
HAL Id: hal-04548605
https://hal.univ-lille.fr/hal-04548605v1

Submitted on 16 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Numerical Weather Predictions and Re-Analysis as
Input for Lidar Inversions: Assessment of the Impact on

Optical Products
Yuanzu Wang, Aldo Amodeo, Ewan J. O’connor, Holger Baars, Daniele

Bortoli, Qiaoyun Hu, Dongsong Sun, Giuseppe D’amico

To cite this version:
Yuanzu Wang, Aldo Amodeo, Ewan J. O’connor, Holger Baars, Daniele Bortoli, et al.. Numerical
Weather Predictions and Re-Analysis as Input for Lidar Inversions: Assessment of the Impact on
Optical Products. Remote Sensing, 2022, Remote Sensing, 14 (10), pp.2342. �10.3390/rs14102342�.
�hal-04548605�

https://hal.univ-lille.fr/hal-04548605v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Wang, Y.; Amodeo, A.;

O’Connor, E.J.; Baars, H.; Bortoli, D.;

Hu, Q.; Sun, D.; D’Amico, G.

Numerical Weather Predictions and

Re-Analysis as Input for Lidar

Inversions: Assessment of the Impact

on Optical Products. Remote Sens.

2022, 14, 2342. https://doi.org/

10.3390/rs14102342

Academic Editor: Michael Obland

Received: 10 February 2022

Accepted: 10 May 2022

Published: 12 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Numerical Weather Predictions and Re-Analysis as Input for
Lidar Inversions: Assessment of the Impact on Optical Products
Yuanzu Wang 1,2 , Aldo Amodeo 2,* , Ewan J. O’Connor 3, Holger Baars 4 , Daniele Bortoli 5 , Qiaoyun Hu 6,
Dongsong Sun 1 and Giuseppe D’Amico 2

1 School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China;
yuanzu.wang@imaa.cnr.it (Y.W.); sds@ustc.edu.cn (D.S.)

2 Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l’Analisi Ambientale (CNR-IMAA),
85050 Potenza, Italy; giuseppe.damico@imaa.cnr.it

3 Finnish Meteorological Institute, 00560 Helsinki, Finland; ewan.oconnor@fmi.fi
4 Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany; holger.baars@tropos.de
5 EaRSLab, ICT Institute of Earth Sciences and Department of Physics, School of Sciences and Technology and

IIFA, University of Évora, 7000-671 Evora, Portugal; db@uevora.pt
6 University Lille, CNRS, UMR 8518-LOA-Laboratoire d’Optique Atmosphérique, F-59650 Lille, France;

qiaoyun.hu@univ-lille.fr
* Correspondence: aldo.amodeo@imaa.cnr.it

Abstract: The atmospheric molecular number density can be obtained from atmospheric temperature
and pressure profiles and is a significant input parameter for the inversion of lidar measurements.
When measurements of vertical profiles of temperature and pressure are not available, atmospheric
models are typically considered a valid alternative option. This paper investigates the influence of
different atmospheric models (forecast and reanalysis) on the retrieval of aerosol optical properties
(extinction and backscatter coefficients) by applying Raman and elastic-only methods to lidar mea-
surements, to assess their use in lidar data processing. In general, reanalyzes are more accurate than
forecasts, but, typically, they are not delivered in time for allowing near-real-time lidar data analysis.
However, near-real-time observation is crucial for real-time monitoring of the environment and
meteorological studies. The forecast models used in the paper are provided by the Integrated Fore-
casting System operated by the European Centre for Medium-Range Weather Forecasts (IFS_ECMWF)
and the Global Data Assimilation System (GDAS), whereas the reanalysis model is obtained from
the fifth-generation European Centre for Medium-Range Weather Forecasts ReAnalysis v5 (ERA5).
The lidar dataset consists of measurements collected from four European Aerosol Research Lidar
Network (EARLINET) stations during two intensive measurement campaigns and includes more
than 200 cases at wavelengths of 355 nm, 532 nm, and 1064 nm. We present and discuss the results
and influence of the forecast and reanalysis models in terms of deviations of the derived aerosol
optical properties. The results show that the mean relative deviation in molecular number density is
always below ±3%, while larger deviations are shown in the derived aerosol optical properties, and
the size of the deviation depends on the retrieval method together with the different wavelengths. In
general, the aerosol extinction coefficient retrieval is more dependent on the model used than the
aerosol backscatter retrievals are. The larger influence on the extinction retrieval is mainly related to
the deviation in the gradient of the temperature profile provided by forecast and reanalysis models
rather than the absolute deviation of the molecular number density. We found that deviations in
extinction were within ±5%, with a probability of 83% at 355 nm and 60% at 532 nm. Moreover,
for aerosol backscatter coefficient retrievals, different models can have a larger impact when the
backscatter coefficient is retrieved with the elastic method than when the backscatter coefficient is
calculated using the Raman method at both 355 nm and 532 nm. In addition, the atmospheric aerosol
load can also influence the deviations in the aerosol extinction and backscatter coefficients, showing a
larger impact under low aerosol loading scenarios.

Keywords: ACTRIS; EARLINET; atmospheric models; lidar; aerosol

Remote Sens. 2022, 14, 2342. https://doi.org/10.3390/rs14102342 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14102342
https://doi.org/10.3390/rs14102342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5344-0128
https://orcid.org/0000-0001-5722-3430
https://orcid.org/0000-0002-2316-8960
https://orcid.org/0000-0002-2334-4055
https://orcid.org/0000-0001-6627-2517
https://doi.org/10.3390/rs14102342
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14102342?type=check_update&version=1


Remote Sens. 2022, 14, 2342 2 of 27

1. Introduction

At present, atmospheric aerosols are considered as one of the major sources of un-
certainties in climate forcing [1]. There are many kinds of aerosols, each of which is
characterized by specific optical properties. Most aerosols are generated by natural sources
and human activities and greatly influence the Earth’s radiation balance [2]. For this reason,
having a good knowledge of their global distribution, their vertical and horizontal extent,
and their time of residence in the atmosphere is necessary for understanding their role in
atmospheric processes [3,4] as well as human health [5,6] and the environment [7,8].

Lidar techniques have proven to be one of the most useful ways of obtaining atmo-
spheric aerosol vertical profiles with high temporal and spatial resolution [9] and to identify
multiple aerosol layers as well as their typology in the atmosphere [10,11]. In addition,
with the developments in recent years in laser technology, measurement techniques, and
data acquisition systems, lidar technology performance has greatly improved [12]. Several
lidar techniques are suitable for atmospheric aerosol monitoring and study, such as elastic
backscatter lidar and multi-wavelength Raman lidar. Elastic backscatter lidars detect only
the elastic backscatter signals at the transmitted wavelength [13,14]. Two types of algo-
rithms are typically used to retrieve profiles of the aerosol backscatter coefficient from the
elastic backscattered signals: Klett–Fernald [15–17] and iterative [18,19]. Both algorithms
require the assumption of the aerosol lidar ratio, i.e., the aerosol extinction-to-backscatter
ratio, which is an important intensive parameter characterizing the aerosol type. An inap-
propriate aerosol lidar ratio value will introduce significant uncertainty in the retrieved
results [20]. This limitation is overcome when multi-wavelength Raman lidar is used
as these advanced systems detect not only elastic backscattered radiation but also radia-
tion backscattered inelastically (Raman effect) by atmospheric Nitrogen molecules [21–24].
Multi-wavelength Raman lidar provides an independent measurement of the profiles of
aerosol extinction and backscatter coefficients and, consequently, no assumption about the
lidar ratio is required.

A single multi-wavelength Raman lidar system can be used to characterize the atmo-
spheric aerosol content corresponding to a single observation point. Characterization on a
larger horizontal scale can be achieved with coordinated lidar networks. The European
Aerosol Research Lidar Network (EARLINET) was the first network to be established
in 2000 with the main goal of providing the aerosol climatology over Europe [12,25,26].
Currently, EARLINET comprises 31 active lidar stations distributed over Europe, most of
which operate multi-wavelength Raman lidars. A rigorous quality assurance program has
been adopted to ensure a high level of quality and standardization of all EARLINET prod-
ucts [27–30]. Moreover, the EARLINET Single Calculus Chain (SCC) has been developed
to provide all EARLINET stations with a tool for unsupervised, standardized, and quality
assured data processing [31,32].

It should be noted that the molecular number density profile is also an important input
parameter for the determination of the aerosol extinction and backscatter coefficient, both
in Raman lidar systems and elastic backscatter lidar systems. Molecular number density
profiles can be derived from vertical profiles of atmospheric temperature and pressure.
Suitable vertical profiles can be measured by radiosonde when there is a radiosounding
station close to the lidar station. The co-location in time and distance between lidar and
sounding stations is an important aspect to consider. Although atmospheric pressure can
be quite stable over time and horizontal location, the atmospheric temperature can differ
considerably. Consequently, using radiosonde data measured several hours after/before
the observations or kilometers apart from the lidar station can introduce non- negligible
uncertainties in the lidar inversions. In addition, radiosoundings are usually quite expen-
sive and typically they are launched two times per day, whereas, because lidar systems
can operate 24/7, a more frequent sounding schedule would be preferable (e.g., hourly).
Moreover, radiosoundings do not provide an exact vertical temperature and pressure
profile above a station as they drift horizontally while ascending. For these reasons, the
number density profiles to be used for input in lidar retrievals can also be obtained from
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temperature and pressure profiles provided by global atmospheric models (forecasts or
reanalysis). The advantages with respect to radiosoundings are the increase in the temporal
and spatial coverage, together with the verticality of the profiles provided. Furthermore, as
forecasts or reanalysis models ingest all available radiosouding data, the accuracy of the
provided temperature and pressure profiles is expected to be good enough to not impact
too much on aerosol retrievals. However, different models are characterized by different
accuracies, and the temporal resolution and spatial grid can be quite different. Reanalysis
data are considered to be more accurate because they can ingest more observational data;
however, reanalysis is usually made available after 1–2 months and, consequently, they
cannot be used for the inversion of lidar observations in near-real-time. This limitation can
be overcome by using model forecast data, which are made available in advance at the
price of a lower accuracy.

To have a deeper understanding of the impact of using different forecast and reanalysis
models on the EARLINET optical products, and to assess the corresponding uncertainties,
the lidar data measured during the ACTRIS COVID-19 measurement campaign [33], and
the EARLINET 72-h continuous observation campaign [26,34] were chosen. The results
retrieved from two different atmospheric forecast models were analyzed: the Integrated
Forecasting System operated by the European Centre for Medium-Range Weather Forecasts
(IFS_ECMWF) and the Global Data Assimilation System (GDAS) produced by the US
National Center for Environmental Prediction (NCEP), and these were compared with the
results retrieved from the Atmospheric data from the fifth generation European Centre
for Medium-Range Weather Forecasts ReAnalysis v5 (ERA5) model. Moreover, both the
aerosol extinction and backscatter coefficients obtained from the Raman method [21,22]
and the elastic backscatter coefficient retrieved from the iterative method [18,19] were
analyzed to see the influence of different atmospheric models on the different lidar retrieval
algorithms. The results of the Klett–Fernald method are quite similar to those of the iterative
method, and they will not be discussed in this study. From now on, we refer to the iterative
backscatter as elastic backscatter.

The paper is organized as follows. In Section 2, a description of the datasets used is
presented. Section 3 describes the methodologies and the retrieval algorithms by using
numerical molecular density profiles coming from different models. Section 4 provides the
results in terms of deviations of both aerosol extinction coefficients from the Raman method
and aerosol backscatter coefficients from the Raman and elastic methods, respectively.
Further discussion of the results is provided in Section 5. Finally, the conclusions are given
in Section 6.

2. Datasets
2.1. Lidar Measurements

The current study mainly relies on lidar measurements performed by the multi-
wavelength Raman lidar systems operated by CNR-IMAA (Potenza, Italy), TROPOS
(Leipzig, Germany), the University of Évora (Évora, Portugal), and the University of
Lille (Lille, France). The basic information about the lidar systems considered in this work
is summarized in Table 1.
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Table 1. Basic information (including the availability of each optical channel) of EARLINET Lidar
Systems operated by CNR-IMAA (Potenza, Italy), TROPOS (Leipzig, Germany), the University of
Évora (Evora Portugal), and the University of Lille (Lille, France).

Lidar Name Elastic Channel (nm) Raman Channel (nm) Institution Coordinates
(Latitude/Longitude)

Altitude
(m)355 532 1064 387 607 530

MUSA
√ √ 1 √ √ √

CNR-IMAA,
Potenza, Italy 40.6000◦N, 15.7200◦E 760

LR111-D200
√ 1 √

PollyXT √ 1 √ 1 √ √ √ TROPOS,
Leipzig, Germany 51.3500◦N, 12.4330◦E 125

PAOLI
√ √ √ √ √ Universidade de Évora,

Portugal 38.5678◦N, −7.9115◦E 290

LILAS
√ 1 √ 1 √ 1 √ √

Université de Lille, France 50.6117◦N,
3.1417◦E 60

1 The elastic signals were obtained from the corresponding two polarization channels signals.

All stations considered belong to EARLINET, which is part of ACTRIS (Aerosols,
Clouds and Trace gases Research Infrastructure) [26]. To evaluate the impact of the at-
mospheric molecular density calculated using different model data on the lidar optical
retrievals, the same algorithms have been applied to the same pre-processed data. Con-
sequently, any deviation in the optical products can be due only to the differences in the
assumed atmospheric molecular density. All pre-processed data used in this study have
been calculated with ELPP (EARLINET Lidar Pre-Processor), which is the SCC module
responsible for the pre-processing of raw lidar data. ELPP products are range corrected
signal time-series adjusted for several instrumental effects such as dead-time correction, at-
mospheric and electronic background subtraction, gluing of lidar signals, and trigger-delay
correction. All ELPP products are computed in accordance with the EARLINET quality
assurance program [31].

All lidar observations included in this study were measured during two intensive
measurement campaigns: the ACTRIS COVID-19 measurement campaign (https://www.
earlinet.org/index.php?id=covid-19, accessed on 1 November 2020), performed from 1
to 31 May 2020, during the COVID-19 lockdown period, and the EARLINET 72-h con-
tinuous observation campaign (https://www.earlinet.org/index.php?id=276, accessed
on 1 November 2020), performed in the period 9–12 July 2012 [26,34]. The number of
EARLINET stations involved in these two campaigns was 21 for the ACTRIS COVID-19
campaign and 11 for the EARLINET 72 h continuous observation campaign. Among these
stations, four (Potenza, Leipzig, Lille, Evora) were selected according to the following
criteria. First, the station should have enough data available. During the measurement
campaign period, some stations could not perform measurements due to bad weather
conditions (rain or very low clouds), instrument setting and check-ups, lockdown, and lack
of an operator. Secondly, the atmospheric conditions should be representative of all the
possible scenarios in terms of aerosol load. In particular, conditions characterized by both
high and low aerosol load allow for a better assessment of the influence of the aerosol load
in the final results.

Whenever it was possible, at least one daytime and one nighttime case per station were
selected for each measurement day. All optical products have been calculated considering
at least 30 min of consecutive lidar measurements under stable atmospheric conditions.
Daytime and nighttime cases can help in studying the influence of the different atmospheric
models on the different lidar retrieval types (Raman or elastic).

2.2. ERA5_Reanalysis Atmospheric Model from ECMWF

As mentioned earlier, when retrieving aerosol optical products, the molecular number
density profiles are required as an input parameter. The fifth-generation ECMWF atmo-
spheric reanalysis system (ERA5) is one possible source for computing this parameter by
using the corresponding temperature and pressure vertical profiles.

https://www.earlinet.org/index.php?id=covid-19
https://www.earlinet.org/index.php?id=covid-19
https://www.earlinet.org/index.php?id=276
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ERA5 is the latest climate reanalysis product of the ECMWF (European Centre for
Medium-Range Weather Forecasts) providing (among other variables) hourly atmospheric
temperature and pressure in 137 vertical model levels starting from the Earth surface.
Geographically, ERA5 covers the whole globe with a grid resolution of about 0.25◦ × 0.25◦.
The time availability is from 1979 to the present [35,36]. Compared to ERA-Interim, which
uses IFS cycle 31r1, ERA5 is improved by using a new development version of ECMWF’s
modelling and data assimilation system (IFS cycle 41R2) and ingests information from a
substantially larger volume of improved observations. Significant improvements have
been observed in this high-quality reanalysis of the atmospheric dynamics of the tropo-
sphere. More details about ERA5 development can be found in [36]. Currently, ERA5 is
replacing the widely-used ERA-Interim, and it is publicly available through the Coperni-
cus Climate Data Store (CDS, https://cds.climate.copernicus.eu/#!/home, accessed on
1 November 2020).

2.3. IFS_ Forecast Atmospheric Model from ECMWF

One of the atmospheric forecast models used in this study is the Integrated Forecasting
System (IFS), operated by the European Centre for Medium-Range Weather Forecasts
(ECMWF) in the framework of the Copernicus Atmospheric Monitoring Services (CAMS).

The IFS is a numerical weather prediction (NWP) model providing operational weather
forecasts [37], and it couples a general circulation model with a 4D-variational assimilation
system. The assimilation of a wide range of in situ, ground-based and satellite data
ensures a good representation of the current state of the atmosphere as the basis for the
predictions [38]. In this study, the IFS_ECMWF model cycle 43R1 is used for the data from
the EARLINET 72-h continuous observation campaign, and model cycle 46R1 is used for
the data from the ACTRIS COVID-19 measurement campaign. The vertical resolution of
the two models is different as the number of vertical levels (altitudes up to 80 km) were
increased from 91 in model cycle 43R1 to 137 vertical levels in model cycle 46R1. The IFS
data used in this study refer to forecast initialized between 12 and 35 h back in time. General
aspects of the IFS and how they relate to atmospheric composition modelling are described
in [39]; a more detailed technical and scientific documentation of these IFS_ECMWF models
can be found at https://www.ecmwf.int/en/publications/search/?solrsort=sort_label%20
asc&secondary_title=%22IFS%20Documentation%20CY43R1%22, accessed on 1 November
2020 and https://www.ecmwf.int/en/publications/search/?solrsort=sort_label%20asc&
secondary_title=%22IFS%20Documentation%20CY46R1%22, accessed on 1 November 2020.

2.4. GDAS_ Forecast Atmospheric Model from NOAA

The other atmospheric forecast model considered in this study is the Global Data
Assimilation System (GDAS), which is an atmospheric model developed by the NOAA’s
National Center for Environmental Prediction (NCEP). The numerical weather prediction
model used in the GDAS is the Global Forecast System (GFS).

GDAS is a tool to study a realistic atmosphere, and it provides an analysis four times a
day (0, 6, 12, and 18 UTC) together with a 3-, 6-, and 9-h forecast based on the interpolation
of the meteorological measurements from across the globe, including weather stations on
land, ships, and aircraft, and radiosondes and meteorological satellites. The three-hourly
data are available at 23 constant pressure levels, from 1000 hPa (roughly sea level) to 20 hPa
(≈26 km) on a global 1◦ spaced latitude–longitude grid. Each dataset is complemented by
data for the surface level [40]. The data are stored in weekly files and made available online.
GDAS data are available through NCEI’s NOAA National Operational Model Archive and
Distribution System (NOMADS).

In particular, the EARLINET SCC takes IFS_ECMWF, GDAS, and ERA5 model data
from the Cloudnet data portal [41], ensuring a high degree of standardization in the calcu-
lation of the molecular atmosphere across all EARLINET stations. However, the availability
of model data is not the same for all EARLINET stations. GDAS data are made available
for all EARLINET stations, while IFS_ECMWF and ERA5 data are currently available

https://cds.climate.copernicus.eu/#!/home
https://www.ecmwf.int/en/publications/search/?solrsort=sort_label%20asc&secondary_title=%22IFS%20Documentation%20CY43R1%22
https://www.ecmwf.int/en/publications/search/?solrsort=sort_label%20asc&secondary_title=%22IFS%20Documentation%20CY43R1%22
https://www.ecmwf.int/en/publications/search/?solrsort=sort_label%20asc&secondary_title=%22IFS%20Documentation%20CY46R1%22
https://www.ecmwf.int/en/publications/search/?solrsort=sort_label%20asc&secondary_title=%22IFS%20Documentation%20CY46R1%22
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only for EARLINET stations that belong to both EARLINET and Cloudnet networks. The
time availability is also not the same, as usually forecasts are made available before the
re-analysis. Accordingly, the following priority is implemented in acquiring model data
from Cloudnet:

1. ERA5. This is the first choice as, in general, model re-analyses are expected to be more
accurate than forecasts.

2. IFS_ECMWF. For all cases where ERA5 model data are not available (because they
are missing for the specific EARLINET station or because they are not yet made
available), ECMWF NWP is considered the best alternative, especially for EARLINET
NRT data processing.

3. GDAS. If neither ERA5 nor IFS_ECMWF are available, the GDAS model data are used.
Typically, this option is used to process the lidar data measured by EARLINET stations
not belonging to Cloudnet.

The main focus of this paper is to assess the impact of using GDAS and IFS_ECMWF
forecasts instead of ERA5 reanalysis in retrieving aerosol optical products from lidar
observations. To achieve this, we considered two EARLINET-Cloudnet stations (Potenza
and Leipzig) for which IFS_ECMWF are available and two EARLINET only stations (Evora
and Lille), where only GDAS forecasts are available. The basic information concerning the
three models described above is listed in Table 2. Here, we should note that the temperature
and pressure data provided by ERA5, IFS_ECMWF and GDAS are calculated on vertical
levels, which are different with respect to the vertical level characterizing the lidar profiles.
Therefore, a linear interpolation of model data is used to obtain atmospheric temperature
and pressure profiles at the same lidar vertical scale. It is necessary to use two versions of
the IFS_ECMWF models because the operational system is routinely upgraded over time
with little or no overlap between model versions, hence data from 2012 were processed
using an older IFS_ECMWF model version (cycle 43R1) than for 2020 (cycle 46R1).

Table 2. Description of ERA5, ECMWF, and GDAS meteorology data.

Dataset Horizontal Resolution Vertical Pressure Levels Time Resolution

ERA5 ~31 km 137 vertical levels from the surface to 0.02 hPa 1 h
IFS_ECMWF 1 ~9 km 137 vertical levels from the surface to 0.01 hPa 1 h
IFS_ECMWF 2 ~16 km 91 vertical levels from the surface to 0.01 hPa 1 h

GDAS ~70.7 km 23 vertical levels from the surface to 20 hPa 3 h
1 IFS_ECMWF (cycle 46R1) model used for the LR111-D200 and PollyXT systems. 2 IFS_ECMWF (cycle 43R1)
model used for the MUSA system.

3. Methodology

The measurement of the elastic backscatter signal together with the corresponding
nitrogen Raman backscatter signal allows the determination of the extinction and backscat-
ter coefficients independently. Typically, Raman measurements are available only during
nighttime conditions where the absence of solar background allows the detection of Raman
backscattered signal with enough signal to noise ratio (SNR).

The lidar equations for the elastic backscatter and Raman backscatter signals can be
written as:

PL(z) = KLOL(z)
βλ0

mol(z) + βλ0
aer(z)

z2 exp
{
−2
∫ z

0
αλ0(ζ)dζ

}
(1)

PR(z) = KROR(z)
βR(z)

z2 exp
{
−
∫ z

0

[
αλ0(ζ) + αλR(ζ)

]
dζ

}
(2)

where PL(z) and PR(z) are the powers received from distance, z, at the laser wavelength,
λ0, and at the Raman wavelength, λR, respectively. KL and KR contain all the range-
independent system parameters. OL(z) and OR(z) are the elastic-backscatter signal channel
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and Raman backscatter signal channel overlap functions, respectively. βλ0
mol(z) and

βλ0
aer(z) are the backscatter coefficients that are due to Rayleigh and aerosol scattering.

βR(z) = NR(z)σR(z) is the Raman backscatter coefficient, where NR(z) is the atmospheric
number density of the Raman scattered and σR(z) is the Raman backscatter cross section.
The coefficients αλ0 and αλR describe the range-dependent molecular and aerosol total
extinction at wavelengths λ0 and λR, ζ is the range integration variable.

The aerosol extinction coefficient at the emitted laser wavelength can be obtained from
the nitrogen Raman signal by solving Equation (2) as [21]:

αλ0
aer(z) =

d
dz ln

[
NR(z)

PR(z)z2

]
− αλ0

mol(z)− αλR
mol(z)

1 + (λ0/λR)
k (3)

where aerosol scattering is assumed to be proportional to λ−k, and full overlap is assumed at
all altitudes where aerosol extinction is calculated. For aerosol with diameters comparable
with the measurement wavelength, k = 1 is appropriate [22].

The aerosol backscatter coefficient βλ0
aer can be determined with the ratio of the elastic

and Raman backscattered signals, and the resulting equation is as follows [22,42,43]:

βλ0
aer(z) = −βλ0

mol(z) + CβλR
mol(z)

PL(z)
PR(z)

exp
(
−
∫ z

0 αλR(ζ)dζ
)

exp
(
−
∫ z

0 αλ0(ζ)dζ
) (4)

where C is a constant that depends on instrumental and geometrical system properties
and is retrieved by normalizing lidar signal at a reference height, z0, that is aerosol free∣∣βλ0

aer(z0) ∼= 0
∣∣ or with a well-known value of the backscatter coefficient, and OL(z) = OR(z)

is assumed.
As already mentioned, Raman lidar measurements are usually limited to nighttime

because the weak inelastic backscatter signal can be detected only in the absence of a
strong solar background. Consequently, usually only the elastic-backscatter signal can be
used in daytime observations. As the elastic-backscatter equation contains two unknowns
(aerosol extinction and backscatter), its inversion requires an assumption on the lidar ratio
(i.e., extinction to backscatter ratio). In this study, the iterative method [18,19] has been
used to retrieve the aerosol backscatter in all cases where Raman measurements are not
available. Besides all daytime observations, this condition also happens for nighttime
measurements at 1064 nm, where there are no Raman signals available.

Both Raman and elastic methods require atmospheric molecular number density
profiles, which are obtained from temperature and pressure profiles. As mentioned above,
these two parameters can be obtained from either radiosonde measurements or models. In
this study, we retrieved two different sets of aerosol optical products (aerosol extinction and
backscatter coefficients): one calculated using forecasts (IFS_ECMWF or GDAS) as the input
model and one using the reanalysis (ERA5). Finally, the corresponding measurements of
these two datasets are compared to evaluate the impact of the model data in the considered
lidar retrievals. The only difference in the processing of these two datasets is the different
models used to compute molecular density profiles. All other processing parameters such
as input pre-processed data, sliding linear fit points in the aerosol extinction inversion
procedure, and calibration height in the aerosol backscatter inversion are the same.

As mentioned above, for EARLINET stations, realizing the near-real-time lidar ob-
servations requires the use of the forecast model in the SCC, instead of reanalysis or
radiosounding data. Based on this, we assess how the two different models (forecast
and reanalysis) influence the aerosol optical products in order to understand whether the
forecast model can be used to realize near-real-time lidar observations with high accuracy.
So, the dataset composed of all aerosol optical products retrieved using forecast models
is considered as a reference to which the other dataset is compared with. Point-by-point
deviations, as well as mean deviations within fixed height ranges, are used to assess the
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deviations of the aerosol optical products retrieved with forecast atmospheric models from
IFS_ECMWF and GDAS.

Indicating with XF(zi, λ) and XR(zi, λ) the coefficients at wavelength λ (either aerosol
extinction or backscatter coefficient), retrieved from forecast and reanalysis atmospheric
models, respectively (from now on, F-coefficient and R-coefficient, respectively), the relative
deviation of the R-coefficient XR(zi, λ) from the F-coefficient XF(zi, λ) is calculated for each
individual height zi as:

∆X(zi, λ) =
XR(zi, λ)− XF(zi, λ)

XF(zi, λ)
·100% (5)

The mean relative deviation of the R-coefficient from the F-coefficient over a height
range ∆z = zM − zN , where zM and zN are the heights corresponding to the M-th and N-th
bins of the lidar signal, respectively, is defined as:

∆X(∆z, λ) =

M
∑

i=N
∆X(zi, λ)

M− N + 1
(6)

The mean relative deviation is used to assess the quality of aerosol optical products
retrieved using different atmospheric models.

Finally, the standard deviation of the mean relative deviation is calculated as:

δ∆X(∆z, λ) =


M
∑

i=N

[
∆X(zi, λ)− ∆X(∆z, λ)

]2
(M− N + 1)(M− N)


1/2

(7)

To ensure the reliability of the results, some additional quality criteria were fixed
in advance:

1. Consider only lidar signals in the full overlap region. The point which does not
belong to the full overlap region will be removed to exclude the influence of the
overlap function.

2. The signal-to-noise ratio of the optical products (either aerosol extinction or backscatter
coefficient) is above the defined threshold. We set the threshold as 5 in this study, i.e.,
SNR > 5. The signal-to-noise ratio is calculated as:

SNRX(zi, λ) =
X(zi, λ)

δX(zi, λ)
(8)

where X(zi, λ) and δX(zi, λ) are the optical products at wavelength λ and the corre-
sponding statistical error, respectively. It should be noted that a Monte Carlo technique
was used to obtain the statistical error of the products, no matter whether the Raman
or the elastic method was used [32].

3. The values of the optical products should be well above the minimum value mea-
surable by the lidar. We assume that for all the lidar considered, this condition is
verified if αmin > 3 ∗

(
5 ∗ 10−6)m−1 and βmin > 3 ∗

(
1 ∗ 10−7)m−1 sr−1. These values

represent the technique detection limits that come from the climatological studies
performed at different measurement sites. This criterion is used to exclude the values
that fulfil the condition SNR > 5 but that are close to the instrumental detection limit.

To study whether or not the atmospheric aerosol load can affect the deviation of optical
products, the aerosol load level is estimated through the relation:

IX =
∫ Aerosol− f ree−region

Ground
X(ξ)dξ (9)
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where X is the aerosol optical coefficient (either aerosol extinction or backscatter coefficient).
During the nighttime, the aerosol extinction coefficient at wavelengths of 355 nm and

532 nm can be retrieved by the Raman method, and the aerosol load level can be calculated
by integrating the aerosol extinction profile from the ground to the aerosol-free region,
obtaining the aerosol optical depth (AOD). For the situation in which the aerosol backscatter
coefficient can be obtained only from the elastic method at 355 nm, 532 nm, and 1064 nm,
the aerosol load level is calculated by integrating the backscatter coefficient profile from the
surface to the aerosol-free region, and we refer to this quantity as the integrated backscatter
(IB). The influence of the incomplete overlap on the extinction and elastic backscatter can
be taken into account by assuming a well-mixed layer (and so, constant values for these
two parameters) extending from the ground up to the lowest full overlap altitude.

4. Results

For the assessment of the influence of different atmospheric models on the lidar
retrieval of aerosol extinction and backscatter coefficients, 260 cases (day and night together)
were selected from the four EARLINET stations. Such cases were selected on the basis of
the three criteria mentioned in the previous section and taking into account atmospheric
stability. Not all aerosol optical products at different wavelengths can fulfil the criteria in
every individual case, so the number of actual selected cases, grouped by lidar system and
by retrieval algorithm, is shown in Table 3.

Table 3. Number of considered cases grouped by lidar system and by the retrieval algorithm.

Lidar Name
Raman Method Elastic Method

355 nm 532 nm 355 nm 532 nm 1064 nm

αλ0
aer βλ0

aer αλ0
aer βλ0

aer βλ0
aer βλ0

aer βλ0
aer

MUSA 8 8 8 8 9 9 17

LR111-D200 9 12 − − 11 − −

PollyXT 28 30 21 31 21 21 42

PAOLI 21 42 34 42 49 59 87

LILAS 40 30 40 33 20 26 37

Total 106 122 103 114 110 115 183

4.1. Deviation of Aerosol Extinction Coefficients

In Figure 1, the mean relative deviations of aerosol extinction at 355 nm for all four
stations, are shown. In particular, blue and red dots represent the mean relative deviation of
aerosol extinction and atmospheric molecular number density, respectively, when forecast
or reanalysis are considered, whereas the deviations are referred to the values calculated
with ERA5 from the values calculated with forecast (IFS_ECMWF or GDAS). It is important
to underline that the mean relative deviation on aerosol extinction can vary widely and
even reaches a maximum value of about 20%, while the corresponding mean relative
deviation of molecular number density changes minutely and is always within ±3% no
matter whether we are comparing IFS_ECMWF vs. ERA5 or GDAS vs. ERA5.
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Figure 1. Mean relative deviations of extinction at 355 nm for the four stations, where the deviation
refers to the difference between the values calculated with ERA5 to the values calculated with the
forecast (IFS_ECMWF or GDAS). Blue and red dots represent the mean relative deviation of aerosol
extinction and molecular number density, respectively. The Date axis is not linear in time. It reports
the dates (just one after the other) corresponding to the performed optical inversions. For example,
for MUSA system (upper plot on the left) there is only one optical inversion available for 10 July 2012
and three for 11 July 2012.

In Figure 2, the mean relative deviation of extinction and molecular number density
at 532 nm for all four stations are shown. The results are very similar to those found for
the extinction at 355 nm. The maximum value of the deviation of extinction at 532 nm is
around 20%, and the mean deviation for all cases is around 5%. For all cases, the mean
relative deviation of molecular number density is always within ±3%.
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Considering the results in Figures 1 and 2, we can conclude that the use of different
atmospheric model data (forecasts and reanalysis) when retrieving aerosol extinction
coefficients with the Raman method can lead to large deviations in the results. As we will
see, the deviations in molecular number density calculated using pressure and temperature
profiles from different atmospheric models are not the main reason for the large deviation
of the aerosol extinction coefficient.

4.2. Deviation of Aerosol Backscatter Coefficients Retrieved with the Raman Method

The mean relative deviation of aerosol backscatter coefficient at 355 nm is shown in
Figure 3 for all cases, whereas the deviations are referred to the values calculated with
ERA5 from the values calculated with forecast (IFS_ECMWF or GDAS). Blue and red
dots represent the mean relative deviation of backscatter and molecular number density,
respectively. Same as Figure 3, the results at 532 nm are shown in Figure 4. The aerosol
backscatter coefficient is determined from the ratio of the elastic to the inelastic nitrogen
Raman signal by using Equation (4).
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Figure 3. Mean relative deviations of Raman backscatter at 355 nm for the four stations, where the
deviation refers to the difference between the values calculated with ERA5 to the values calculated
with the forecast (IFS_ECMWF or GDAS). Blue and red dots represent the mean relative deviation of
aerosol backscatter and molecular number density, respectively. The Date axis is not linear in time. It
reports the dates (just one after the other) corresponding to the performed optical inversions. For
example, for MUSA system (upper plot on the left) there is only one optical inversion available for
10 July 2012 and three for 11 July 2012.



Remote Sens. 2022, 14, 2342 12 of 27Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 28 
 

 

 
Figure 4. Same as Figure 3, but for 532 nm. 

4.3. Deviation of Aerosol Backscatter Coefficient Retrieved with the Elastic Method 
It is not always possible to perform Raman lidar measurements. For instance, during 

the daytime, the solar background can drastically reduce the SNR ratio of the Raman sig-
nals, making them too noisy for the retrieval of the aerosol extinction profile. Moreover, 
the infrared region is quite challenging for detection in photon counting mode and conse-
quently in this spectral region only the elastically backscattered signal is generally meas-
ured by the lidar. In all cases in which Raman signals are not available, it is possible to 
retrieve the aerosol backscatter profile using only elastic-backscatter signals. The most 
common algorithms used for this type of retrieval are the Klett–Fernald and iterative 
methods. In this study, we are concerned with investigating the influence of the use of 
different atmospheric models on the aerosol backscatter coefficient retrieved using the 
iterative method. We have found that the influence of the usage of different atmospheric 
models on the aerosol backscatter coefficient retrieved using Klett–Fernald and iterative 
methods are quite similar, so we refer to the iterative backscatter as elastic backscatter in 
this paper. In Figure 5, the mean relative deviation of the elastic backscatter coefficient at 
355 nm is shown, with the mean relative deviation at 532 nm given in Figure 6 and at 1064 
nm in Figure 7. 

The mean relative deviation of backscatter at 355 nm, which is represented by blue 
dots, and the corresponding mean relative deviation of molecular number density, repre-
sented by red dots, are shown in Figure 5, where the deviation is expressed as the differ-
ence between the values calculated with ERA5 to the values calculated with the forecast 
(IFS_ECMWF or GDAS). The deviation of molecular number density is within ±3% , 
while the deviation of backscatter is on average 2.6% with a maximum value of about 11%, 

Figure 4. Same as Figure 3, but for 532 nm.

From Figures 3 and 4 we can find that the mean relative deviation of the Raman
backscatter is always within±3%, both at 355 nm and 532 nm. In general, the mean relative
deviation of backscatter can follow the mean relative deviation of molecular number density
better at 532 nm than at 355 nm. In addition, comparing the results from the extinction and
Raman backscatter, the mean relative deviation of the Raman backscatter is smaller and
stable, which means that the different atmospheric models can have less influence on the
backscatter obtained from the Raman method than the extinction.

4.3. Deviation of Aerosol Backscatter Coefficient Retrieved with the Elastic Method

It is not always possible to perform Raman lidar measurements. For instance, during
the daytime, the solar background can drastically reduce the SNR ratio of the Raman
signals, making them too noisy for the retrieval of the aerosol extinction profile. More-
over, the infrared region is quite challenging for detection in photon counting mode and
consequently in this spectral region only the elastically backscattered signal is generally
measured by the lidar. In all cases in which Raman signals are not available, it is possi-
ble to retrieve the aerosol backscatter profile using only elastic-backscatter signals. The
most common algorithms used for this type of retrieval are the Klett–Fernald and iterative
methods. In this study, we are concerned with investigating the influence of the use of
different atmospheric models on the aerosol backscatter coefficient retrieved using the
iterative method. We have found that the influence of the usage of different atmospheric
models on the aerosol backscatter coefficient retrieved using Klett–Fernald and iterative
methods are quite similar, so we refer to the iterative backscatter as elastic backscatter in
this paper. In Figure 5, the mean relative deviation of the elastic backscatter coefficient at
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355 nm is shown, with the mean relative deviation at 532 nm given in Figure 6 and at 1064
nm in Figure 7.
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Figure 5. The mean relative deviations of elastic backscatter at 355 nm for all the four stations,
whereas the deviation refers to the difference between the values calculated with ERA5 to the values
calculated with forecast (IFS_ECMWF or GDAS). Blue and red dots represent the mean relative
deviation of aerosol backscatter and molecular number density, respectively. The Date axis is not
linear in time. It reports the dates (just one after the other) corresponding to the performed optical
inversions. For example, for MUSA system (upper plot on the left) there are five optical inversions
available for 9 July 2012 and two for 10 July 2012.

The mean relative deviation of backscatter at 355 nm, which is represented by blue dots,
and the corresponding mean relative deviation of molecular number density, represented by
red dots, are shown in Figure 5, where the deviation is expressed as the difference between
the values calculated with ERA5 to the values calculated with the forecast (IFS_ECMWF or
GDAS). The deviation of molecular number density is within ±3%, while the deviation
of backscatter is on average 2.6% with a maximum value of about 11%, corresponding to
one case of Evora station for which the corresponding mean relative deviation of molecular
number density is only −1.7%.

For the elastic backscatter coefficient at 532 nm, the mean relative deviation is within
±5% (see Figure 6). The maximum deviation of backscatter is 4.8%, corresponding to an
observation made by the Lille station for which the deviation in the molecular number
density is 0.2%.
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Finally, the mean relative deviation of backscatter at 1064 nm is shown in Figure 7, both
for nighttime and daytime conditions. Differently from the other lidar wavelengths, Raman
measurements are not available at 1064 nm in both nighttime and daytime conditions. The
deviations of backscatter at 1064 nm for all cases are within ±3%, and, if compared with
the results at 355 nm and 532 nm, are the smallest.

5. Discussion
5.1. Aerosol Extinction

According to the results shown in Section 4, the deviation from the forecast model
to reanalysis data is, in general, larger for the aerosol extinction coefficient obtained from
the Raman method, compared to the backscatter coefficient obtained by either the Raman
method or the elastic method. Such considerable deviation in aerosol extinction is not
correlated with any specific conditions of the atmospheric aerosol load. This can be clearly
seen by looking at Figure 8a, showing an almost independent mean relative deviation of
extinction with respect to the corresponding aerosol load (expressed in terms of AOD) for
all the 106 cases considered at 355 nm.
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Figure 8. (a) The relationship between the mean relative deviation of extinction and aerosol load; (b)
The relationship between the mean relative deviation of extinction and the mean relative deviation of
the gradient of molecular number density; (c) The relationship between the mean absolute deviation
of the molecular number density gradient and the mean absolute deviation of the temperature
gradient. The red lines shown in the subfigure indicate the linear fit curve, of which the equations are
also reported, being x and y the variables of the axes.

To understand the reasons for the observed deviations in the aerosol extinction, it
should be noted that in Equation (3) there is a term containing the first derivative of the
quantity ln

[
NR(z)/(PR(z)z2)]. This means that the extinction retrieval can be affected not

only by absolute differences of the numerical molecular density but also by the difference
in terms of the gradient of the profile NR(z). Consequently, it is possible to observe large
deviations in the extinction retrieved from two molecular density profiles very similar
in terms of absolute values but different in terms of the corresponding gradients. In
Figure 8b, the mean relative deviation of the aerosol extinction at 355 nm is reported as a
function of the mean relative deviation of the molecular number density gradient. This
gradient has been calculated by applying the same sliding linear fit used to compute the
extinction profile. There is an obvious relationship between the mean relative deviation of
the molecular number density gradient and the mean relative deviation of extinction. In
particular, as expected, the deviations on the extinction profile decrease if the differences in



Remote Sens. 2022, 14, 2342 16 of 27

the gradient of molecular number density decrease. As mentioned earlier, the molecular
number density is obtained from model pressure and temperature profiles. Typically, the
atmospheric temperature can show higher variability in both time and space than the
atmospheric pressure. So, in general, it is expected that deviations in the molecular density
are mainly due to differences in temperature between forecasts and reanalysis. Figure 8c
confirms this hypothesis showing a clear correlation between differences in temperature
gradient and the corresponding differences in the molecular density gradients. For example,
we report in Figure 9 the temperature profiles (red lines) and temperature gradients (blue
lines) obtained from the forecast and the reanalysis corresponding to the two cases in
which the deviations in the aerosol extinction shown in Figure 1 are the highest and the
lowest. The triangle and round shape represent the data from the GDAS and ERA5 models,
respectively. In Figure 9, the region labelled as “comparison area”, representing the data
range used to calculate the deviations and the corresponding temperature from different
models, are shown. In these two cases, looking at Figure 9a, it is evident that there are large
differences in the temperature gradients (which are responsible for the highest deviation in
the aerosol extinction), even if the absolute values of the temperature are quite similar. On
the other hand, the temperature profiles shown in Figure 9b have similar gradients, but
quite different absolute values. Despite this variation in absolute values, the corresponding
extinction profiles show the lowest deviation (0.002%). In conclusion, we can say that the
temperature gradient used to compute the atmospheric molecular number density can play
an important role in aerosol extinction retrieval [22]. In general, forecasts (IFS_ECMWF
and GDAS) and reanalysis (ERA5) can provide temperature profiles that locally could have
non-negligible differences in gradients. Even if the highest deviation case does not seem to
happen often (only 1.9% of the cases considered in this study), it is not possible to exclude
a-priori large deviations (20% in this study in the worst case) on aerosol extinction at
355 nm. Furthermore, for the aerosol extinction at 532 nm, we have obtained overall results
(not reported here) quite similar to the ones at 355 nm reported in Figure 8b,c. Differently
from the extinction at 355 nm, there is a weak dependence of the extinction mean relative
deviations on the aerosol load at 532 nm. In particular, high aerosol loads tend to provide a
smaller deviation in the extinction at 532 nm. This behavior can be explained considering
that usually the nitrogen Raman signal at 607 nm is characterized by a lower SNR with
respect to the nitrogen Raman signal at 387 nm. Consequently, the extinction retrieval at
532 nm is less stable in the presence of low aerosol load. In addition, as discussed later, we
do not find a clear dependence of the Raman backscatter deviations from the aerosol load,
at both 355 nm and 532 nm.

Figure 10 shows the frequency distributions of the mean relative deviation of extinction
at 355 nm and 532 nm. To investigate whether there are differences in using IFS_ECMWF
and GDAS forecasts, separate comparisons of the two forecasts with the corresponding
ERA5 model data have been performed and are provided. As mentioned earlier, the
IFS_ECMWF data are used for the Potenza and Leipzig stations, while GDAS data are used
for the Evora and Lille stations. Figure 10a reports the frequency distribution of the mean
relative deviation of extinction at 355 nm from all 106 cases. The center of the distribution
is about 3%, and around 83% of cases are located at the mean relative deviation of the
extinction within ±5%. The cases in which deviation of extinction is above ±10% are only
8, corresponding to 7.5% of the total cases. Assuming that ±5% is acceptable for the mean
relative deviation of extinction, we can conclude that there is a quite high probability (larger
than 80%) to be within this limit in retrieving aerosol extinction profile at 355 nm when
forecasts (both IFS_ECMWF and GDAS) are used instead of the reanalysis. The frequency
distribution of the mean relative deviation of extinction at 532 nm for all four stations is
shown in Figure 10d. Here we can see that the center of the distribution is around 5%.
Differently from the results at 355 nm, around 60% of the 103 total cases are within the limit
of ±5% of mean relative deviations, and there are 19 cases (corresponding to a probability
of around 20%), for which the deviation of the extinction is above ±10%. This means that,
in general, the usage of the forecasts instead of reanalysis is more critical for the retrieval of
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the aerosol extinction at 532 nm with respect to what we have found for aerosol extinction
at 355 nm.
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Figure 9. (a) The temperature profiles from Lille: 08 May 2020 21:00 UTC corresponding to the case
with the highest deviation of the aerosol extinction shown in Figure 1; (b) The temperature profiles
from Evora: 28 May 2020 21:00 UTC corresponding to the case with the lowest deviation of the aerosol
extinction shown in Figure 1. Red lines indicate the temperature profiles and blue lines indicate the
temperature gradients. The triangle and round shape represent the data from the GDAS and ERA5
models, respectively. The ‘comparison area’ represents the data range used to calculate the deviation,
and the S values represent the gradient of the linear fit line of the temperature in the ‘comparison
area’ from different models.
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Table 4. The mean value of the mean relative deviation of extinction and mean relative deviation of 
molecular number density and the mean relative deviation of the gradient in molecular number 
density and mean aerosol load at 355 and 532 nm. 

Lidar Name 
355 nm 532 nm 

M_DA 1 
(%) 

M_DNA 2 
(%)  

M_SNA 3 
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Figure 10. The frequency distributions of the mean relative deviation of extinction from all the cases
at 355 nm and 532 nm (a,d), together with IFS_ECMWF vs. ERA5 (for Potenza and Leipzig stations)
at two wavelengths (b,e) and GDAS vs. ERA5 (for Evora and Lille stations) at two wavelengths (c,f).
The dotted line shown in the subfigure is the Gaussian fitting curve.

For aerosol extinction at 355 nm, the mean value of the deviation’s distribution is
about 3%, regardless of whether IFS_ECMWF or GDAS models are used (see Figure 10b,c).
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Around 90% of cases show extinction mean relative deviations below±5%, and no cases are
found in the large deviation area (> ±10%) when IFS_ECMWF model data are considered
(Potenza and Leipzig stations). For Evora and Lille stations, for which the GDAS model
is used, around 77% of all the 61 cases are within the limit of ±5%, and there are 8 cases
(around 13%) for which the deviation of extinction is above ±10%. In particular, there is
only one case for which the mean relative deviation of extinction exceeds 20%.

In Figure 10e,f, the frequency distributions of the mean relative deviation of extinction
from two different forecast models at 532 nm are shown. The center of the distributions is
about 5%, no matter whether the IFS_ECMWF or the GDAS model is used. Specifically,
there is a probability of 62.1% and 56.8% to be within in the acceptable area (±5%) for the
IFS_ECMWF or the GDAS model, respectively. As for the large deviation area (> ±10%),
the probability is 10.3% and 21.6%, respectively.

Based on these results, we can conclude that the usage of IFS_ECMWF provides, in
general, the smallest deviations on the extinction retrieval with respect to the case in which
ERA5 is considered at both lidar wavelengths. In addition, the standard deviation of
the frequency distributions for Evora and Lille stations is higher than the corresponding
standard deviation for Potenza and Leipzig stations, both at 355 nm and 532 nm.

Table 4 shows the mean value of the mean relative deviation of extinction, the mean
relative deviation of molecular number density and its gradient, and the mean aerosol load
for all four stations at two different wavelengths. Combining the values reported in Table 4
with the results shown in Figure 8, it can be seen that the deviation of extinction is mainly
determined by deviations in the gradient of the molecular number density (which in turn
is caused by differences in the gradient of the atmospheric temperature profile) rather than
the mean relative deviation of the molecular number density.

Table 4. The mean value of the mean relative deviation of extinction and mean relative deviation
of molecular number density and the mean relative deviation of the gradient in molecular number
density and mean aerosol load at 355 and 532 nm.

Lidar
Name

355 nm 532 nm

M_DA 1

(%)
M_DNA 2

(%)
M_SNA 3

(%) M_AOD 4 M_DA
(%)

M_DNA
(%)

M_SNA
(%) M_AOD

MUSA 2.36 1.85 −1.4 0.175 3.10 1.81 −1.69 0.233

LR111-
D200 4.22 1.2 −2.34 0.111 − − − −

PollyXT 2.65 0.71 −2.36 0.133 6.22 0.67 −2.97 0.071

PAOLI 2.34 −1.44 −3.12 0.168 4.99 −1.53 −4.89 0.098

LILAS 4.36 0.85 −2.29 0.194 5.47 0.76 −2.50 0.138

Total 3.34 0.46 −2.41 0.164 5.28 0.07 −3.32 0.118
1 M_DA: mean value of the mean relative deviation of extinction. 2 M_DNA: mean value of the mean relative
deviation of molecular number density. 3 M_SNA: mean value of the mean relative deviation of the gradient in
molecular number density. 4 M_AOD: mean aerosol load.

Table 5 shows the same information provided by Table 4, but from two different
forecast models at 355 nm and 532 nm. The larger standard deviation for the frequency
distribution obtained for Evora and Lille stations could be an effect of the coarser vertical
resolution of the GDAS model with respect to the IFS_ECMWF one. As discussed earlier,
the extinction retrieval is sensitive to the temperature vertical gradient, which, in general,
is more accurate as the model resolution increases. According to this, concerning the
extinction retrieval, it is recommended to choose the model with higher vertical resolution
where possible.
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Table 5. Same as Table 4, but for two different forecast models compared with the corresponding
reanalysis model.

Model
Used

355 nm 532 nm

M_DA (%) M_DNA
(%)

M_SNA
(%) M_AOD M_DA

(%)
M_DNA

(%)
M_SNA

(%) M_AOD

ECMWF/ERA5 2.91 1.01 −2.19 0.136 5.36 0.98 −2.62 0.116

GDAS/ERA5 3.66 0.06 −2.58 0.185 5.25 -0.29 −3.60 0.119

5.2. Raman Backscatter

The frequency distribution of the mean relative deviation of Raman backscatter at 355
nm for all stations is shown in Figure 11a. The center of the distribution is around −0.6%,
indicating that the usage of forecasts instead of reanalysis introduces quite low deviations
in the Raman backscatter retrieval. Moreover, for around 61% of all the cases, the mean
relative deviation of the backscatter is within ±1%, and only for one case is the deviation
above ±2%.
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The distribution of the deviations characterizing the Raman backscatter retrieval at
532 nm is shown in Figure 11d and looks quite different from the one shown in Figure 11a,
with the presence of two different peaks with centers in −1.59% and 0.43%, respectively.
The negative centered peak refers to the observations of Evora, where the mean relative
deviation of molecular number density obtained from GDAS and ERA5 is negative. For all
the other three stations, this deviation is always positive and, consequently, the deviation
on the Raman backscatter is positive as well. It should be noted that, differently from the
extinction, the Raman backscatter retrieval depends on the absolute value of the molecular
number density. This is the reason for which negative deviations of the molecular number
density profile are responsible for negative deviations on the retrieved Raman backscatter
profile, but they do not affect the sign of the deviations on the retrieved extinction (which
are positive in all the cases). Moreover, such difference cannot be due to a general behavior
of the GDAS model because GDAS data give positive deviations in molecular number
density for the Lille station.

When IFS_ECMWF and GDAS models are considered separately, the center of the dis-
tribution at 355 nm is −0.25% and −0.86%, respectively (see Figure 11b,c). The probability
of a mean relative deviation of the Raman backscatter between −1% and +1% is 88% and
44%, respectively. Compared to the Potenza and Leipzig stations, the standard deviation
shows a higher value for Evora and Lille stations.

As for 532 nm, the frequency distributions show the different shapes reported in Fig-
ure 11e,f. For the Potenza and Leipzig stations, the distribution shows one peak centered
around 0.55%, with a 79.5% probability of having a mean relative deviation of the backscat-
ter within ±1%. For Evora and Lille stations, there are two peaks: one at −1.58% for Evora
and another at 0.58% for Lille. Both distributions have almost the same standard deviations.

In general, we can conclude that the usage of forecast in the retrieval of the Raman
backscatter produces quite low deviations (well below 3%) with respect to the usage of
reanalysis at both 355 nm and 532 nm. Consequently, forecasts (GDAS or IFS_ECMWF)
can be used without introducing large uncertainties. In addition, it is possible to infer
the presence of two peaks also at 355 nm, but these are not visible because, in this case,
they are not resolved. Comparing the results of 532 nm and 355 nm, whether using the
IFS_ECMWF or GDAS model, the same deviations in molecular number density seem to
introduce slightly larger deviations on Raman backscatter at a longer wavelength.

Table 6 shows the mean value of the mean relative deviation of the Raman backscatter
and the mean relative deviation of molecular number density and mean aerosol load.

Table 6. The mean value of the mean relative deviation of the backscatter and mean relative deviation
of molecular number density and mean aerosol load at two wavelengths. The backscatter was
obtained by the Raman method.

Lidar Name
355 nm 532 nm

M_DB 1 (%) M_DNB 2 (%) M_AOD M_DB (%) M_DNB (%) M_AOD

MUSA 0.38 1.76 0.175 1.67 1.85 0.233

LR111-D200 −0.60 1.03 0.088 − − −

PollyXT −0.28 0.59 0.125 0.26 0.41 0.057

PAOLI −1.35 −1.66 0.125 −1.62 −1.61 0.084

LILAS −0.16 0.76 0.218 0.59 0.58 0.144

Total −0.61 −0.023 0.148 −0.24 −0.18 0.105
1 M_DB: mean value of the mean relative deviation of backscatter. 2 M_DNB: mean value of the mean relative
deviation of molecular number density.

Table 7 shows the same as Table 6 but from two different forecast models. Compared
to 355 nm, the mean values of the mean relative deviation of backscatter and the mean
relative deviation of molecular number density show higher correlation at 532 nm, no
matter whether the IFS_ECMWF or the GDAS model is used.
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Table 7. Same as Table 6, but for two different forecast models compared with the corresponding
reanalysis model.

Model Used
355 nm 532 nm

M_DB (%) M_DNB (%) M_AOD M_DB (%) M_DNB (%) M_AOD

ECMWF/ERA5 −0.25 0.88 0.124 0.55 0.70 0.093

GDAS/ERA5 −0.86 −0.65 0.164 −0.65 −0.64 0.111

5.3. Elastic Backscatter

For the backscatter obtained only from elastic signals, the atmospheric aerosol load (ex-
pressed in terms of IB) shows a significant influence on the mean deviations, especially for
shorter wavelengths. In correspondence to low aerosol load conditions (IB < 0.0015 sr−1),
the deviation of elastic backscatter at 355 nm changes from −1.5% to 11%, even if the devia-
tion of the molecular number density profile for the same cases remains almost constant to
a quite low value (around −2%). The results of elastic backscatter retrieval at 532 nm and
1064 nm are similar to those obtained for the Raman backscatter retrieval. Most probably
this is a consequence of the higher contrast between aerosol and molecular signals at longer
wavelengths. Consequently, when the aerosol load is low, the total elastic signal measured
at 355 nm is dominated by molecular backscattered signal more than the elastic signals at
532 nm and 1064 nm. In general, this condition makes the retrieval of the elastic backscatter
more unstable at shorter wavelengths and, consequently, the influence of aerosol load
on the backscatter deviation decreases with the increase of the wavelength, showing the
largest effect at 355 nm and the smaller one at 1064 nm.

Figure 12 shows the frequency distributions of the mean relative deviation of elastic
backscatter at 355 nm, 532 nm, and 1064 nm. Looking at Figure 12a, for the deviation of
elastic backscatter at 355 nm, there are around 92% of cases from all the stations within
±5% and around a 1% probability that the same deviation is above 10%.

The mean relative deviation of elastic backscatter at 532 nm is always within ±5% (see
Figure 12d). Moreover, a lower standard deviation of the frequency distribution is obtained
with respect to what is found at 355 nm. This is a direct consequence of the higher stability
of the elastic backscatter retrieval at longer wavelengths.

The frequency distribution of the mean relative deviation of elastic backscatter at
1064 nm is different from the ones at the other two wavelengths as two peaks centered
at –0.64% and 1.93% are clearly visible in Figure 12g. The shape of the distribution in
Figure 12g is similar to the one reported in Figure 11d for the Raman backscatter at 532 nm.
Additionally, in this case the negative peak refers to the Evora observations where there is
a negative deviation in the molecular number density calculated out of GDAS and ERA5
model data (see Figure 7). Furthermore, the mean relative deviation of backscatter at 1064
nm is not so sensitive to the aerosol load. The complex influence of these two factors causes
the frequency distribution at 1064, showing the two peaks reported in Figure 12g.

At 355 nm, the distribution is centered at 2.11% when the IFS_ECMWF model is used
and at 2.87% when the GDAS model is used. The probability to have elastic backscatter
deviations within ±5% is about 95% and 83% for IFS_ECMWF and GDAS, respectively
(see Figure 12b,c).

At 532 nm, there is a 100% probability to have ±5% elastic backscatter deviations
regardless of the IFS_ECMWF or GDAS model is used (see Figure 12e,f).
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Figure 12. The frequency distributions of the mean relative deviation of elastic backscatter from all
the cases at 355 nm, 532 nm, and 1064 nm (a,d,g), together with IFS_ECMWF vs. ERA5 (for Potenza
and Leipzig stations) at three wavelengths (b,e,h) and GDAS vs. ERA5 (foe Evora and Lille stations)
at the three wavelengths (c,f,i). The dotted line shown in the subfigure is the Gaussian fitting curve.

Finally, at 1064 nm, different distributions are obtained if IFS_ECMWF or GDAS model
data are considered. The distribution obtained for Potenza and Leipzig (IFS_ECMWF) is
shown in Figure 12h. It is centered at 1.92%, and in all cases the deviations of backscatter
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are within ±3%. Different characteristics are found for the distribution corresponding to
Evora and Lille stations (GDAS), where two separate peaks are found (see Figure 12i),
which are clearly resolved at 1064 nm, partially at 532 nm, and not resolved at 355 nm
This result is quite similar to what we have found for the Raman backscatter deviations
at 532 nm (see, Figure 11f). The mean value corresponding to the two peaks is −0.64%
(corresponding to Evora station) and 1.88% (corresponding to Lille station).

If we make a comparison among the frequency distributions at the three wavelengths,
we can find that the mean deviation of elastic backscatter and standard deviation of
frequency distributions both decrease with the wavelength increase for the Potenza and
Leipzig stations. Combined with the effect of aerosol load on the results, we can conclude
that the mean relative deviation of the elastic backscatter at shorter wavelengths is more
sensitive to the aerosol load, producing a more unstable and higher deviation result.

In general, the distribution obtained for Evora and Lille observations has a larger
standard deviation with respect to the corresponding ones obtained for Potenza and Leipzig
stations at all wavelengths. This is because only for Evora did we observe a negative mean
deviation of the molecular density between GDAS and ERA5 model data.

Table 8 shows the mean value of the mean relative deviation of elastic backscatter,
the mean relative deviation of molecular number density and the mean aerosol load. The
mean value of the mean relative deviation of elastic backscatter is always within ±4% for
all three wavelengths, with the deviation of molecular number density within ±3%. The
same as in Table 8, but from two different forecast models, is shown in Table 9.

Table 8. The mean value of the mean relative deviation of backscatter and the mean relative deviation
of molecular number density and mean aerosol load at three wavelengths. The backscatter was
obtained by the elastic method.

Lidar Name

355 nm 532 nm 1064 nm

M_DB
(%)

M_DNB
(%)

M_IB 1

(sr−1)
M_DB

(%)
M_DNB

(%)
M_IB
(sr−1)

M_DB
(%)

M_DNB
(%)

M_IB
(sr−1)

MUSA 0.44 1.83 0.0055 2.06 2.05 0.0044 2.44 1.97 0.0027

LR111-D200 3.70 0.94 0.0023 − − − − − −

PollyXT 1.99 0.53 0.0028 2.06 0.54 0.0015 1.71 0.53 0.0008

PAOLI 3.44 −1.67 0.0023 0.55 −1.59 0.0025 −0.65 −1.57 0.0013

LILAS 1.45 0.91 0.0077 2.38 0.61 0.0024 1.85 0.55 0.0010

Total 2.58 −0.23 0.0036 1.36 −0.42 0.0025 0.68 −0.33 0.0012

1 M_IB: mean aerosol load.

Table 9. Same as Table 8, but for two different forecast models compared with the corresponding
reanalysis model.

Model
Used

355 nm 532 nm 1064 nm

M_DB
(%)

M_DNB
(%)

M_IB
(sr−1)

M_DB
(%)

M_DNB
(%)

M_IB
(sr−1)

M_DB
(%)

M_DNB
(%)

M_IB
(sr−1)

ECMWF/ERA5 2.11 0.93 0.0033 2.06 0.99 0.0024 1.92 0.94 0.0013

GDAS/ERA5 2.87 −0.93 0.0039 1.11 −0.92 0.0025 0.09 −0.93 0.0012

6. Conclusions

To evaluate the effect of different atmospheric models on the final aerosol optical
products (backscatter and extinction coefficients), the data from four European Aerosol
Research Lidar Network (EARLINET) stations, measured during two intensive campaigns,
have been considered. The impact of different atmospheric models on the lidar retrievals of
aerosol extinction and Raman/elastic backscatter has been assessed by applying the same
retrieval algorithms on the same input data and changing only the model data (forecasts
or reanalysis) used to compute the atmospheric molecular density vertical profiles from
temperature and pressure profiles. The forecast models used here were the Integrated
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Forecasting System operated by the European Centre for Medium-Range Weather Forecasts
(IFS_ECMWF) for Potenza and Leipzig stations and the Global Data Assimilation System
(GDAS) for Evora and Lille stations. The fifth-generation ECMWF atmospheric reanalysis
system (ERA5) has been considered for all measurement sites. The results are summarized
by the following points.

(a) The use of different model data may have a non-negligible influence on the lidar
aerosol extinction retrieval, due mainly to the differences in the gradient of the molec-
ular density profile. This arises from the differences in the vertical temperature
gradients, provided by forecast models and reanalysis, instead of the absolute de-
viation of the molecular number density, which, in general, is quite similar in both
forecasts and reanalysis. Even if the average deviation for all cases is small (3.34%
at 355 nm and 5.28% at 532 nm), there are a few cases displaying larger deviations.
Therefore, the use of a forecast rather than reanalysis in the aerosol extinction re-
trieval should be carefully considered as it is not possible to exclude high deviations,
although this was found very rarely in this study.

(b) The use of forecasts and reanalysis has less influence on the retrieval of the backscatter
profiles using both Raman and elastic methods. The quite low deviations found for
the aerosol backscatter retrieval suggest that, in general, the forecast model can be
used to obtain results with high confidence, especially for the Raman method, which
shows a lower deviation (well below ±3%).

(c) The atmosphere aerosol load can affect the deviation of extinction and backscatter,
independently of the retrieval algorithm (Raman or elastic). Lower aerosol load
conditions will lead to larger deviations in the aerosol products (extinction and
backscatter), as also reported in the literature [21,44]. Therefore, under low aerosol
load and particularly for the aerosol backscatter retrieved with the elastic method, the
usage of the forecast model could introduce not always negligible discrepancies.

(d) According to our study, the use of the IFS_ECMWF model provides, on average, lower
deviations (compared to ERA5) in aerosol extinction retrieval than using GDAS. For
the aerosol backscatter retrieval, the deviations are almost the same independent of
the forecast model, but a larger standard deviation for the frequency distribution of
the mean deviation is observed when GDAS is considered.

Finally, we should note that near-real-time observations are very important for sev-
eral crucial topics such as real-time monitoring of extreme atmospheric events (volcanic
eruptions, forest fires, severe dust intrusions), meteorology studies, and implementation of
atmospheric early warning systems. Although reanalysis data (ERA5) is considered to be
one of the most accurate and reliable sources of the atmospheric parameters needed as input
for lidar retrieval methods at global scale, it is not available in near-real-time. Therefore,
forecast models represent the best substitute even if, as shown in this study, there may
be non-negligible discrepancies in some cases. A good compromise would be to use the
forecast to deliver lidar products in near-real-time and, as soon as the re-analyses are made
available, reprocess these products, especially those containing aerosol extinction profiles.
Further, the results of this study are also very valuable for space-borne lidars, which use
the forecast model data along the track to derive the aerosol properties in near-real-time,
such as in ADM-Aeolus and EarthCARE missions.
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