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A B S T R A C T   

Analytical chemistry on archaeological material is an essential part of modern archaeological investigations and 
from year to year, instrumental improvement has made it possible to generate data at a high spatial and temporal 
frequency. In particular, Raman spectral imaging can be successfully applied in archaeological research by its 
simplicity of implementation to study past human societies through the analysis of their material remains. This 
technique makes it possible to simultaneously obtain spatial and spectral information by preserving sample 
integrity. However, because of the inherent complexity of the samples in Archaeology (e.g. seniority, fragility, 
lack or full absence of any information about its composition), chemical interpretation can be difficult at first 
glance. Indeed, specific problems of spectral selectivity related to unexpected chemical compounds could appear 
due to their state of conservation. Furthermore, detecting minor compounds becomes challenging as major 
components impose their contributions in the acquired spectra. Therefore, a relevant chemometric approach has 
been introduced in this context to characterize distinct spectral sources in a Raman imaging dataset of an 
archaeological specimen – a mosaic fragment. The fragment was unearthed during the Ruscino archaeological dig 
on the outskirts of Perpignan, France. It dates back to the oppidum period. The aim is to extract selective spectral 
information from pixel clustering analysis in order to enhance the initial optimisation step within the Multi
variate Curve Resolution and Alternating Least-Squares (MCR-ALS) algorithm, a well-known signal unmixing 
technique. The underlying principle of the MCR-ALS is that the acquired spectra can be expressed as linear 
combinations of pure spectra of all individual components present in the chemical system under study. Some
times it can be difficult to obtain the desired results through the algorithm, particularly if initial estimates of 
spectral or concentration profiles are inaccurate due to complex signals, noise or lack of selectivity, resulting in 
rank deficiency (i.e. a poor estimation of the total number of pure signals). For this reason, an innovative 
threshold-based clustering algorithm, combined with multiple Orthogonal Projection Approaches (OPA), has 
been developed to improve matrix rank investigation and thus the initialisation step of the MCR-ALS approach 
before optimisation. The effective analysis of Raman imaging data for an archaeological mosaic played a crucial 
role in uncovering significant chemical information about a particular biogenic material. This insight sheds light 
on the origins of mortar manufacture during the oppidum period.   

1. Introduction 

Several reviews set out the basic principles of analytical techniques 
and their practical application to archaeological research [1,2], such as 

radiocarbon dating (or other isotopic forms) [3,4], spectroscopies [5,6] 
or elemental fingerprinting to deduce the elemental composition of ar
tefacts [7,8], and also chromatography to identify small organic mole
cules [9,10]. Each analytical technique has certain advantages or 
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limitations depending on the sample analysed and the scientific question 
posed at the outset about a specific type of human activity. In addition, 
interpreting a significant amount of data from a wide range of available 
analytical methods can be a very complex task if an archaeological 
sample is to be fully inspected. The modern concept of archaeology is no 
longer just about finding or hunting for artefacts, but about conducting 
carefully designed, empirical and data-driven research to uncover the 
human behaviour and social processes behind the artefacts. The sample 
studied in this research comes from a ditch fill found in the archaeo
logical excavation at Ruscino on the outskirts of Perpignan, France. The 
site was occupied by the Romans from the second half of the 2nd century 
BC to the end of the 1st century AD (i.e. oppidum period). This archae
ological artefact is a fragment of a mosaic apparently fixed to a stone 
with mortar (see material and methods). The reality and origin of the 
mortar are enigmatic and have required detailed research and 
characterisations. 

Raman spectral imaging was chosen because it does not require any 
specific preparation of samples [11], and therefore preserves its intrinsic 
nature, which can be important in archaeology [2] specifically for 
further experimental analysis. In addition, spectroscopic imaging is a 
powerful technique for visualizing the spatial and spectral information 
of complex and heterogeneous samples [12]. Micro-Raman spectral 
imaging instruments use a confocal microscope coupled to a spectrom
eter with a data collection system. The microscope focuses and collects 
scattered (or unabsorbed) photons from a specific mode of vibration. 
The spatial distribution for a particular chemical compound in the 
sample under consideration is usually deduced by a simple signal inte
gration. In fact, the aim of hyperspectral imaging is to isolate a specific 
wavelength (i.e. selectivity) for a particular chemical component in 
order to deduce its spatial distribution [13]. However, this classical 
approach has several drawbacks that scientists need to bear in mind. 
Firstly, it is necessary to know a priori all the pure compounds in the 
sample being analysed. If this assumption is not verified, it would be 
possible to choose a non-selective spectral area and therefore over
estimate the concentrations of a compound (i.e. the number of pixels 
generated for a zone of interest could be false). In other words, such 
conditions will generate biased chemical maps therefore not represen
tative of the ‘analytical’ reality of the investigated sample. Secondly, it is 
impossible to identify a truly selective wavelength when there is a strong 
spectral overlap due, for example, to large bandwidths and/or the 
sample complexity. Finally, it would be difficult to detect, identify and 
produce chemical maps for unexpected compounds. Despite these dif
ficulties, this classical signal integration approach is still widely used in 
hyperspectral imaging, as it provides rapid answers in the vast majority 
of cases. Nevertheless, the use of chemometrics is essential when the 
sample is complex and can benefit from hyperspectral imaging due to 
the amount of data that can be generated by the instrument (i.e. one 
spectrum per pixel) [14,15]. Chemometrics also has a number of 
pre-processing techniques for correcting certain variations in the data 
caused by chemical and/or physical interference, such as fluorescence 
emissions in Raman spectroscopy. In fact, the shading of the Raman 
signal by fluorescence is a limitation of Raman spectroscopy, particu
larly for studies of ancient materials [16]. The use of Raman spectros
copy to identify and study chemical compounds present in art objects, 
archaeology and conservation science has greatly increased in recent 
years. This is the case for pigment characterization [17,18], 
conservation-induced weathering/degradation processes of cultural 
heritage [17,19], palaeontology/prehistoric art [20,21], or forensic 
applications and authenticity research [22,23]. However, at the same 
time, the use of chemometrics within these fields is rare and when it is 
applied, it is limited to classical mathematical approaches such as 
Principal Component Analysis (PCA) [22,24], hierarchical clustering 
[25,26], Gaussian/Lorentzian regression [27,28] or other conventional 
statistical tools [29]. Nevertheless, the richness of archaeological sam
ples and our desire to delve deeper into our inquiries now necessitate the 
development and/or the implementation of much more advanced 

methods [14,30] capable of addressing the scientific issues of both 
communities. 

In this article, the major and minor spectral responses of materials 
present in the mosaic sample will be clearly identified after developing 
and implementing a signal unmixing pipeline based on clustering 
coupled with Multivariate Curve Resolution and Alternative Least- 
Square (MCR-ALS) approach [12,14,15]. MCR-ALS is a signal unmix
ing method based on bilinearity assumption. In other words, it assumes 
that the measured spectra are linear combinations of spectra of ‘pure 
component’ in the system under study. The term ‘pure component’ can 
either be a chemical compound or a mixture of chemical compounds 
whose concentrations correlate with a specific spectral signature. 
Therefore, the steps of the algorithm include the determination of the 
number of pure components present in the chemical system by (i) rank 
analysis methods, (ii) the generation of initial estimates for the con
centration or the spectral profiles and (iii) a final iterative optimisation 
of the extracted profiles under suitable constraints. However, the results 
of MCR-ALS can sometimes be unsuitable for several reasons: (i) 
determining matrix rank is not straightforward. Indeed, careful analysis 
of percentages of variance explained using methods such as Principal 
Component Analysis (PCA) [31], Singular Value Decomposition (SVD) 
[32] or the Durbin-Watson criterion [33] depend on the signal-to-noise 
ratio. An erroneous estimation of the rank can lead to an -under- or 
-over- estimation of the pure components during the initialisation step of 
the MCR-ALS algorithm, thus leading to biased chemical images at the 
end of the optimisation process. (ii) On a mathematical level, the 
MCR-ALS is an optimisation problem involving a dependence on the 
starting solutions (initial guess) i.e. the more complex the sample 
studied, the more difficult it is to find a global minimum [32]. Conse
quently, it is possible to obtain correct solutions after studying the 
regression residuals, but these solutions are abysmal chemically 
speaking due to rotational ambiguities. To minimize this problem, 
constraints can be added to the MCR-ALS algorithm linked to the system 
under study [12,14,15,32,33] such as non-negativity of profiles, unim
odality, or closure. Another method is to work on the initial selective 
variables (i.e. the initial estimate of the spectral and/or concentration 
profiles) for each putative compound in the complex sample [32,34,35] 
or to use spatial information from spectroscopic images based on local 
ranks [36–38]. The aim of the proposed chemometric approach is to use 
both ideas in Raman imaging to overcome, or at least to be less 
dependent on, potential flaws due to MCR-ALS. 

2. Materials and methods 

2.1. Description of the archaeological sample 

The archaeological sample studied here corresponds to a mosaic 
fragment seemingly fixed to a stone i.e. sandy chalk (Fig. 1). The layer of 
tesserae is grouted with a very fine calcitic coating (also defined as 
‘bedding’) and a few traces of tile mortar are present below, corre
sponding to the mosaic ‘nucleus’. The top of the mosaic appears to be the 
perfect continuity of the sandy chalk and detailed observations of the 
interface show a succession of very thin layers that gradually fill in the 
volume between the tesserae and the stone. These layers, which could be 
interpreted as a mortar used to fix the stone on the mosaic, are no more 
than 500 μm thick. The reality and origin of this mortar are enigmatic 
and have required detailed investigations and characterizations. The 
blue box in Fig. 1 corresponds to the area analysed by the Raman 
spectral imaging instrument, which includes the mosaic, the glue, the 
sandy chalk and the bedding mortar. 

2.2. Raman hyperspectral imaging 

The Raman hyperspectral imaging dataset (Fig. S1 in supplementary 
material) is acquired by using the LabRAM Evolution HR confocal 
scanning spectrometer manufactured by Horiba Jobin Yvon Scientific 
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Company. The spectrometer is confocally coupled to an Olympus BX 40 
high stability microscope equipped with a × 50 objective (NA = 0.5, 
WD = 10.6 mm). This instrument is equipped with a holographic grating 
of 1800 grooves/mm, giving a spectral resolution that can be as low as 
0.5 cm− 1. A 1024 × 512 pixels charge-coupled device (CCD) camera 
cooled at − 60 ◦C is used as detector. Raman backscattering is obtained 
with an excitation wavelength of 785 nm (25 mW at the sample) sup
plied by a solid-state laser. The sample is placed under the microscope 
on a motorized XY stage from Marzhauser Wetziar Company, which 
offers resolution in 0.1 μm steps in both the X and Y directions. The z- 
axis is controlled by an autofocus equal to a maximum of 50 μm. The 
region of interest on the archaeological mosaic fragment was specifically 
chosen with the aim of including both the adhesive mortar at the 
junction between the stone and the tesserae, and the original bedding 
mortar present between the tesserae (Fig. 1, blue rectangle). The 
experimental acquisition conditions for this 905 × 395 μm2 area were 
optimised to obtain the best signal-to-noise ratio representing a 3D data 
matrix of size 181 × 79 × 1009 (i.e. pixels per pixels per wavelengths). 
Due to a point-by-point acquisition system, the step between two 
consecutive pixels was 5 μm. Acquisition took 8 h for the entire hyper
spectral data cube, with a spectral resolution of around 1.7 cm− 1 in our 
case. The next step was to use pre-processing to correct the raw data 
before extracting the relevant chemical information with the proposed 
approach. 

2.3. Spectral data pre-processing 

Fig. S2 shows the results of the various pre-processing stages on the 
collected raw Raman spectra. A typical issue known in Raman spec
troscopy is that spectra are sometimes ‘contaminated’ by peaks, called 
‘spikes’, caused by high-energy cosmic rays hitting the charge-coupled 
device (CCD) detector used to collect Raman photons. Their signals 
are associated with very narrow bandwidth peaks present at random 
positions in the spectrum. These spikes are problematic because they can 
interfere with subsequent analyses, particularly if multivariate analysis 
of the data is required. This is why one of the first steps in processing 
Raman spectra is dedicated to their removal. The software called Lab
Spec used to acquire Raman spectra had an initial filtering of the 
accumulated spikes known as single peaks. Even if, it eliminates most of 
the spikes, this correction is not ideal due to the choice of a window size 
to find the spikes (in our case equal to 3). As a consequence, several 

Principal Component Analysis (PCA) were applied to locate spikes- 
contaminated spectra or some other artefact signals (e.g. Raman 
spectra with saturation) and therefore to correct the signals by replacing 
them with the median of the spectra of the surrounding pixels. Fig. S3 
shows some examples of ‘corrupted’ pixels found by the study of the 
scores and loadings from the different PCA. 

The second pre-processing step consists in correcting the intense 
background commonly associated with fluorescence contributions. The 
intense, irregularly shaped baselines that change from pixel to pixel 
need to be corrected in order to extract current, unbiased chemical in
formation from the spectra. The weighted Least-Squares (WLS) method, 
also called Asymmetric Weighted Least-Squares (AsLS) method, 
removes fluorescence contributions [14]. This pre-processing algorithm 
was originally proposed by Eilers et al. to subtract baseline shifts in 
chromatography. It is based on a recursive local fit of the entire spec
trum to a baseline obtained using a Whittaker smoother [39]. 

Finally, a Multiplicative Scatter Correction (MSC) [40] is performed 
to remove the light-scattering effects in spectra. This correction is ach
ieved by regressing a measured spectrum against a reference spectrum, 
in this case the median spectrum, and then correcting the measured 
spectrum using the slope of this fit. All pre-processing used in this study 
was carried out using the PLS toolbox v8.52 (Eigenvector Inc.) in the 
Matlab environnement (Natick, Massachusetts: The MathWorks Inc). 

2.4. The proposed signal unmixing pipeline 

The chemometric approach presented here is based on the Multi
variate Curve Resolution-Alternating Least Squares (MCR-ALS) algo
rithm developed by R. Tauler and A. De Juan [33,38,41] with an image 
segmentation step founded on a threshold-based clustering algorithm. 
This segmentation step allows several spectral data matrices to be ob
tained from the pre-processed data. Each data matrix resulting from the 
clustering is then analysed using the Orthogonal Projection Approach 
(OPA) [31,35,42] to extract the best initial spectra for use in the 
MCR-ALS optimisation step. The three different steps of this data anal
ysis pipeline will be described below. 

2.4.1. STEP#1: image segmentation using a threshold-based clustering 
algorithm 

Firstly, each spectrum at a given pixel is normalized by the sum of the 
absolute value of all its wavelengths (i.e. L1 normalization). As a 
consequence, it returns a vector with an area under the curve equal to 1. 
The aim is then to find the best estimate of the median image from the 
cube of pre-processed data on which the segmentation will be per
formed. All pixels must have the same weight, even if certain chemical 
contributions are less representative in terms of intensity. Pixel 
normalization is imperative here before running a clustering algorithm 
because of the use of a distance metric called Euclidean distance. Sec
ondly, an unsupervised hierarchical clustering approach based on a 
threshold clustering algorithm is used, as with the ‘mean-shift’ meth
odology [43] or a modified ‘k-means’ approach [44]. This is a 
centroid-based algorithm that works by updating candidate pixels for a 
centroid group (i.e. a cluster) with a threshold criterion, and then 
finding all the given pixel regions present in the image until the number 
of iterations is reached. Table 1 presents the threshold-based algorithm 
implemented with MATLAB R2016a. The main advantage of this 
method lies in the automatic search for an optimal number of clusters, 
which naturally influences the quality of data partitioning. Furthermore, 
it is potentially less sensitive than classical clustering methods [45]. The 
convergence of the algorithm towards a unique solution is ensured by a 
large number of iterations. Furthermore, depending on the application, 
this unsupervised algorithm can easily be adapted by changing the 
threshold criterion. This key parameter of this algorithm defines the size 
of the search window and influences the maximum distance over which 
points are moved with respect to a random centroid that is updated 
regularly. It can therefore have a significant impact on the clustering 

Fig. 1. Overview of the archaeological sample found in the Ruscino archaeo
logical excavation from the periphery of Perpignan in South of France. The site 
was occupied by the Romans from the second half of the 2nd century BC to the 
end of the 1st century AD (i.e. oppidum period). 
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results. The function use to define it, is therefore important (e.g. stan
dard deviation, Gaussian density, etc.), but that’s what makes it a such 
flexible tool. As well as being sensitive to bandwidth choices, it can also 
be computationally expensive as the amount of data increases. 

At the end of STEP#1, similar pixels are grouped into j different 
clusters. It is then possible to work directly on the spectral information 
of these identified clusters because in hyperspectral imaging, a contin
uous spectrum is measured for each pixel [41]. Each spectral matrix 
found from similar pixels is noted here Xj (m×n) and corresponds to m 
spectra measured at regular time intervals due to the Raman mapping 
and n columns are the wavelengths (Raman shift in cm− 1). 

2.4.2. STEP#2: initialisation with multiple orthogonal projection approach 
(OPA) 

OPA is applied to each spectral matrix Xj deduced from the j clusters 
in order to extract their most dissimilar spectra. The OPA algorithm uses 
a dissimilarity criterion based on Gram-Schmidt orthogonalisation [31, 
35,42]. The number of columns or rows selected for each matrix Xj 

corresponds to the number of chemical components present in a cluster 
of the archaeological sample and is estimated during rank evaluation 
with PCA and with the dissimilarity criteria of an OPA. In this paper, the 
OPA searches for the least correlated spectra with the highest average 
intensity over the whole spectral range (i.e. the direction of the spectra 
in matrix Xj). In our case, the independent evaluation of the ranks of the 
Xj matrices is not critical for the proposed multivariate curve resolution 
since the initial spectra are normalized to be carefully selected visually 
before the ALS optimisation. Thus, an overestimation of these ‘local’ 
ranks will not lead to an overestimation of the ‘global’ rank of the 
pre-processed matrix, as all the selected initial spectra at the end are 
different from each other in terms of wavelength selectivity. In addition, 
spectral contributions that do not represent relevant chemical infor
mation are not to be selected. 

Usually, in the initialisation step of the MCR-ALS algorithm, a ‘pure’ 
variable-based method [34,46] called SIMPLISMA, acronym for 
SIMPLe-to-use Interactive Self-modelling Mixture Analysis, is carried 

out [12,14,15]. The assumption of SIMPLISMA is that each spectral 
component of the mixture has a variable that has a specific contribution 
for a given particular compound, and that this variable has zero intensity 
for all other spectral components of the mixture, i.e. the notion of ‘pure’ 
component. This ideal case is practically never encountered and this 
method is therefore based on variables closest to the ‘pure’ variables 
[46]. On the other hand, the assumption of OPA is that the purest spectra 
in the data matrix are mutually more dissimilar than the corresponding 
spectra of the mixture, which can then be applied to detect significant 
changes in successive recorded spectra. As a consequence, when spectra 
are very similar due to baseline shifts and/or spectral overlap (i.e. 
selectivity problems), as in our case in Raman imaging due to the 
complexity of the sample, OPA is preferable [47,48]. The main objective 
of multiple OPA is to find the right number of spectral components 
before ALS optimisation and also, the best initial spectra. This step is 
crucial since it conditions future solutions of the MCR-ALS algorithm 
[32]. As with any optimisation method, the MCR-ALS depends on the 
estimate of the initial matrix which itself depends on the estimate of the 
global rank of the pre-processed data matrix. The OPA calculations were 
implemented in MATLAB R2016a. 

2.4.3. STEP#3: Alternating Least square (ALS) optimisation 
The MCR-ALS algorithm is used to decompose a matrix D into the 

pure distribution maps C and the pure spectra ST of all constituents 
present in the analysed archaeological sample. This decomposition is 
carried out according to the bilinear model presented in Equation (2) 
[12,14,15,33,38,41]. A bilinear model of k pure components can 
reproduce the preprocessed matrix D containing n mixed spectra 
collected at λ spectral channels with n × k concentration profiles and 
their k × λ related spectral profiles. 

D=CST + E (2) 

The error contribution of the model is represented by the residual 
matrix E (n× λ). The Multivariate Curve Resolution-Alternating Least 
Squares (MCR-ALS), developed by R. Tauler et al. [33,38,41], is an 

Table 1 
The threshold-based clustering algorithm. 

M. Offroy et al.                                                                                                                                                                                                                                 



Talanta 274 (2024) 125955

5

iterative curve resolution method used to recover the underlying spec
troscopic bilinear model in Equation (2). The ALS step involves the 
operations Copt = DS(STS)− 1 and ST

opt = (CTC)
− 1CD respectively which 

are alternatively refined under given constraints. The end of the iterative 
process takes place when the product of the resolved concentration 
profiles and spectra reproduce the original data D without significant 
variation between consecutive iterations. Both the explained variance 
(r2) and the lack of fit (Lof), defined as follows in Equations 3 and 4, are 
calculated to determine the fit quality of the MCR-ALS model: 

r2(%)= 100 ×

⎛

⎜
⎝1 −

∑

i

∑

j
e2

i,j

∑

i

∑
jd2

i,j

⎞

⎟
⎠ (3)  

Lof (%)= 100 ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
i
∑

je2
i,j

∑
i
∑

jd
2
i,j

√

(4)  

where ei,j are the elements of E matrix and di,j are the elements of the raw 
dataset D. Subindexes i and j refer to the pixel and the wavelength 
number, respectively. As a result, the ALS optimisation is applied here to 
the pre-processed spectral data (i.e. a Raman spectra 2D matrix of size 
14299 × 1009) with a non-negativity constraint added to concentration 
and spectral profiles. A normalization constraint is then used, but only 
for spectra. These constraints are applied in order to exclude some so
lutions during the MCR-ALS optimisation and thus reduce the rotational 
ambiguity inherent to these types of matrix decomposition calculations 
[24,31]. The MCR-ALS Matlab code is available free on the website: http 
://www.mcrals.info/. 

3. Results and discussion 

The results of the three different steps presented above for the 
multivariate curve resolution analysis will be described. STEP#1 is the 
image segmentation based on the threshold-based algorithm and is 
performed on the median image (181x79, Fig. 2A) deduced from the 
pre-processed data cube (181x79x1009). The result is five clusters (i.e. 

j= 5) (Fig. 2B) containing respectively 4 pixels (cluster n◦1, blue 
colour), 574 pixels (cluster n◦2, light blue), 4819 pixels (cluster n◦3, 
light green), 6979 pixels (cluster n◦4 orange) and 1923 pixels (cluster 
n◦5, dark red). The aim here is to extract the best spatial information 
from the surface of the archaeological artefact studied. Five spectral 
matrices with respective dimensions 4 × 1009 for X1, 574 × 1009 for X2, 
4819 × 1009 for X3, 6979 × 1009 for X4 and 1923 × 1009 for X5 are 
then deduced from this clustering step (Fig. 2C). Interestingly, the 
spectral matrices found by segmentation are related to the signal-to- 
noise ratio of the measurements. Similar data points (pixels) found by 
the threshold-based algorithm clustering appear to have an equivalent 
signal-to-noise ratio value from the spectral information point of view. 
Indeed, the higher the number of a cluster is, the lower the signal-to- 
noise ratio of the spectral matrix is. 

STEP#2 is then performed to obtain (by the end of this step) the final 
matrix of the initial spectra to be used in the ALS optimisation. To do so, 
multiple OPA independently decompose each matrix Xj (here with j = 1,
…,5) by searching for the most dissimilar spectra. Here, the explained 
variance of the PCA and the dissimilarity criteria of the OPA, are studied 
respectively. The aim is to estimate a ‘local’ rank for each Xj matrix. 
Finally, a rigorous study of each spectral component extracted by mul
tiple OPA from each Xj matrix is carried out by comparing them after 
normalization. This is done in order to select the best ‘pure’ compounds 
as an initial matrix before ALS optimisation. 

To understand the methodology, the simple case of cluster No. 1 can 
be taken, as there are only four spectral signals from the pre-processed 

Fig. 2. STEP#1 results. (A) The median image estimated from the pre-processed data cube, (B) the result of the segmentation of the median image with the 
threshold-based clustering algorithm implemented. Five clusters of pixels of respective dimensions were found: 4 pixels (blue), 574 pixels (light blue), 4819 pixels 
(light green), 6979 pixels (orange) and 1923 pixels (dark red). 

Table 2 
Study of the matrix X1 with PCA and OPA.  

PCA OPA 

Component 
number 

Explained 
variance (%) 

Spectrum 
number 

Dissimilarity criteria ( 
× 108 u.a) 

1 81.01 1 1.497 
2 10.91 2 1.080 
3 7.927 3 0.235 
4 0.151 4 1.317  
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data after STEP#1. Table 2 shows the percentage of variance explained 
by each four PCA components and the dissimilarity criteria calculated 
over the four spectra by the OPA. As observed, the first three compo
nents explain 99.99% of the variance of the X1 matrix, which means that 
the first three components have the most relevant information in this 
matrix. It is therefore possible to estimate that the ‘local’ rank of the X1 
matrix is equal to 3, which is also confirmed by the dissimilarity criteria 
where spectra 1, 4 and 2 are different from the third, respectively 1.497 
× 108, 1.317 × 108, 1.080 × 108 compared to 0.235 × 108. 

Therefore, the OPA detects spectrum n◦3 as correlating with another 
spectral signature. Fig. S4 shows the four spectral signatures of the X1 
matrix, where spectra n◦3 and n◦4 can be seen as having the same 
spectral signatures. The combined results of PCA and OPA allow us to 
estimate the ‘local’ rank of the matrix X1 as being 3. Consequently, the 
OPA decomposition of this matrix gives a ‘first initialisation matrix’ of 
dimension 3 × 1009. 

Given the number of spectra contained in the X1 matrix, PCA and 
OPA were not needed to estimate its ‘local’ rank and therefore its 
decomposition. The aim was to explain our reasoning, which could be 
repeated for matrices X2, X3, X4 and X5 where the difficulty is much 
greater because of the number of spectra. Fig. 3 shows the results for all 
matrices, using the same reasoning as discussed above. The matrix X2 
has a dimension of 579 × 1009 which justifies first studying the variance 
explained by PCA in order to understand which components best sum
marise the most relevant information and thus propose an estimate of its 
matrix rank. As Fig. 3B shows, component No. 1 alone explains 90% of 
the total variance contained in the X2 matrix. Zooming in, components 
No. 2 and No. 3 are respectively around 3% and 2% before a plateau 
around 0.5% appears after component No. 4. It is therefore difficult to 
estimate the ‘local’ rank of this matrix directly because of component 
No. 1. In fact, the matrix rank of the latter is more than likely not equal 
to 1 and the values associated with the variances would tend to indicate 
a rank deficiency. However, the study of the dissimilarity criterion on 
the X2 matrix shows several different spectral contributions, in partic
ular for dissimilarity values greater than 2 × 107 where ten spectra 
appear to be very different. It is therefore possible to consider a selection 
of 10 spectra for the X2 matrix. For matrix X3, the values of the variance 
explained by components also make it difficult to estimate its rank 
(Fig. 3C). Despite several changes in slope observed between compo
nents No. 3 and No. 7, these are nonetheless small. On the other hand, 
the graph of dissimilarities shows that from a value greater than 1.5 ×
107, seven spectral contributions appear to be very different, allowing us 
to select seven spectra for matrix X3. For matrices No. 4 and No. 5, the 
task is more difficult because the dissimilarity peaks are very close to the 
noisy signal. We noted earlier that it was possible to classify the spectral 
matrices found by clustering in descending order of signal to noise ratio 
(Fig. 2C) i.e. X1 > X2 > X3 > X4 > X5. Fig. 5 shows that the proportion 
of variance explained by the first component of X4 (panel D) and X5 
(panel E) matrices falls to around 70% and 50% respectively. It is even 
harder to estimate their ranks. The dissimilarity values decrease dras
tically (they are now 106 order of magnitude) and are closer to each 
other than to those of matrices X1, X2 and X3. However, it is possible to 
find different spectral contributions for dissimilarity values greater than 
5.5 × 106 and 1.25 × 106 allowing the selection of six and three spectra 
respectively for matrices X4 and X5. 

In summary, following the PCA and OPA study of the X1, X2, X3, X4 
and X5 matrices, an initial set of spectra is selected for each of them and 
is of respective size: 3 × 1009, 10 × 1009, 7 × 1009, 6 × 1009 and 3 ×
1009. It is not yet possible to use all these contributions as a single initial 
matrix prior to ALS optimisation. Indeed, it is possible that from one 
matrix Xj to another, there are identical and/or noisy spectral contri
butions. It is quite possible, for example, that spikes have not been 
completely corrected or that spectra have been distorted by pre- 
processing of the raw data. 

It is therefore essential to carefully examine and compare each of the 
spectral components, selecting those that are as ‘pure’ as possible. Fig. 4 

shows the ten spectra selected. As the result, the overall matrix rank of 
the pre-processed matrix has been estimated as being equal to 10 using 
this method. All that remains is to carry out STEP#3 with the ALS 
optimisation of the pre-processed data matrix. 

Figs. 5 and 6 show the results of the ten chemical compounds 
extracted from the ALS optimisation and referred to respectively as the 
‘pure’ spectral and concentration profiles, i.e. ST

opt and Copt. The 
convergence criterion equal to 0.01 was achieved after 184 iterations. 
The lack of fit was 24.14% and the percent of explained variance r2 by 
the model at the optimum was 94.17%, which are relatively good figures 
of merit considering our spectral data. As a reminder, the main idea 
behind the MCR-ALS algorithm is that each pixel or spectrum in Raman 
imaging can be described as a linear combination of a set of pure com
pound spectra. Therefore, as indicated earlier, the term ‘pure com
pound’ can be either a chemical compound or a mixture of chemical 
compounds with its own spectral signature. 

As can be seen in Fig. 5, chemical compound No. 8 is attributed to a 
non-spectral component which is due to the non-ideal correction of the 
baseline of the raw data. The fluorescence effect observed in the raw 
data with a baseline that necessitated correction was significant and, as 
is often the case in data analysis, the pre-processing did not ensure 
perfect correction (see Fig. S2, panel A). On the one hand, the extracted 
chemical components No. 1, No. 2, No. 3, No. 5 and no. 10 are poten
tially associated with pure compounds. On the other hand, the extracted 
chemical compounds No. 4, No. 6, No. 7 and No. 9 are mixtures of 
chemical contributions. 

Fig. 6 confirms the first spectral observations (as seen above) due to 
the ten spatial distributions of the chemical contributions over the area 
of the archaeological sample analysed by Raman imaging. In addition to 
the fact that contribution No. 8 is considered as a non-chemical 
component, the pure chemical compounds maps No. 1, No. 2, No. 3, 
No. 5 and No. 10 cover the entire surface of the archaeological sample 
analysed, but with predominantly low pixel intensities and a few pixels 
of high intensity (Fig. 6, red circles) confirming the presence of truly 
specific spectral sources. The spatial comparison of both pure chemical 
compound maps, No. 4 and No. 9, appears to correlate, for example the 
shape of the cracks observed (Fig. 6, red squares). However, they differ 
from one pixel to another because of their spectral component. In fact, 
from the spectral point of view (Fig. 5), only the wavelength present at 
1086.5 cm− 1 can be used to distinguish compound No. 4 from compound 
No. 5. In addition, spatial observations of the pure chemical maps of 
compounds No. 6 and No. 7 show a more pronounced visual feature, 
with a line separating the analysis zone into two distinct parts (Fig. 6, 
dotted red line). Looking more closely at the spectral contributions of 
No. 6 and No. 7 (Fig. 5), no real differences in wavelength can be seen, 
but rather a difference in the Raman shift around 5 cm− 1. This 
discrepancy is not always observed as moving in the same direction: 
sometimes it must be added, sometimes it must be subtracted. The main 
difference does appear in the 1080-1090 cm− 1 spectral range related to 
CaCO3 and may even indicate the presence of several polymorphs or 
differences in carbonate chemistry. However, the spatial information is 
unique which can be explained by the nature of the material used during 
the oppidum period on the archaeological Ruscino site. 

To confirm this hypothesis, each of the spectral signatures will be 
identified using the literature. Firstly, the pure chemical compound No. 
5 is silicon carbide SiC [49] which is present in our Raman spectral 
analysis because the archaeological sample was polished prior to anal
ysis by scanning electron microscopy analysis. The wavelengths at 
146.9 cm− 1, 238.6 cm− 1, 503.9 cm− 1, 765.5 cm− 1, 786.7 cm− 1 and 
967.8 cm− 1 are selective. Consequently, this pure chemical compound is 
not present in the pristine sample. Pure chemical compound No. 4, No. 
6, No. 7 and No. 9 are biogenic or inorganic magnesian calcites [50,51], 
respectively calcite with 3.9% of MgCO3, pure calcite, calcite with 9.9% 
of MgCO3 and calcite with 2% MgCO3. Magnesian calcites are an 
important mineral component of modern and Pleistocene carbonate 
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Fig. 3. The panels A, B, C, D and E present the results of the selected spectra by OPA for each matrix X1, X2, X3, X4 and X5 respectively.  
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sediments. These phases are found mainly in the skeletons of marine 
invertebrates and in cements [52–54]. Consequently, the Raman shift 
observed between the spectral information can be explain by the per
centage of MgCO3 contained in calcite and it remains unclear what the 
origin of this spectral signature is, e.g. coral, pearl or skeletons. Pure 
chemical compound No. 1 has specific wavelengths at 302.8 cm− 1, 
1146.3 cm− 1, and 1581.8 cm− 1 which could be attributed to the 
red/ocher pigment Fe(Phen)2(NCS)2 based on Fer(II) ions [55]. Pure 
chemical compound No. 2 has two specific bands at 142.0 cm− 1 and 
195.5 cm− 1 from koechlinite [56] and three specific bands from anatase 
TiO2 single crystal [57] at 395.4 cm− 1, 514.4 cm− 1 and 635.4 cm− 1 

although very weak. Pure chemical compound No. 10 has specific 
wavelengths at around 126.8 cm− 1, 205.5 cm− 1, 393.7 cm− 1 and 464.2 
cm− 1 which are attributed to xenomorphic quartz inclusion [58]. 
Finally, the pure chemical compound No. 3 is much more difficult to 
interpret as it only shows one intense spectral wavelength at 1375.2 
cm− 1 attributed to –NH band and a smaller one at 325.7 cm− 1 due to the 
stretch bond –O-C-O-. These peaks are characteristic of amino-acids and 
collagen traces [59,60]. Hypotheses may be supported where biogenic 
magnesian calcites are found. 

4. Conclusion 

4.1. The relevance of the proposed chemometric approach 

The chemometric methodology presented in this work demonstrates 
the possibility of characterizing an archaeological sample in Raman 
imaging using MCR-ALS without any prior knowledge. For this, relevant 
pixels from the median Raman image of the artefact were first identified 
and grouped into five clusters after a novel threshold-based unsuper
vised clustering approach. Afterwards, multiple OPA analysis were 
applied to find the best initial selective spectral data used in the ALS 
optimisation. The segmentation image (STEP#1) followed by multiple 
OPA analysis (STEP#2) facilitated the estimation of the rank of the data 
matrix and thus gave a better estimate of the initial guess necessary for 
ALS optimisation. Therefore, the rotation ambiguities were limited and 
the convergence towards a global minimum was improved. Conse
quently, the solutions deduced from this optimisation were more rele
vant and characteristic of the chemical reality. 

Indeed, if the classical approach to estimate the rank of a data matrix 
is compared with the proposed chemometric approach, the results will 
be very different. Fig. S5 (in supplementary material) shows the eigen
values (Panel A) and the percentage of explained variance for each of 
them (Panel B) after decomposition by PCA [42]. Estimating matrix rank 
is complicated here without a priori by the difficulty of truncating the 
curves of panel A and B in Fig. S5 at the appropriate number of principal 
components (red solid and dotted curves). The values of eigenvalues 
after 7 principal components do not improve significantly and express 

80% of the most important information in the pre-processed matrix 
analysis. Consequently, if the matrix rank is 7, the initial matrix ST

ini 
would be constructed with fewer or even different spectral contribu
tions. The bilinear decomposition by MCR-ALS would have been less 
representative of the chemical reality due to underestimating the matrix 
rank. To confirm this, an initial estimate was made using SIMPLISMA 
and OPA directly on the pre-processed matrix with a rank equal to 7 
(Fig. S6 in supplementary material). The ALS optimisation offers the 
same solutions between SIMPLISMA or OPA initializations, but not al
ways in the same order, which in itself is not harmful. Nevertheless, 
important contributions are not detecting with these usual approaches. 
The pure chemical compound No. 1 found with the proposed signal 
unmixing pipeline in this article in Fig. 6, is not present in Fig. S6 panel A 
and B. Consequently, the chemical reality is much better described with 
our proposed chemometrics approach, because it is less dependent on 
matrix rank estimation. 

In general, it is necessary to -over- or -under- estimate the value of 
the matrix rank in order to then look at the results of the MCR-ALS 
optimisation, even if the other risk is to overestimate the compounds 
present in the sample. However, in addition to concerns about rank 
deficiencies, the complexity of the signals measured (e.g. low signal-to- 
noise ratio) can lead to inaccurate initial estimates of spectral profiles or 
concentrations, and thus to unsuitable solutions being proposed after 
ALS optimisation. The chemometrics approach presented here endeav
ours to be less sensitive to, or dependent on, these drawbacks. Thus, it 
tends towards the most relevant chemical characterization. To confirm 
this, an initial estimate was made using SIMPLISMA and OPA directly on 
the pre-processed matrix with a rank equal to 10 which is not possible to 
justify as explained above (Fig. S7 in supplementary material). A com
parison with Fig. 4 shows that some initial spectral contributions are 
different from those selected by our approach. For example, the spectral 
contribution around 218 cm− 1 is present in both the SIMPLISMA (Blue 
arrow in Fig. S7, panel A) and OPA (Blue arrow in Fig. S7, panel B) 
estimates but is not selected using our approach (Fig. 4). This contri
bution is explained by the presence of a spike that could not be corrected 
properly. In addition, some initial spectral contributions between the 
two approaches SIMPLISMA and OPA are also different (red arrows 
around 1100 cm− 1, Fig. S7, panel A and B) and this is explained by the 
difference in the selection criterion. 

The initialisation step before ALS optimisation is therefore impor
tant. In fact, three potential initial spectral matrices could be used in the 
ALS (those present in Fig. 4, Fig. S7 panel A and B) with a risk of 
obtaining unsatisfactory solutions. Fortunately, in our case, regardless of 
the matrix used for a rank of 10, the optimisation offers the same solu
tions but not always in the same order as those in Figs. 5 and 6, reflecting 
the fact that a global minimum is found. Nevertheless, one initialisation 
seems better than the others. Table 3 shows the optimisation results 
obtained by ALS with the non-negativity constraints on concentrations 

Fig. 4. The 10 spectral contributions to be used as the initial matrix before ALS optimisation.  
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and spectra solutions with the addition of a normalization on the spectra 
and a convergence criterion of 0.01. Although the quality of the re
gressions is similar according to the method, the number of iterations to 
converge on the optimum is better with our approach, i.e. the spectral 
initialisation matrix deduced from segmentation and multiple OPA. This 
implies that our initial guesses are closer to ALS solutions than those 
proposed by SIMPLISMA or OPA alone. There is, therefore, a lower risk 
of converging towards global minimums. In terms of identifying chem
ical compounds, the results are interesting in order to understand the 
origin of the mortar. 

4.2. The archaeologist’s point of view 

The most outstanding archaeological result of this study is the 
detection of biogenic materials (magnesium calcites or amino-acids) of 

animal origin, in particular fish or shellfish. This result is also confirmed 
in Fig. S8 by other techniques, in particular Scanning Electronic Mi
croscopy (SEM). For example, if the smallest MCR-ALS map of the 
contribution No. 10 (i.e. quartz) is compared to the biggest observed 
area on the SEM map (F), they are quite similar. This is because quartz is 
a common mineral species in the silicate group, a subgroup of the tec
tosilicates, composed of silicon dioxide, or silica, with the chemical 
formula SiO2. The same remarks apply to other common compounds, 
such as iron or magnesium. This also confirms the interest of the data 
analysis pipeline presented here. In fact, despite the complexity of the 
archaeological artefact, the chemical compounds identified by multi
variate curve analysis in Raman imaging are in agreement with the el
ements found by SEM. 

However, the local origin of the materials seems difficult to establish, 
but could nonetheless be the result of a supply of various materials by 

Fig. 5. The Multivariate Curve Resolution and Alternating Least-square (MCR-ALS) analyses of the archaeological sample. Here is the spectral matrix ST
opt which 

contained 10 pure chemical compounds. 
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trade covering the whole of the Roman Empire. The historical dating and 
the exact role of the glue between the mosaic and the stone is still 
debated from an archaeological point of view. 

Code availability 

The code (OPA and threshold-based clustering) employed for the 
study is available from the corresponding author upon reasonable 
request. The MCR-ALS algorithm can be found on http://www.mcrals. 
info/. The pre-processed made in this study are performed by the 
Eigenvector toolbox available on https://eigenvector.com/. 
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Table 3 
ALS optimisation with three different spectral initialisation matrices.  

The spectral initialisation 
matrix 

ALS-Optimisation 

Number of 
iterations 

Lack of fit 
(%) 

The variance 
explained (%) 

Segmentation and 
multiple OPA 

184 24.10 94.17 

SIMPLISMA 327 24.14 94.17 
OPA 212 24.14 94.25  
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