the fabric is packed during weaving and on the weave diagram.
In addition, these fabrics are made of hybrid yarns that are heavier than conventional 100%
natural fibre yarns. However, the air permeability of satin 6 is five times greater than that
of twill 6, which highlights the higher inter-yarns gap, and it is correlated with a lower
areal density, in comparison with twill 6, since it contains higher weft density. On the
other hand, the fabrics in this study are heavier and thicker than the satin 6 and twill 6 of
the previous study [42] manufactured with only hemp roving. This difference could be
explained by the difference in the linear density of yarns which is higher for hybrid yarns
(486 Tex) than for 100% hemp roving (259 Tex). In addition, even if the areal density of
commingled fabrics is higher than that of 100% hemp fabrics, the air permeability is still
higher. This could be due to the structure of the yarn used. In the case of hybrid yarns, the
structure is more compact and the surface of the yarn contains less fibrils, compared to the
structure of the roving, which is hairier, flat, and contains more fibrils.

Table 3. The textiles properties of the woven fabrics of this study and Corbin et al. [42] study.

Fabric Pattern Twill 6 from Hybrid
Yarns

Satin 6 from Hybrid
Yarns

Satin 6 with 100%
Hemp Roving [42]

Twill 6 with 100%
Hemp Roving [42]

Warp density
(yarns/cm) 6 6.4 6 6

Weft density
(yarns/cm) 10 6 9.5 9.5

Areal density (g/m2) 827 ± 15 583 ± 16 426 ± 8 402 ± 3
Thickness (mm) 2.19 ± 0.05 2.13 ± 0.04 1.55 ± 0.05 1.59 ± 0.06
Air permeability

(L/m2/s) 605 ± 91 3485 ± 239 401 ± 46 670 ± 115

Warp crimp (%) 0.67 ± 0.16 2.38 ± 1.11 2.24 ± 0.20 2.56 ± 0.34
Weft crimp (%) 2.65 ± 0.47 1.20 ± 0.30 1.90 ± 0.30 1.58 ± 0.22

3.2.2. Mechanical Properties

• Tensile Behaviour

Figure 8a shows the tensile properties of the two commingled fabrics and the two
fabrics made from 100% hemp roving both in warp and weft direction. The tensile load is
given in cN/yarn/Tex to remove the effects of the density and linear density of yarns and
concentrate on the effect of the weave pattern and tenacity at the break of the roving. For
the commingled satin 6 and twill 6 fabrics, a small difference in maximum tensile load is
noted between the two directions. In terms of breaking strain, the weft direction of twill 6
is 55% higher than the warp direction, whereas the strain of satin 6 is similar for the two
directions even if the crimp level is higher in the warp direction (Figure 8b). The high strain
at break of twill 6 weft direction results from the higher crimp level of weft yarns as the
warp yarns are under higher tension than weft yarns during the weaving process. Thus,
the twill 6 fabric exhibits better tensile properties, both in warp and weft direction, than
satin 6, and this difference can be explained by the difference of weave diagram between
the structure and the arrangement of yarns inside the structure. In comparison to the
previous study [42], it can be seen that twill 6 and satin 6 structures made from 100% hemp
roving exhibit better maximum loads than twill 6 and satin 6 made from hybrid yarns, in
the two directions for satin 6 structure and only in weft direction for twill 6 structure. That
is mainly attributed to the low tenacity of these hybrid yarns (8 cN/Tex), compared to the
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tenacity of 100% hemp roving (24 cN/Tex) [42]. Furthermore, the higher hairiness level
of hemp roving conduces higher inter-roving friction, leading to higher maximum loads.
Strain at maximum load of the woven fabrics is balanced between the two directions for
these structures except for commingled twill 6 structure, which has a high strain at break
in the weft direction in comparison with the other structure.
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• Flexural Behaviour

Figure 9 shows the flexural rigidity of the two fabrics. The two fabrics have the same
warp density and differ only by their weft density and structure. Twill 6 exhibited better
rigidity than satin 6 in the two directions, and this difference is mainly due to the high
areal density of the fabric (42% higher than that of satin 6) and its yarn density in the weft
direction. The flexural rigidity depends strongly on those two parameters. However, a
high weft density and linear density result in a heavy fabric. The flexural rigidity also
depends on the crimp level of yarns inside the structure. In the case of twill 6 fabric, the
shrinkage of weft yarns is greater than warp yarns, and that led to higher rigidity in the
weft direction of the fabric than in the warp direction. By contrast, for satin 6 fabric, the
warp yarns exhibit higher crimp, which results in a higher rigidity in this direction than in
the weft direction.
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3.3. Composite Properties
3.3.1. Composition of the Composite Plates

The obtained physical compositions of the two composite plates are summarised in
Table 4. The two types of composites were produced by stacking two cross-plies. As a
result, the thickness of twill 6 hemp/PA11 composite (C2) is 28% higher than composite
made from satin 6 (C1). The weight of the two types of composites is the same and differs
from that in the original (50% of hemp and 50% of PA11), which is explained by the loss
of PA11 during the compression process. By contrast, the volume of fibre in the C2 is 22%
greater than C1.

Table 4. The physical properties of the two composites.

Composite Plates Thickness (mm) Density (g/cm3) Fibre Mass Fraction (%) Fibre Volume Fraction (%)

Hemp/PA11 Satin 6
composite plate (C1) 1.01 ± 0.01 1.01 ± 0.01 52 ± 1 35.1 ± 0.1

Hemp/PA11 Twill 6
composite plate (C2) 1.39 ± 0.01 1.24 ± 0.03 52 ± 0.1 42.8 ± 1.2

3.3.2. Tensile Properties of the Composite Plates

The tensile strength, strain at break, and modulus of the two types of composites
are shown in Figure 10. For each structure, the properties are almost the same for both
directions of the composite plates, while at the same time, the tensile properties differ
slightly per composite. The tensile stress and modulus of C1 exceed those of C2, and the
opposite is the case for strain. Even if the fibre content of C1 composites is lower than that
of C2, their tensile properties are higher. At the fabric scale, the twill 6 fabric exhibited
better properties, both in tensile and flexural rigidity, whereas this is no larger than the
case at the composite scale.
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3.3.3. Flexural Behaviour of the Composite Plates

The results of the flexural testing are shown in Figure 11. For the satin 6 composites
(C1), direction 2 presents better properties than direction 1, while for twill 6 (C2) the
opposite is the case. The flexural strength is not balanced between the two directions of
the composite plates even if the stacking is balanced. This difference is explained by the
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arrangement and the orientation of the yarns inside the structure of the composite. In the
case of satin 6 composite plates (C1), the float yarns of direction 2 are located outside the
specimen, and that provides additional rigidity to this direction. The same phenomenon
happens to direction 1 of the twill 6 composite plates (C2). This behaviour has been
identified in previous work within the same project [8] and confirmed in this study. The
arrangement of yarns inside the composite plates depends strongly on the nature of the
fabric structure used and on the way of stacking the different layers.

Coatings 2021, 11, 770 14 of 17 
 

 

composite plates even if the stacking is balanced. This difference is explained by the ar-
rangement and the orientation of the yarns inside the structure of the composite. In the 
case of satin 6 composite plates (C1), the float yarns of direction 2 are located outside the 
specimen, and that provides additional rigidity to this direction. The same phenomenon 
happens to direction 1 of the twill 6 composite plates (C2). This behaviour has been iden-
tified in previous work within the same project [8] and confirmed in this study. The ar-
rangement of yarns inside the composite plates depends strongly on the nature of the 
fabric structure used and on the way of stacking the different layers. 

 
Figure 11. The flexural strength of the two composite materials. 

4. Conclusions 
This study investigated the multiscale analysis of bio-based composite materials 

made of hemp/PA11 commingled yarns. Understanding the different manufacturing 
stages and the influence of process parameters on yarn, fabric, and composite properties 
allows materials to be produced which better fit the final application requirements. 

In this work, the hybrid yarns were produced by the wrapping process on a hollow 
spindle machine by wrapping a thermoplastic PA11 multifilament around an untreated 
hemp roving in order to produce yarns with sufficient tenacity (allowing them to be wo-
ven) and with a fibre content of no less than 40%. This process improves the hemp roving 
structure, which becomes more compact and less hairy. 

At this yarn scale, tensile tests were initially conducted at different test speeds in-
cluding the speed involved during fabric testing in order to investigate its influence on 
the mechanical properties, then at different temperatures including a temperature in the 
range of the glass transition temperature of the multifilament. Results from this test show 
the dependence of yarn properties on test speed and temperature, which is mainly due to 
the nature of the multifilament used. 

Then, these yarns were used in weaving to produce two different fabrics with ap-
proximately the same warp density and different weft densities and weave diagrams. The 
textile and mechanical properties of these fabrics were determined, and the results show 
the dependence of these properties on the production parameters: preform properties in 
terms of maximum load and strain are either balanced or unbalanced between the warp 
and weft directions. 

At the composite scale, tensile strength and stiffness for each structure are almost 
balanced between the two main directions of the composite plates. In addition, composite 
made from a satin 6 fabric shows an improvement of its mechanical properties even 
though at the fabric scale, the twill 6 fabric presented better properties. 

Figure 11. The flexural strength of the two composite materials.

4. Conclusions

This study investigated the multiscale analysis of bio-based composite materials made
of hemp/PA11 commingled yarns. Understanding the different manufacturing stages
and the influence of process parameters on yarn, fabric, and composite properties allows
materials to be produced which better fit the final application requirements.

In this work, the hybrid yarns were produced by the wrapping process on a hollow
spindle machine by wrapping a thermoplastic PA11 multifilament around an untreated
hemp roving in order to produce yarns with sufficient tenacity (allowing them to be woven)
and with a fibre content of no less than 40%. This process improves the hemp roving
structure, which becomes more compact and less hairy.

At this yarn scale, tensile tests were initially conducted at different test speeds includ-
ing the speed involved during fabric testing in order to investigate its influence on the
mechanical properties, then at different temperatures including a temperature in the range
of the glass transition temperature of the multifilament. Results from this test show the
dependence of yarn properties on test speed and temperature, which is mainly due to the
nature of the multifilament used.

Then, these yarns were used in weaving to produce two different fabrics with ap-
proximately the same warp density and different weft densities and weave diagrams. The
textile and mechanical properties of these fabrics were determined, and the results show
the dependence of these properties on the production parameters: preform properties in
terms of maximum load and strain are either balanced or unbalanced between the warp
and weft directions.

At the composite scale, tensile strength and stiffness for each structure are almost
balanced between the two main directions of the composite plates. In addition, composite
made from a satin 6 fabric shows an improvement of its mechanical properties even though
at the fabric scale, the twill 6 fabric presented better properties.

The aim of future work will be the testing of other parameters at each scale in order
to produce a light structure adapted to the end-use application. Moreover, the thermome-
chanical behaviour of hybrid yarns and commingled fabrics will be tested across a range of
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temperatures, including the melting temperature of PA11, in order to better understand
the behaviour of these materials at high temperatures. Thus, the hydrophilic behaviour of
these hybrid yarns will be characterised and compared with that of hemp roving [43].
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