Double-quantum homonuclear NMR correlation spectroscopy of quadrupolar nuclei subjected to magic-angle spinning and high magnetic field
Résumé
We present a new application of the symmetry-based dipolar recoupling scheme, for exciting directly double-quantum (2Q) coherences between the central transition of homonuclear half-integer quadrupolar nuclei. With respect to previously published 2Q-recoupling methods (M. Eden, D. Zhou, J. Yu, Chem. Phys. Lett. 431 (2006) 397), the sequence is used without π/2 bracketing pulses and with an original super-cycling. This leads to an improved efficiency (a factor of two for spin-5/2) and to a much higher robustness to radio-frequency field inhomogeneity and resonance offset. The 2Q-coherence excitation performances are demonstrated experimentally by 27Al NMR experiments on the aluminophosphates berlinite, VPI5, AlPO4-14, and AlPO4-CJ3. The two-dimensional 2Q–1Q correlation experiments incorporating these recoupling sequences allow the observation of 2Q cross-peaks between central transitions, even at high magnetic field where the difference in offset between octahedral and tetrahedral 27Al sites exceeds 10 kHz.