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We have developed a machine learned interatomic potential for the prototypical austenitic steel Fe7Cr2Ni,
using the Gaussian approximation potential (GAP) framework. This GAP can model the alloy’s properties with
close to density functional theory (DFT) accuracy, while at the same time allowing us to access larger length and
time scales than expensive first-principles methods. We also extended the GAP input descriptors to approximate
the effects of collinear spins (spin GAP), and demonstrate how this extended model successfully predicts
structural distortions due to antiferromagnetic and paramagnetic spin states. We demonstrate the application
of the spin GAP model for bulk properties and vacancies and validate against DFT. These results are a step
towards modeling the atomistic origins of ageing in austenitic steels with higher accuracy.

DOI: 10.1103/PhysRevMaterials.8.033804

I. INTRODUCTION

Austenitic stainless steels are key structural materials with
high mechanical strength and corrosion resistance. They have
many applications, from everyday tools such as household
appliances and cars, to structural components of buildings,
bridges, and industrial machines [1]. Their desirable proper-
ties come from alloying Fe with a concentration of 16–20%
Cr for rust resistance, and about 10% Ni to maintain a
crack-resistant face-centred-cubic crystal structure at all tem-
peratures where it remains solid (< 1800K) [2]. Specific
properties of the steel can be fine tuned by adding small
concentrations (< 1%) of other solutes such as Mo, Mn, P, C
etc., depending on the application of interest [3]. However, the
core properties come from the Fe-Cr-Ni mix, so in this paper
we focus on the prototypical austenitic steel with composition
Fe7Cr2Ni.

A key application of austenitic steels is in nuclear power
plants. The austenitic steel grades 304 and 316, which have
a composition very close to the model alloy Fe7Cr2Ni, are
used in the primary containment barriers of light-water nu-
clear reactor pressure vessels (RPV) [4]. The RPV interiors
are exposed to constant neutron bombardment and a wide
range of thermal fluctuations from cryogenic temperatures
during maintenance to operating temperature of ∼600 K. Over
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time, these harsh conditions trigger the formation of radiation-
induced point defects in the RPV interiors, which eventually
cluster to form larger defects such as voids and dislocation
loops. Macroscopically, these manifest as creep, swelling,
stress corrosion, and other ageing effects, which are safety
concerns [5]. To improve RPV designs and facilitate mitiga-
tion efforts, there is interest in understanding the mechanisms
behind these ageing phenomena.

Experimental data for aging phenomena are limited due
to the challenges in conducting controlled experiments in
extreme conditions, and also challenges in measuring atomic
quantities experimentally [6–8]. We therefore require compu-
tational methods to simulate these phenomena across length
scales, to fill in the gaps between the available experimental
data, and to explain the observed aging effects.

There are various tiers of first-principles methods available
for materials modeling, with higher accuracy being accom-
panied by (prohibitively) higher computational costs. While
more complex phenomena such as nuclear cascades or spec-
troscopic excitations require higher levels of theory, the first
principles method of choice for modeling mechanical proper-
ties as in our case is density functional theory (DFT), in which
the electronic structure of materials is calculated from approx-
imations of quantum mechanics [9]. There have been efforts to
study the Fe7Cr2Ni alloy using DFT [5,10–12]. However, as
the computational cost of DFT calculations scales cubically
with system size, these studies were restricted to supercells
containing up to 256 atoms. These supercells are too small to
model extended defects such as voids or dislocations. Also, as
DFT calculations are computationally expensive, these studies
were restricted to limited statistics, which is not ideal for
modeling the variations due to chemical complexity of con-
centrated alloys.
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Computationally more affordable alternatives for atomistic
modeling of materials that allow us to simulate larger length
and time scales are classical interatomic potentials. These
models have a fixed mathematical form and are fit to exper-
imental and DFT data for the material properties of interest.
For metallic systems, the main classical models used are
the embedded atom models (EAM) [13], the modified EAM
[14], and the Finnis Sinclair model [15]. While there have
been many efforts to study alloys using classical interatomic
potentials [16–20], these studies are restricted to just a few
properties owing to the fixed mathematical form of empirical
models. For instance, Bonny et al. developed a FeCrNi EAM
for plasticity [18] and another FeCrNi EAM for point defects
[19] (referred to as EAM-13 throughout this paper), but nei-
ther can simulate both types of defects as they were trained
for their respective target properties. We would ideally like
to have a model that can simulate multiple defects and their
interactions.

A successful emerging approach that can address the short-
coming of both DFT and EAM approaches is machine learned
interatomic potentials (MLIPs) [21]. MLIPs are trained on a
database of first-principles data, generally from DFT. Their
highly flexible mathematical forms allow them to interpolate
the training data smoothly and so fit the potential energy
surface with near DFT accuracy, while at the same time being
much cheaper to use for predictions than first-principles meth-
ods directly. A major advantage of the MLIPs over classical
potentials like EAM is that they can be trained on multi-
ple defects, by including representative configurations in the
training database. Moreover, the accuracy and scope of an
MLIP can be improved iteratively by appending new training
configurations to its training database, chosen either manually
using knowledge about the system of interest or using active
learning schemes [22].

A range of MLIP approaches have enjoyed considerable
success, including kernel methods [23] linear and nonlinear
expansions of the potential in a polynomial basis such as
the atomic cluster expansion (ACE) [24] or moment tensor
potential (MTP) [25] frameworks, and most recently message-
passing neural networks [26–28]. In this study, we use the
Gaussian approximation potential (GAP) framework, a kernel
based method [23]. The GAP model has physically motivated
kernel choices and hyperparameters, making it intuitive to
understand. It uses Gaussian process regression to fit the
potential energy surface; the Bayesian interpretation of this
procedure allows us to derive error estimates for GAP pre-
dictions, which is a useful feature of this choice of MLIP.
The GAP model has been fitted and validated for many el-
emental materials such as Si [29], W [30], Fe [31], and C
[32], demonstrating the effectiveness of this model. More
recently, it has also been used for binary alloys [33] and
the ternary alloy Ge-Sb-Te [34]. In this paper, we fit and
validate a GAP model for Fe7Cr2Ni. We also extend the GAP
descriptors to incorporate the effects of the spin-polarized
electronic structure of the alloy in terms of collinear spins
associated with the Fe atoms, and demonstrate how this spin
GAP model improves predictions compared to the standard
GAP model.

This paper is organized as follows: Section II outlines how
the training database was assembled, and includes details of

TABLE I. Number of training and testing configurations for each
subgroup DBx, comprising either 256-atom bulk or 255-atom va-
cancy configurations.

Config. type Temperature Train Test

DB1 relaxed bulk 0 K 111 12
DB2 sheared bulk ∼0 K 190 75
DB3 relaxed vacancy 0 K 36 8
DB4 vacancy optimisation ∼0 K 72 20
DB5 bulk MD 1000/1500/2000 K 60 13
DB6 vacancy MD 1000/1500/2000 K 71 20
DB7 bulk MD quench 1000 K → 0 K 38 4
DB8 vacancy MD quench 1000 K → 0 K 44 28

element substitutions 0K 0 42

the standard GAP and spin GAP fitting procedures. Section III
discusses the main results for bulk and point defect properties
of Fe7Cr2Ni using the spin GAP. The results are validated
against DFT and experiments, and compared with EAM and
standard GAP predictions.

II. METHODOLOGY

A. Training Database

The first step to training a MLIP is to assemble a training
database of high accuracy data relevant to properties of inter-
est. Our training database comprises configurations relevant
to the bulk, finite temperature, and point defect properties of
the alloy. It can be categorized into eight subdatabases (DBx)
based on configuration type, as summarized in Table I. Fig-
ure 1 shows the kernel principal component analysis (KPCA)
of the training database configurations using the SOAP kernel
[35], colored by subdatabases. The horizontal axis KPCA
component can be interpreted as being roughly correlated with
the temperature of the configurations, while the vertical axis
KPCA component is correlated with strain.

Perfect-lattice bulk and monovacancy supercells (contain-
ing 256 and 255 atoms respectively) with different element

FIG. 1. Kernel principal component analysis (KPCA) of train-
ing data in the three-species SOAP descriptor space. This approach
allows us to identify gaps in the training configuration space; e.g.,
DB7-8 were included to sample the gap between the DB1-4 and
DB5-6 clusters.
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FIG. 2. Protocol for generating bulk and vacancy training structures that sample different elemental configurations, with realistic short-
range ordering derived from effective medium (EM) theory. In this case, the DFT relaxed off-lattice displacements shown by the red arrows of
step 3 are for AFM layering along the x̂ axis (AFM-X).

distributions that capture relevant short-range ordering were
generated using an effective medium theory (EM) as de-
scribed in Sec. II B. These were fully relaxed as shown in
the schematic of Fig. 2, using DFT calculations as described
in Sec. II C, to generate the training subdatabases DB1 and
DB3 respectively. Random strains were applied to a subset of
DB1 samples, to generate DB2, aimed at providing reference
material, which can inform an accurate description of the
alloy’s elastic behavior. Snapshots from the DFT geometry
optimisation trajectory of the EM monovacancy structures
were compiled to form DB4, to provide details of the potential
energy surface close to 0 K.

The EM structures were generated to capture short-range
ordering at temperatures of 600 K, 1000 K, 1500 K, and
2000 K, respectively. We ran ab initio molecular dynamics
(MD) for the 1000–2000 K configurations from DB1 and DB3
at the temperatures they were generated for, and uncorrelated
snapshots from these MD trajectories were compiled to form
DB5 and DB6, respectively. In Fig. 1, we can see that the
high-temperature DB5-6 samples sit quite far apart from the
low-temperature DB1-4 samples along the first KPCA com-
ponent. To aid the GAP model with better interpolation of
training data, we need to populate such gaps between training
data clusters along the principal axes of the kernel space. To
this end, we extend the database by including snapshots from
the geometry optimisation of a few bulk and monovacancy
MD structures, comprising DB7 and DB8, respectively. These
configurations are seen to sample the space between low-
and high-temperature clusters in the KPCA plot Fig. 1, and
their inclusion decreased the errors of our models. The GAP
potentials (both with and without the Fe spin extensions) were
trained on this combined database DB1-8 as described in
Sec. II D.

B. Effective Medium Theory

Past DFT studies on FeCrNi have modelled the alloy using
special quasirandom structures (SQS) [5,10,11]. A limitation
of using SQS for magnetic materials is that in aiming to pro-
duce local environments reflective of the random alloy, they
neglect atomic short-range order. It would be more effective
to train a model using configurations in which temperature-
dependent short-range order is present, especially in the case
of point defects where the energetics are correlated to the
concentration of species decorating the defect [5].

To obtain atomic configurations with physically motivated
atomic short-range order, we draw samples from equilibrated,
lattice-based Monte Carlo (MC) simulations, as depicted by
the first step in Fig. 2. A configuration is described by a set
of lattice site occupancies {ξiα}, where ξiα = 1 if site i is
occupied by an atom of chemical species α, and 0 otherwise.
The internal energy is described by a simple pairwise Bragg-
Williams Hamiltonian [36,37],

H =
∑

iα; jα′
Viα; jα′ξiαξ jα′ , (1)

where the atom-atom interchange parameter Viα; jα′ describes
the energy associated with an atom of species i on site α

interacting with an atom of species j on site α′. We assume
these interchange parameters are isotropic, homogeneous, and
have finite range, which simplifies Eq. (1).

The Viα; jα′ are obtained using the S(2) theory for multicom-
ponent alloys [38], the details and implementation of which
have been discussed extensively in earlier papers [39–42]. The
theory uses the Korringa-Kohn-Rostoker (KKR) formulation
of DFT, with disorder described via the coherent potential
approximation (CPA) [43], producing an effective medium
representing the electronic structure of the disordered alloy.
Our method captures the effects of an ordered magnetic state,
in our case the single-layer antiferromagnetic (AFM) state, on
the short-range-order state [41]. It is also possible to treat va-
cancies in this formalism at low concentrations by including a
chemical species with no associated electrons, and no nuclear
charge.

In this paper, we used the HUTSEPOT code [44] to
construct the self-consistent potentials of DFT within the
KKR-CPA formalism. The interchange parameters are fitted
to the first four coordination shells, and they are tabulated in
Appendix A for reference. The MC simulations used a cells
of 256 atoms with periodic boundary conditions applied in
all three directions. Simulations were equilibrated at the de-
sired temperature and then decorrelated samples were drawn
25 600 MC steps apart, i.e., 100 MC steps per lattice site.
The samples drawn from high-temperature simulations will
have little to no short-range order, while those drawn at lower
temperatures will have a degree of short-range order present.
These lattice-based EM configurations are then relaxed with
DFT using setting described in the next section, to get the cell
distortion and off-lattice atomic displacements as depicted in
the last step of Fig. 2.
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C. DFT Settings

The Vienna Ab initio Software Package (VASP) [45–47]
was used to compute ground-state DFT structure, energy,
atomic forces, and cell stresses for the training database.
MLIPs can only be as accurate as the data they are trained
on, so the choice of DFT settings cap the achievable accuracy.
A key choice when setting up DFT calculations is which
exchange-correlation (XC) functional to use. For structural
properties of transition metals, the Perdew–Burke–Ernzerhof
[48] flavor of generalized gradient approximation (GGA)
functionals is well established in the literature as a good
choice, and so this is the XC functional we use. However, for
more complex phenomena involving electronic excitations,
we would require beyond-GGA approaches such as hybrid
exchange, or even beyond-DFT methods such as the GW
approach, and so we cannot hope to model such phenomena
using a MLIP trained on GGA-based DFT.

Depending on the range of atomic interactions that we hope
to model, the choice of pseudopotential would also affect
the DFT accuracy. For example, modeling nuclear cascades
would require very short-range interactions that benefit from
all-electron DFT codes or semicore pseudopotentials [49].
However, since we are targeting mechanical properties, the
key players are the outer shell electrons of the alloying el-
ements, so the accuracy we require is not compromised by
using softer pseudopotentials for the core electrons. We use
the standard VASP pseudopotentials based on the projector
augmented wave (PAW) method [50], with eight, six, and ten
valence electrons for Fe, Cr, and Ni respectively.

As Fe and Ni are magnetic materials, and Cr has shown a
spin-density wave at low temperatures [51,52], it is essential
to turn on the spin setting for more accurate DFT calculations
of this alloy. Piochaud et al. reported that their tests with
noncollinear spins generally relaxed to collinear arrangements
[5], so we constrain our systems to collinear spin. Also,
while austenitic steel is paramagnetic (PM) at operation tem-
peratures of nuclear reactors, single-layer antiferromagnetic
(AFM) ordering was found to be the most stable ground state
[5]. To ensure we get ground-state properties right, we impose
an AFM ordering for DFT relaxations of our training samples.
Initial magnetic moment magnitudes are overestimated to al-
low for relaxation, and are set at 3.0, 2.0, and 1.0 μB for Fe, Cr,
and Ni respectively. These atomic magnetic moments evolve
during DFT electronic minimisation, and are computed in
VASP by integrating the spin density within a sphere centered
around the atom of interest.

A Monkhorst-Pack k-point mesh [53] of size 3 × 3 × 3
was used to sample the Brillouin zone for all the training sam-
ples. Training data was computed with a plane-wave energy
cutoff of 600 eV and an electronic self-consistency criterion
of 10−7 eV. Preliminary steps, i.e., initial geometry optimisa-
tions and ab initio MD trajectories, were done using a lower
self-consistency criterion of 10−4 eV. Electronic minimisation
were performed using the preconditioned RMM-DIIS algo-
rithm, while ionic position optimisations were done using the
conjugate gradient method. The ab initio MD trajectories were
run for the NVT ensemble, using the Nose-Hoover thermostat
[54,55] and timesteps of either 5 fs (for T = 1000 K, 1500 K)
or 2 fs (for T = 2000 K). The initial ∼200 steps (exact number

depending on when the total energy stabilizes) of the trajec-
tories were discarded, and uncorrelated samples were taken
from the remaining 1000–1500 steps of each trajectory. These
were then evaluated with the higher precision DFT settings
before being included in the training database.

D. Potential Fitting

This section outlines how the GAP fits the Born-
Oppenheimer potential energy surface (PES) by mapping the
DFT training structures to their DFT energies, forces, and
stresses. As with other interatomic potentials, the GAP as-
sumes that the energy ENc of a configuration with Nc atoms
can be written as

ENc =
Nc∑

i=1

ε(q̂i ) (2)

where ε(q̂i ) is the energy contribution from atom i in the
configuration, and q̂i is a descriptor vector that captures the
unique features of the atom i environment. The atomic en-
ergies are modelled as a linear combination of kernels [56]
given by

ε(q̂i ) =
M∑
j

α jK (q̂ j, q̂i ) = kT
i α (3)

where the kernel basis functions K (q̂ j, q̂i ) capture the sim-
ilarity between environment i and the M environments of
the basis set. As GAP training databases are generally large
(e.g., N ∼ 160 000 atomic environments in this paper), the
usual strategy is to use only a small portion M � N of the
training set for the basis set. This makes the fit computation-
ally tractable, while still retaining accuracy as the training
database contains many groups of similar configurations that
can be sparsified without much loss of information. These
M sparse points are selected by CUR decomposition, which
searches for maximally dissimilar environments [29], ensur-
ing that the chosen basis is representative of the variety across
the full training database.

Moving to the left-hand side of Eq. (3), DFT does not give
direct access to the atomic energies ε, but rather, it gives us
total energies ENc of the training configurations, along with
atomic forces and virial stresses. As forces and stress are
properties that can be derived from atomic energies (e.g., ∂/∂x
for an atomic force along the Cartesian x direction), we can
back-calculate the unknown N component vector ε of atomic
energies, from the known D component vector y of DFT data,
by the relation y = LT ε, where L is a linear differential opera-
tor L [30]. This allows us to derive the covariance kernel of the
unknown target atomic energies (KNN ) from the covariance
kernel of the known DFT training data (KDD) using the rela-
tion KDD = LT KNN L. The sparse ridge-regression solution to
Eq. (3) regularized by a diagonal tolerance matrix � = σ 2

ν I is

α = [KMM + KMN L�−1LKNM]−1KMN L�−1y. (4)

With these optimized coefficients α, we can make predic-
tions for new atomic environments q̂∗ using Eq. (3). In this
paper, we use the smooth overlap of atomic positions (SOAP)
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TABLE II. Parameters for the collinear-spin GAP.

Parameter Two-body Many-body

Kernel choice Gaussian SOAP
Radial cutoff 6.0 Å 6.0 Å
Cutoff transition width 1.0 Å 1.0 Å
δ 1.0 eV 0.1 eV
Sparse points 100 800
θ 1.0
nmax, lmax 10,10
ζ 4
σatom 1.0 Å

descriptor

qi =
l∑

m=−l

(ci
nlm)∗ci

nlm ; q̂i = qi

|qi| (5)

where cnlm are expansion coefficients for the atomic neighbor
density power spectrum [35]. For computational tractabil-
ity, this sum is truncated at radial-basis functions up to
order n < nmax and spherical harmonics up to degree l <

lmax. The SOAP descriptor is suitable for describing atomic
environments since it is translationally, rotationally, and per-
mutationally invariant [35]. The corresponding covariance
kernel is

K (q̂i, q̂ j ) = δ2|q̂i · q̂ j |ζ (6)

where δ is a factor that corresponds to the spread in energy of
the training dataset, and ζ is tuned to amplify variations in the
dot product, to pick out fine features.

While the SOAP kernel is good at capturing smoothly vary-
ing details of the PES, it is not as effective in capturing sharp
features as well, such as exchange repulsion when atoms get
close to each other, or phase transitions [30]. It has been found
to be useful to use multiple kernels targeting different scales,
so that each kernel does not have to simultaneously fit vastly
different features [29]. We hence use simple two-body kernels
as well, to roughly capture the main trends of the PES, so that
the SOAP kernels can focus on finer details. The two-body
descriptor is just the pairwise separation between atoms, and
we use the squared-exponential form

K (q̂i, q̂ j ) = δ2 exp

(
−1

2

(
q̂i − q̂ j

θ j

)2
)

(7)

for the two-body kernel, where θ j is a lengthscale hyperpa-
rameter. For a three-species alloy, we require six two-body
kernels (one for each pair of species), and three SOAP ker-
nels (one for each species). The kernel hyperparameters of
Eqs. (5), (6), and (7) that we use are summarized in Ta-
ble II. In addition these, we σ

energy
ν = 0.001 eV/atom, σ force

ν =
0.1 eV/Å, and σ virial

ν = 0.05 eV/atom for the regularization
described in Eq. (4), values chosen based on the accuracy of
our DFT training data. The MPI parallel gap_fit code from
the QUIP software package [57,58] was used to fit the GAP
on the full dataset of Table I.

The cumulative distribution functions of the training and
test energy errors of the resulting nonmagnetic GAP are

FIG. 3. Cumulative distribution functions of energy training
(solid lines) and test (dashed lines) errors for the standard SOAP +
GAP model (blue), a GAP model using compressed SOAP descrip-
tors (orange) and a GAP model with an additional species included
to differentiate between spin-up and spin-down Fe sites (spin GAP;
green). Compression does not significantly reduce accuracy (orange
vs blue), and the spin GAP model (green) performs significantly
better.

shown in Fig. 3. Similar plots for the force and stress errors
have been included in Appendix B. The GAP has energy
training and test error within 2 meV/atom and 6 meV/atom
respectively, which are comparable to the differences in
DFT energies due to choice of AFM layering direction.
The train and test force errors are below 200 meV/Å for
low-temperature configurations and 400 meV/Å for high-
temperature configurations. The relatively large force errors
for low-temperature configurations are because the GAP can-
not fit the directional spin-induced face-centered tetragonal
(FCT) ground-state structure, as the GAP does not have spin
degrees of freedom. The stress training and test errors are
within 2 GPa and 4 GPa respectively, which are small as they
are less than 2% of the typical elastic constant values that are
about ∼200GPa.

E. Spin Model

As the SOAP and two-body descriptors do not have any
information on spin, the standard GAP is spin-agnostic and
cannot capture the tetrahedral deformation of AFM layering,
and this limits the accuracy of its predictions. To address this,
we introduce a fictitious fourth species to the GAP model,
such that we have different descriptors for up spin (Fe ↑)
and down spin (Fe ↓). This expanded descriptor set gives the
model the flexibility to learn the tetrahedral deformation of
AFM layering, and could be extended to the PM phase too. We
henceforth refer to this 4-species potential as the spin GAP.

As the SOAP descriptor length scales quadratically with
number of species, slowing down training and evaluation
times prohibitively, we needed to use descriptor compression
methods to make the training computationally tractable, such
as those introduced in [59]. We use combined radial and
species compression with tensor product coupling across 300
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TABLE III. Lattice parameters and elastic constants of the FeCrNi alloy computed using DFT, GAP, spin GAP, and EAM-13 at 0 K. For
comparison, DFT results for AFM Fe at 0 K and experimental values for finite temperatures have also been included. Dashes indicate that the
value is equal to the previous value by symmetry.

DFT-Fe DFT GAP Spin GAP EAM13 Expt (> 0 K)

Phase FCT FCT FCO FCT FCC ∼FCC a

a (Å) 3.42 3.50 3.49 3.50 3.55 3.52–3.59 a

b (Å) – – 3.53 – – –
c (Å) 3.68 3.58 3.56 3.58 – –

C11,C22,C33 (GPa) 321, –, 254 259, –, 249 299, 243, 232 272, –, 268 333, –, 204–226b

C12,C13,C23 (GPa) 246, 96, – 164, 124, – 175, 163, 151 181, 126, – 196, –, – 132–134b

C44,C55,C66 (GPa) 166, –, 262 147, –, 191 155, 171, 186 148, –, 188 161, –, – 111–122b

aTemperature range 750–900 K. Ref. [60].
bTemperature range 4–295 K. Ref. [61,62].

mixed radial and species channels. To check the effects of
compression, a compressed version of the three-species GAP
was also fit. Figure 3 shows that the compressed GAP has
comparable errors to the standard GAP, verifying that there
is no significant loss of accuracy when compression is used
for this system. The spin GAP, which also uses compressed
descriptors, has significantly improved training and test er-
rors over those of the standard GAP. Typical energy errors
decrease by 1 meV/atom, force errors by about 50 meV/Å,
and stress training errors decrease by about 0.2 GPa.

III. RESULTS

A. Bulk properties

The ground-state bulk properties of the FeCrNi alloy pre-
dicted by the GAP and the spin GAP are summarized in
Table III, along with the corresponding DFT, EAM, and ex-
perimental values for comparison, as well as DFT for pure Fe
in an AFM spin state. The DFT results for the ground-state
structure of both AFM-Fe and AFM-FeCrNi are FCT, with
the longer lattice constant corresponding to the AFM layer-
ing direction. This tetragonal distortion is more significant in
pure AFM Fe (0.26 Å) compared to the alloy (0.08 Å), as the
high concentration of Cr and Ni in the alloy lattice reduce
the magnetism-induced geometry effects. Relaxation of EM
structures with EAM-13 gives a lattice constant within the
DFT and experimental range; however, EAM-13 fails to pre-
dict the lattice distortion, leading to a symmetric face centered
cubic (FCC) lattice instead, as seen from the first set of bars
in Fig. 4(a).

In comparison, the standard GAP predicts that a distorted
structure is more energetically favorable than a symmetric
FCC structure, as it is trained on relaxed DFT structures that
have FCT lattices with zero atomic forces. However, since
the standard GAP has no spin degrees of freedom, it does
not have the framework to process the spin inputs required
to elongate one direction over the other two. Instead, the GAP
training correlates the distortion to minor differences in the al-
loy composition along the different axes in the relaxed training
set geometries, and so predicts a face-centred orthorhombic
(FCO) relaxed lattice based on composition along the different
axes of test structures. As seen from the second set of bars
in Fig. 4(a), the three lattice constants of the GAP relaxed
FCO structure are equally spaced in a similar range to that

of the two DFT relaxed FCT lattice constants. The spin GAP,
on the other hand, has a more flexible model form that can
capture the FCT distortion associated with alternating Fe ↑
and Fe ↓ layers. The third set of bars in Fig. 4(a) show that the
spin GAP successfully predicts lattice constants in excellent
agreement with DFT, and the experimental values in Table III.

The cumulative distribution functions of the nonzero
elastic matrix components, computed using the matscipy
PYTHON package [63], of EAM-13, spin GAP, and DFT are
shown in Fig. 4(b). As the EAM predicts an FCC struc-
ture, it has only three distinct nonzero elastic constants
{C11,C12,C44}. The DFT and spin GAP predict an FCT
structure, and so have six distinct nonzero elastic constants
{C11,C33,C12,C13,C44,C66}. The standard GAP on the other
hand has nine distinct nonzero elastic constants as it predicts
an FCO structure, the mean values of which are in Table III.

As seen in the first two sets of bars in Fig. 4(b), the spin
GAP slightly overestimates C11 and C33 by ∼8% each, but gets
their relative magnitude right. This is a significant improve-
ment from EAM-13, which overestimates the DFT C11 by
30%. The EAM-13 C11 is in fact closer to that of pure AFM Fe
reported in Table III, indicating that EAM-13 does not capture
the softening of this elastic mode due to alloying elements
Cr and Ni, while the spin GAP does capture this softening.
Moving to the off-diagonal elastic components, the spin GAP
C13 agrees very well with DFT, and is an improvement over
the EAM-13 that overestimates it by 20%. The spin GAP
performs less well with C12, overestimating it by 10%, but
again this is a significant improvement over EAM-13, which
overestimates this component by 58%. Lastly, the spin GAP
C44 and C66 match very well with DFT as seen in the last two
sets of bars in Fig. 4(b), while EAM-13 predicts an averaged
value between the DFT [C44,C66] range. Overall, the GAP
elastic constants agree well with DFT. The 8–10% overes-
timation of modes {C11,C33,C13} indicate that there are still
errors in getting the behavior of the long vs short axis of the
spin-induced tetrahedral deformation. This is likely because
our spin model is still quite a simple approximation to the full
physics of the alloy—it excludes contributions from Cr and Ni
spins and ignores spin magnitudes.

Given that the spin GAP predicts the different elastic con-
stants well, it unsurprisingly also predicts the equation of state
reasonably well. Figure 5(a) compares the three spin GAP
E-V curves (AFM spin layering along X̂, Ŷ, and Ẑ directions)
of a 256-atom test configuration with respect to its DFT EV
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FIG. 4. (a) Lattice constants (a), (b), (c) averaged over 400 configurations predicted by EAM, GAP, and spin GAP for the AFM state,
with respect to the DFT AFM lattice constants averaged over 111 configurations. (b) The six independent elastic constants of FCT structures
predicted by spin GAP (green) and EAM (pink) from the average over 100 configurations each, compared to the DFT reference values
computed for one configuration.

curves. We can see than the spin GAP EV curves fall within
the range of the DFT EV curves, even if they do not match
exactly. The spin GAP also gets the relaxed volume (E-V
curve minimum) right, whereas the EAM-13 overestimates
the relaxed volume as it is restricted to the FCC lattice. The
bulk modulii computed from fitting an equation of state to
these spin GAP E-V curves are in very good agreement with
DFT, overestimating it by just 4 GPa (∼2%), as seen in
Fig. 5(b) (green distribution vs black dashed DFT reference),
whereas the EAM-13 (pink distribution) overestimates the
bulk modulus by 21%.

As the spin GAP is orders of magnitude faster than DFT,
it allows for much more sampling of different random con-
figurations, or larger supercells than the 256-atom ones used
for DFT. Figure 6 shows the mean and spread (one standard
deviation) of the spin GAP relaxed energy distributions at
different supercell sizes, computed over 40 different config-
urations for each size. We see that the spin GAP relaxed
energy converges for supercells with more than 200 atoms,
and its converged energy is in good agreement with the DFT
reference values (black crosses) within the converged size
range. For smaller sizes, as is the case when applying DFT
to random alloys, finite-size effects are significant leading
to unconverged energy predictions. Also, the distributions
at smaller sizes are broader, because each configuration’s
energy is computed over a smaller set of random local en-
vironments, leading to a larger variance between different
configurations.

For the cell size used for training (256-atoms), the full
distribution of spin GAP relaxed energies is in Fig. 10(a),
and we can see that its peak agrees very well with the
DFT mean. The spin-agnostic GAP on the other hand un-
derestimates the ground-state energy by about 2 meV/atom.
We attribute this underestimation to the fact that, while the
GAP correlates the tendency to distort to minor changes
in composition, it associates FCT directionality to noise as
it does not have spin degrees of freedom. The GAP train-

ing regularizes the forces of the low energy DFT training
structures, and extrapolates to predicting FCO as a lower-
energy structure than FCT. The spin GAP overcomes this
model form error by associating the tetragonal distortion with
the AFM layering.

B. Chemical potentials

An essential ingredient for accurately computing energet-
ics of point defects and their clusters is the chemical potential
μ of each element in the alloy. This is the energy required
to move an atom of the element from vacuum (infinitely far
away from any interactions) to its bulk lattice site in the
alloy supercell. The energy EA→B required to substitute an
element A with another element B at a lattice site in an alloy is
equal to

EA→B = μB − μA. (8)

This gives three equations for A,B ∈ {Fe,Cr,Ni}, of which
only two are independent. To solve for the three unknown
chemical potentials, we require three independent equations,
and we can get this third equation from the sum of chemical
potentials of the N atoms in a configuration, which gives the
bulk energy EN of that configuration. For Fe7Cr2Ni, this is
expressed by the equation

EN = (0.7μFe + 0.2μCr + 0.1μNi)N. (9)

The chemical potentials μFe, μCr, and μNi can be deter-
mined for any lattice site in a cell by computing the two
relevant substitution energies, and then solving the system
of equations defined by Eqs. (8) and (9). For the spin GAP,
we solve this three-species system of equations twice: first
for {Fe ↑, Cr, Ni}, and then for {Fe ↓, Cr, Ni}, and we then
take the average of the two resulting chemical potentials per
species to get μFe, μCr, and μNi.
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FIG. 5. (a) Energy volume (E-V) curves predicted by DFT
(crosses) and spin GAP (solid lines) with AFM layering in x̂, ŷ, and
ẑ directions, and the corresponding spin-agnostic EAM-13 (dotted-
pink line). (b) Bulk modulus computed from a Birch-Murnaghan
equation of state fit to the E-V curves.

This procedure was carried out for randomly chosen lattice
sites of 800 different configurations using the spin GAP. The
distributions of substitution energies are shown in Fig. 7(a),
with reference DFT minimum values EA→B

subs from [5]. We see
that the minimum substitution energies from literature (using
the same DFT settings as this paper) agree well with the
minima of the corresponding spin GAP substitution energy
distributions. The resulting chemical potential distributions
are shown in the violin plots of Fig. 7(b). DFT chemical
potentials averaged over five configurations are also labeled
using black crosses. We can see that the spin GAP 〈μFe〉
agrees very well with DFT. The spin GAP 〈μNi〉 and 〈μCr〉
are slightly offset from the corresponding DFT averages by
+2% and −2% respectively; this is probably a result of not
accounting fully for the magnetic nature of Ni and Cr in this
alloy.

FIG. 6. Convergence of spin GAP ground-state energy with re-
spect to supercell size. The green dots and bars show the mean and
standard deviation respectively, of the spin GAP energy distribution
of 40 configurations at each cell size. The spin GAP energy con-
verges to 1 meV/atom for cells with > 200 atoms, and the converged
energy agrees well with DFT (black crosses).

C. Monovacancies

To compute vacancy formation energies, we start with a
relaxed bulk configuration of N atoms and energy EN , remove
one atom of a given species “el”, and then carry out a fixed-
cell relaxation of the atomic positions to get the energy E el

N−1
of the vacancy configuration. As the vacancy configuration
has one atom less than the corresponding bulk system, the
comparison of the two configurations requires the chemical
potential μel of the atom removed to form the vacancy, giving
the formula

E el
vac = μel + E el

N−1 − EN (10)

where quantities (μel + E el
N−1) and EN both have N atoms

each. We first compute the intermediate step (E el
N−1 − EN )

for 800 different configurations using the spin GAP and the
results are shown in Fig. 7(c). In this case, the spin GAP result
for Cr agrees well with DFT, whereas those for Fe and Ni
are underestimated. These offsets are consistent with the spin
GAP underestimating EFe→Ni slightly, as seen previously in
Fig. 7(a).

In fact, the small species-dependent errors in μel and
E el

N−1 − EN cancel each other out to give a consistent be-
havior in vacancy energy Evac, irrespective of which element
was removed to form the vacancy. This is evident from the
consistent mean and spread of the Evac energy distributions
denoted by the bars in Fig. 7(d). This cancellation of er-
rors makes sense as μel involves introducing an atom into
the bulk whereas E el

N−1 − EN involves the opposite procedure
of removing an atom from the bulk structure. The resulting
prediction of ESpinGAP

vac = 1.80 eV is in good agreement with
the DFT value of EDFT

vac = 1.96 eV from the literature [5].
This prediction for Evac is significantly more accurate than
the standard spin-agnostic GAP trained on the same database,
which predicts EGAP

vac = 1.6 eV. The spin GAP also performs
marginally better than EAM-13, which gives a mean predic-
tion of Evac = 1.77 eV as seen in Fig. 7(d). We attribute the
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FIG. 7. (a) Distribution of substitution energies for elemental swaps predicted by spin GAP (100 configurations each) and corresponding
DFT minima (dashed lines) computed from 40 DFT calculations performed by Piochaud et al. [5]. Distribution of (b) chemical potentials μ

and (c) energy differences EN−1 − EN predicted by the spin GAP from 800 configurations (256-atom) with respect to DFT means from five
configurations (256-atom). (d) Mean and twice the standard deviations of spin GAP and EAM-13 vacancy formation energies Evac of 200
different EM configurations respectively, split by vacancy element type. The DFT mean and range of Evac are taken from [5].

remaining error of –0.2 eV in the spin GAP prediction to the
incomplete magnetic model, as we do not account for spin po-
larization of the electron density of Cr and Ni or for variations
in Fe magnetic-moment magnitudes near to defect sites. A
DFT study on this alloy finds that the DFT vacancy formation
energy drops from 1.98 eV down to 1.80 eV when they switch
from imposing paramagnetic spins to ferrimagnetic spins on
the same chemical composition, showing that changes in the
magnetic state alone can indeed lead to an order of 0.2 eV
changes in Evac [12], further suggesting that the spin GAP’s
underestimation of Evac is likely due to limitations of our spin
model.

On the other hand, a recently reported fully noncollinear
magnetic atomic cluster expansion (ACE) model for iron
also makes similar magnitudes errors in vacancy formation

energies (errors of 0.4 eV and 0.2 eV when trained without
and with extended defect sub-databases respectively), despite
being a much more rigorous magnetic model [64]. In their
case, the errors probably come from challenges in sampling
their multiplicatively larger spin space (as spin magnitudes
and angles are included). Whereas in our case, our simpler
spin model comes with a relatively constrained spin space
that is much easier to sample well. It is a promising result
that we get comparable performance, suggesting that our spin
model captures the main magnetic contributions despite be-
ing relatively simple. It would be interesting to try relaxing
a few of the assumptions of our simple spin model while
still keeping the spin space manageable, but that is beyond
the scope of this paper and will be investigated in future
works.
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TABLE IV. Linear correlation of vacancy formation energy with
respect to number of first nearest neighbours (#1nn) of type Cr and
Ni respectively, from the literature [5,10] (columns 2 and 3) and our
paper (column 5), and for (EFe

N−1 − EN ) from our paper (column 4).

#1nn Evac ([5]) Evac ([10]) (EN−1 − EN ) Evac

Cr 0.05 0.02 0.02 0.01
Ni –0.04 –0.04 –0.01 –0.004

D. Atomic Short Range Order

DFT studies [5,10] conclude that vacancies in the
Fe7Cr2Ni are more stable in Ni-rich environments and less
stable in Cr-rich environments. The gradients reported in the
literature for the linear correlation between Evac and number
of Cr and Ni neighbours respectively have been included
in Table IV for reference. The two studies agree well on
the correlation with Ni neighbors, whereas Manzoor et al.
find a weaker correlation with respect to Cr neighbors com-
pared to Piochaud et.al., which they attribute to the fact that
they have four times the amount of sampling [10]. In both
cases, however, they use constant precomputed values for
the chemical potentials, so trends in their vacancy formation
energy Eq. (10) are effectively proportional to trends in just
E el

N−1 − EN .
The computational expense of calculating chemical poten-

tials, i.e., two fixed-cell relaxations of element substitutions
Eq. (8) for each vacancy, makes it impractical to compute it
for every vacancy using DFT, but this is now possible to run
cheaply with the spin GAP. Figure 8 from left to right shows
the trends in energy difference E el

N−1 − EN , the corresponding
chemical potentials, and the vacancy formation energies with
respect to number of Cr neighbors as predicted by the spin
GAP. These results show that the chemical potential is also

correlated to the number of Cr neighbors, with the oppo-
site slope to the energy difference E el

N−1 − EN . Computing
vacancy formation energy involves adding up these two quan-
tities [see Eq. (10)] and so their opposing slopes offset each
other, reducing the overall magnitude of positive correlation
between Evac and number of Cr neighbors. Therefore, while
we get consistent gradient of 0.02 eV/Cr for our E el

N−1 − EN

and the Evac from the literature (see values in Table IV), the
inclusion of variations in chemical potentials decreases the
overall correlation. This makes sense as the chemical potential
accounts for majority of the heterogeneity in the vacancies
neighborhood. The remnant positive correlation is likely be-
cause of the volume of the vacancy, which has previously
been seen to affect stability [10]. As Cr atoms are the smallest
species in the alloy, they relax less into the vacancy, leading
to larger vacancies that are less stable and so have a higher
formation energy.

The inverse trends (but to a weaker extent) of the three
subplots of Fig. 8 are seen with respect to number of Ni
neighbors, the gradients of which are reported in Table IV.
The spin GAP predicts a smaller negative correlation of
−0.01 eV/Ni for E el

N−1 − EN compared to the –0.04 eV/Ni
values in the literature. Similar to the discrepancy between
the two DFT studies for Cr trends, our lower correlation could
be due to more variety in sampling. Piochaud et al. generate
all their vacancy structure by removing different atoms from
one 256-atom SQS structure, and Manzoor et al. do the same
over two 256-atom SQS structures, leading to a large overlap
in the neighborhood of the vacancies they consider. On the
other hand, our spin GAP results were computed for vacancies
introduced in 200 different starting structures from effective
medium theory, and so sample a larger variety in long range
vacancy environments. Despite the weaker correlations, we do
still get a small negative relation of –0.004 eV/Ni for Evac and
number of Ni neighbors. Similar to the previous reasoning on

(a) (b) (c)

FIG. 8. Linear correlation between (a) energy difference of vacancy vs bulk configurations EFe
N−1 − EN for vacancies generated by removing

an iron atom each from the 200 different bulk configurations, (b) corresponding iron chemical potentials μFe for those vacancy sites, and
(c) corresponding vacancy formation energy Evac computed by adding the quantities of (a) and (b), all with respect to number of Cr atoms
amongst the 12 nearest neighbors of the vacancy.
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FIG. 9. Variation in ground-state energy per atom of bulk alloy
with variation of Cr → Fe concentrations (blue) and Ni → Fe con-
centrations (orange), where 0% refers to the target 70:20:10 ratio of
Fe:Cr:Ni. We see good agreement with DFT values (black triangles)
for this range of ±4% variation in composition.

stability of vacancy volumes, Ni atoms are the largest species
in the alloy, so having more Ni neighbors leads to smaller
vacancy volumes, which are marginally more stable.

E. Alloy Composition

In the 304 and 316 austenitic stainless steel grades, the
typical Cr and Ni concentrations can vary up to ±4% from
the model 70:20:10 ratio of Fe, Cr, and Ni in our training
set. It would hence be useful to check if our spin GAP can
extrapolate to small variations in the alloying ratios. Figure 9
shows the results for bulk relaxation for configurations within
±4% variations in Cr (blue) and Ni (orange) concentrations.
We see very good agreement with the DFT reference values
in this range, validating that the spin GAP can indeed be used
to extrapolate to compositions about the training ratio. This is
because the GAP framework breaks down each configuration
into local atomic environments (LAEs) as in Eq. (2), and
the training set is likely to have a few Cr or Ni rich/poor
LAEs since we sampled a large number of EM configurations,
and these LAEs inform the potential for variations in alloy
composition about the target ratio.

The gradients of the linear trends in Fig. 9 are
0.0132 eV/%Cr and 0.0280 eV/%Ni. These convert to
1.32 eV and 2.80 eV for single atom Cr → Fe and Ni →
Fe swaps respectively, which are consistent with the re-
spective mean substitution energies of Fig. 7(a). This linear
trend indicates that for small variations in alloying concen-
trations, the substitution energies do not change much. The
chemical potential, however, would vary, since their com-
putation involves the bulk energy as well via Eq. (9), and
these bulk energies vary linearly as seen in Fig. 9. Since we
have accurate bulk and substitution energies for the ±4%
concentration range, we can expect all derivative properties
computed in the previous results sections to follow through
reliably.

FIG. 10. (a) DFT mean values (dashed lines) and spin GAP dis-
tributions for ground-state energies for AFM (green) vs PM states
using uniform random 50% up-down iron spins (unshaded orange)
and after Monte Carlo optimisation with spin flip moves (shaded
orange), comprising 400, 50, and 50 configurations respectively.
(b) Correlation plot of spin GAP relaxed energies for 13 PM refer-
ence DFT configurations with respect to their DFT relaxed energies.

F. Paramagnetism

Although the spin GAP was trained only on AFM DFT
data, in this section we assess how well it extrapolates to the
paramagnetic (PM) state. Comparing the magnetic ground-
state energies, Fig. 10(a) shows that the spin GAP correctly
predicts the PM ground state of this alloy to be of higher
energy, and hence less stable at 0 K, than the AFM ground
state. The unshaded orange distribution comprises energies of
the starting configurations initialized with perfectly random
50% up and down spin iron atoms, whereas the shaded orange
distribution comprises their equilibrated energies after using
Metropolis Monte Carlo with spin flip moves to optimize their
paramagnetic spin states. We see that the equilibrated PM
energy distribution agrees very well with the mean PM energy
from DFT marked by the orange-dashed line in Fig. 10(a),
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FIG. 11. Paramagnetic lattice constants (orange bars) and elastic
constants (green bars) of the spin GAP averaged over 50 configu-
rations, compared to their respective DFT reference values (black
bars). The DFT reference for lattice constants are an average over our
13 DFT PM test configurations, while those for the elastic constants
are from the study by Antillon et al. [12].

showing that the spin GAP can be used to generate reliable
PM spin state configurations despite not being specifically
trained for it. Figure 10(b) shows the direct correlation plot
for energies of the 13 paramagnetic DFT test structures, where
spin GAP was used to evaluate these test structure with the
same spin state as that from DFT. We see that the spin GAP
reproduces the DFT energies of these paramagnetic configu-
rations very well, as all the points lie along the diagonal with
the maximum deviation being 6 meV/atom.

For the PM ground-state structure, DFT predicts a FCC
structure with an average lattice constant of 3.53 Å. The
spin GAP accurately predicts the paramagnetic FCC structure,
with lattice constants that agree remarkably well with DFT, as
seen from the orange bars of Fig. 11. The lattice constants
of all samples were sorted in ascending order and assigned
to a, b, and c, respectively, and Fig. 11 shows their mean
values. The small ∼0.005 Å difference between the three PM
lattice constants is probably due to minor variations in ratio
of the three species along the three axes, and this too is
consistent between the spin GAP and DFT. As seen from
the green bars in Fig. 11, the spin GAP agrees reasonably
well with the paramagnetic elastic constants as well, agree-
ing within 5–8% to their respective DFT reference values
from the study by Antillon et al. [12]. The fact that the spin
GAP reproduces these properties is a promising result, as
the paramagnetic state is relevant to modeling the tempera-
ture range of most applications of Fe7Cr2Ni based austenitic
steels.

IV. CONCLUSIONS

In summary, we have developed two machine learning
interatomic potentials—a standard GAP and a collinear spin
GAP—for a model Fe7Cr2Ni alloy representative of austenitic
steels. They are each trained on the same DFT database
containing 159 k atomic environments, and validated against
as independent test set. We demonstrate the shortcomings

of the standard GAP in not being able to capture the
ground-state tetragonal distortion due to AFM layering ob-
served in this alloy, as the standard GAP formalism cannot
account for magnetic spins. We then proposed an extended
model incorporating spin to correct for this issue, and verified
that the spin GAP predicts the ground-state structure, en-
ergy, elastic properties, and vacancies in very good agreement
with DFT.

Atomistic modeling using this spin GAP could be
used to compute high accuracy inputs to larger scale
microstructural models. Our spin GAP is seen to extrapolate
well to small variations in alloy composition making is useful
for atomistic studies of more variety in austenitic steel grades.
The spin model is also seen to describe the paramagnetic
state well, which is relevant to modeling the alloy at oper-
ating temperatures of the steel components in nuclear and
industrial machinery. Beyond the properties validated in this
paper, it could also be extended via iterative re-training to
model more phenomena of interest such as diffusion, phase
transformations or responses to radiation. For instance, by
adding and testing the description of grain boundary struc-
tures, the spin GAP could be used to study segregation of Cr
at grain boundaries under radiation. Another avenue for future
work would be to extend this spin GAP to study hydrogen
embrittlement in austenitic steel, relevant for applications in
future fuel pipelines. This spin GAP is a good starting point
for efforts at modeling austenitic steel with close to DFT
accuracy.

The DFT training data, interatomic potential and property
predictions supporting this work are freely available from
Zenodo [65].

TABLE V. Fitted pairwise atom-atom interchange parameters
obtained from the effective medium theory for the composition
Fe7Cr2Ni, which are used in lattice-based Monte Carlo simulations
to sample configuration space. All energies are in units of meV.

V (1)
αα′ Fe Cr Ni

Fe 0.85 −5.28 4.58
Cr −5.28 23.44 −9.95
Ni 4.58 −9.95 −12.18

V (2)
αα′ Fe Cr Ni

Fe 0.12 −0.28 −0.29
Cr −0.28 2.80 −3.64
Ni −0.29 −3.64 9.33

V (3)
αα′ Fe Cr Ni

Fe −0.03 −0.16 0.53
Cr −0.16 1.41 −1.70
Ni 0.53 −1.70 −0.30

V (4)
αα′ Fe Cr Ni

Fe −0.06 0.51 −0.59
Cr 0.51 −1.03 −1.50
Ni −0.59 −1.50 7.15
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FIG. 12. Cumulative distributions of (a) training and (b) test er-
rors in forces, and in (c) stresses, for the standard SOAP GAP (blue),
GAP with compressed SOAP descriptors (orange), and spin GAP
(green).
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APPENDIX A: EFFECTIVE MEDIUM
THEORY PARAMETERS

Tabulated in Table V are the pairwise atom-atom inter-
change parameters of Eq. (1) obtained for the Fe7Cr2Ni alloy
considered in this paper. The lattice-based model assumes
interactions are isotropic and homogeneous, and we write V (n)

αα′
to denote the energy associated with an atom of species α

interacting with an atom of species α′ at nth nearest-neighbor
distance. We find that it is sufficient to fit interactions to the
first four-neighbor distances to accurately capture the data
produced using the S(2) theory.

APPENDIX B: POTENTIAL TRAINING & TESTING

Figure 12 shows the training and testing errors for forces
and stresses for the GAP, compressed GAP, and spin GAP. In
all cases, the spin GAP is seen to perform the best (lower er-
rors). The errors at which these trends plateau were discussed
previously in Sec. II E. The composition of the database is
reported in Table I.
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