Solid-State NMR Investigations of the Immobilization of a BF4- Salt of a Palladium(II) Complex on Silica - Université de Lille Accéder directement au contenu
Article Dans Une Revue Journal of the American Chemical Society Année : 2009

Solid-State NMR Investigations of the Immobilization of a BF4- Salt of a Palladium(II) Complex on Silica

Résumé

The structure of the silica supported palladium(II) complex [Pd(dppp)(S2C-NEt2)]BF4 (abbreviated as [Pd(dppp)(dtc)]BF4, where dppp is Ph2P(CH2)3PPh2) and interactions between the [Pd(dppp)(dtc)]+ cation, the BF4− anion, and the silica surface are studied using solid-state NMR spectroscopy. The unsupported, crystalline form of [Pd(dppp)(dtc)]BF4 is also investigated, both by X-ray diffraction and NMR. The structures of the cation and anion are found to be essentially the same in both unsupported and supported complex. The [Pd(dppp)(dtc)]BF4 loading has been determined by quantitative measurements of 11B, 19F, and 31P intensities, whereas the arrangement of anions and cations on the surface of silica has been established by two-dimensional heteronuclear correlation experiments involving 1H, 11B, 13C, 19F, 29Si, and 31P nuclei. At low coverages, the [Pd(dppp)(dtc)]+ cations are located near the BF4− anions, which in turn are immobilized directly on the surface near the Q4 sites. At higher loadings, which in this study corresponded to 0.06−0.15 mmol/g, the complexes stack on top of each other, despite the fact that the directly adsorbed molecules take up less than 10% of the silica surface. The relevance of these findings to heterogeneous catalysis is discussed.

Domaines

Chimie
Fichier non déposé

Dates et versions

hal-04558895 , version 1 (25-04-2024)

Identifiants

Citer

Jerzy W. Wiench, Christophe Michon, Arkady Ellern, Paul Hazendonk, Adriana Iuga, et al.. Solid-State NMR Investigations of the Immobilization of a BF4- Salt of a Palladium(II) Complex on Silica. Journal of the American Chemical Society, 2009, Journal of the American Chemical Society, 131, pp.11801-11810. ⟨10.1021/ja902982u⟩. ⟨hal-04558895⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More