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Abstract: Asthma is a complex syndrome associated with episodic decompensations provoked by
aeroallergen exposures. The underlying pathophysiological states driving exacerbations are latent in
the resting state and do not adequately inform biomarker-driven therapy. A better understanding
of the pathophysiological pathways driving allergic exacerbations is needed. We hypothesized that
disease-associated pathways could be identified in humans by unbiased metabolomics of bronchoalve-
olar fluid (BALF) during the peak inflammatory response provoked by a bronchial allergen challenge.
We analyzed BALF metabolites in samples from 12 volunteers who underwent segmental bronchial
antigen provocation (SBP-Ag). Metabolites were quantified using liquid chromatography-tandem
mass spectrometry (LC–MS/MS) followed by pathway analysis and correlation with airway inflam-
mation. SBP-Ag induced statistically significant changes in 549 features that mapped to 72 uniquely
identified metabolites. From these features, two distinct inducible metabolic phenotypes were
identified by the principal component analysis, partitioning around medoids (PAM) and k-means
clustering. Ten index metabolites were identified that informed the presence of asthma-relevant
pathways, including unsaturated fatty acid production/metabolism, mitochondrial beta oxidation
of unsaturated fatty acid, and bile acid metabolism. Pathways were validated using proteomics
in eosinophils. A segmental bronchial allergen challenge induces distinct metabolic responses in
humans, providing insight into pathogenic and protective endotypes in allergic asthma.

Keywords: allergic asthma; saturated fatty acid synthesis; segmental bronchial antigen provocation;
metabolomics; phenotype

1. Introduction

Allergic asthma is a heterogeneous disease that arises from complex epigenetic-
environmental interactions. Multiple pathophysiological pathways interact to produce
a syndrome characterized by episodic airway obstruction, nonspecific bronchial hyper-
responsiveness, and inflammation [1]. In patients with severe or difficult to treat asthma,
acute decompensations are responsible for decreased quality of life [2], unscheduled health-
care delivery increasing costs [3], and may accelerate structural remodeling [3–5], impacting
long-term reduction in lung function [4]. In patients with allergic asthma, episodes of de-
compensation can be provoked by exposure to aeroallergens.

The airway mucosa in patients with allergic asthma is enriched in transitioned epithe-
lial cells, IgE-bearing mast cells, basophils, eosinophils, and Th2 lymphocytes [1,5]. In this
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context, luminal aeroallergens directly activate innate responses in epithelium [6] as well
as cross-link IgE that triggers degranulation and release of proinflammatory mediators,
such as histamine, tryptase, leukotrienes, lipid mediators, and Th2 cytokines [7]. These
mediators act rapidly to cause smooth muscle contraction, increase vascular permeability,
and mucus secretion. In over half of individuals, the immediate allergic reaction is followed
by a more sustained inflammation, the late-phase response [8], characterized by recruitment
of effector Th2 lymphocytes and CD45 expressing leukocytes, with bronchoconstriction,
resulting in a reversible fall in FEV1 and clinical decompensation [9]. At the individual
level, the age of onset, the multiple different types of exacerbators, variable role of innate
inflammation [10], and distinct roles of Th17/Th2 T lymphocyte populations suggest that
distinct pathophysiological processes contribute to the syndrome [11].

Regarding allergic asthma, researchers have focused on identifying disease-relevant
biomarkers in moderate and severe asthma, including in the severe asthma research pro-
gram [12,13] and the Unbiased Biomarkers for the Prediction of Respiratory Disease Out-
come (U-BIOPRED) project [14]. These studies have converged on several main asthma
phenotypes that have distinct clinical features distinguished by differences in onset and
types of inflammation (eosinophilic vs. non) [11]. However, these phenotypes contain
multiple subgroups and overlap substantially [11,15], indicating that more advances in
endotype identification will be impactful for informing precision medicine in asthma.

One such approach involves unbiased analyses of allergic asthmatics in the peak of
the inflammatory response to provide information on the cellular processes controlling
clinical exacerbations. To this end, we have employed segmental bronchoprovocation with
an antigen (SBP-Ag) that has led to the understanding of secreted protein factors promoting
the inflammatory response [16,17]. Knowing that activation produces profound metabolic
compensation in epithelial cells [18], lymphocytes [19], and eosinophils [20], we sought to
apply data-dependent metabolomics profiling to controlled allergen exposure leading to
peak inflammatory response. We present unbiased identification of two distinct metabolic
profiles in a group of allergic asthmatics that were otherwise indistinguishable under basal
conditions. A total of 72 index metabolites were analyzed for pathway enrichment, where
upregulation of saturated fatty acid synthesis and mitochondrial beta oxidation of saturated
fatty acids were observed. Fatty acid biosynthetic pathways were validated by proteomics
in eosinophils. We propose that an analysis of inducible phenotypes may provide novel
insight into latent asthma endotypes.

2. Results
2.1. Demographics

Volunteers in this study averaged 26 ± 5 years of age and resting predicted FEV1
95 ± 16% (Table 1). After the allergen challenge, BAL eosinophil counts rose to 23 ± 21.6 × 104

from 0.01 ± 0.01 × 104 cells/mL, constituting 17.7 to 80.6% of total BAL cells (Figure 1A).
There was marked heterogeneity in the eosinophil count across patients, despite receiving
a standard allergenic dose by PC20. To further understand the relationships of the clinical
phenotypic data, Pearson correlations were performed of physiological measurements and
measures of cellular inflammation in the BALF and plotted as a correlogram (Figure 1B).
Consistent with previous knowledge, the correlogram indicates a strong positive relation-
ship between total cellularity, eosinophils, and polymorphonuclear leukocytes (PMNs,
neutrophils). By contrast, a strong inverse relationship of FEV1 with albuterol reversibility
and a fold change in FeNO (FCFeNO) was observed, whereas FCFeNO was positively
correlated with total cells and eosinophil numbers (Figure 1B).
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Table 1. Subjects’ demographics, n = 12 subjects.

Subject Age SBP-Ag FEV1
(%)

Total BAL Cells
(×104 Cells/mL)

EOS
(%)

PMN
(%) LYM (%) MAC (%) FeNO Blood

EOS/µL

1 23
Pre 75 14.8 1.1 1 3.6 94.3 56 229

Post 145.4 74.5 4.8 6.9 13.8 82 510

2 27
Pre 102 10.4 0.4 0.2 2.5 96.9 19.9 387

Post 233.7 73 1.9 2 23.1 30.1 493

3 31
Pre 135 7.7 0.5 1 4.8 93.7 41.4 290

Post 17.9 51.7 5 7 36.3 59.8 290

4 36
Pre 87 8.9 0.4 0.1 4.8 94.7 77.1 185

Post 68.3 72 1.9 6.8 20.2 66.3 405

5 21
Pre 83 11.1 0.2 0.4 7.2 92.2 49.9 343

Post 76.5 77.2 1.7 3 18.1 66.8 519

6 27
Pre 95 7.1 0.4 1.2 8.6 89.8 40.4 255

Post 221.7 71.3 3.2 6.6 18.9 57.1 510

7 27
Pre 71 6.4 1 1.8 14.5 82.7 47.9 167

Post 90.7 66.3 5.4 8.6 19.7 57 132

8 19
Pre 103 12.5 0.6 0.9 5.3 93.2 24.5 387

Post 193.7 80.6 1 4.8 13.6 69.2 942

9 22
Pre 108 38 0.2 0.7 32.2 66.9 23 202

Post 542.6 72.7 3.6 14.2 9.5 52.5 396

10 27
Pre 83 11.3 ND ND ND ND 28.7 70

Post 12.2 17.7 9 12.4 60.9 55.6 325

11 20
Pre 100 8.6 0.6 0.7 8.8 89.9 49.4 316

Post 263.5 77.8 1.4 12.2 9.6 99.3 941

12 33
Pre 99 9.1 ND ND ND ND ND 105

Post 16.3 29.9 2.1 10.6 57.4 ND 140

Definition of abbreviations: Pre = pre-segmental bronchoprovocation with an allergen (SBP-Ag); Post = 48 h
post-SBP-Ag; FEV1 (%) = forced exhaled volume in 1 s as % predicted; EOS (%) = percentage of eosinophils in BAL
fluid; PMN (%) = percentage of neutrophils in BAL fluid; LYM (%) = percentage of lymphocytes in BAL fluid; MAC
(%) = percentage of macrophages in BAL fluid; FeNO = fractional exhaled nitric oxide; ND = not determined.
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Figure 1. Phenotypic analysis of allergic asthma. (A) BALF eosinophil counts before and after SBP-Ag.
Data are presented as a violin plot to demonstrate response variability. (B) Correlation between
clinical demographic variables. Correlogram of pairwise comparison for study group demographics
(Table 1). Note that change in FeNO is inversely correlated to albuterol reversibility and eosinophil
(EOS) numbers are correlated with total cells and neutrophils (PMNs). Abbreviations: FCFeNO, fold
change of FeNO; Rev, albuterol reversibility.
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2.2. Differentially Regulated Metabolites

Metabolites in cell-free BALF from pre- and post-SBP-Ag were processed and identified
by LC–MS/MS. The complete mass list is shown in Supplemental Table S1. Significantly
changed analytes were identified by pairwise statistical analysis of microarray (SAM).
This pairwise analysis maximized the sample power of the pairwise experimental design
and reduced impact of individual variability [21]. Moreover, SAM accommodated the
nonparametric distribution of metabolite expression characteristic of these pathways. A
total of 549 metabolites whose abundances were significantly changed were identified by
their wide deviations of the expected vs. observed abundances using a high stringency
cut-off of ∆ = 1.0 (dashed line in Supplemental Figure S1). Of these, SBP-Ag increased
the abundance of 428 metabolic features and reduced the expression of 121 metabolic
features (Supplemental Table S2). From these statistically significant metabolic features,
72 metabolites were uniquely identified (Supplemental Table S3).

2.3. Global Metabolomics Identify Distinct Metabolite Responses

We next explored the expression patterns of 549 metabolites whose abundance was
statistically different between pre- and post-SBP-Ag. Using the principal components
analysis (PCA), we observed that the metabolites placed the volunteers into two distinct
groupings after SBP-Ag (Supplemental Figure S2). To confirm this surprising finding,
we analyzed the results using partitioning around medoids (PAM), a well-established
partitioning method that is robust to outlier influence and leads to better interpretation,
as the cluster centers are data points (aka “medoids”) and additional cluster members are
assigned by the nearest method estimation [22,23]. From this analysis, a similar partitioning
was identified in the post-SBP-Ag samples, patients 9, 11, and 6 all representing post-
challenge samples were grouped together, and patients 1, 2, 4, 5, 7, and 10, grouped
together, also representing post-allergen challenge samples, were separated by the second
dimension (Figure 2A). To confirm, K-means clustering was applied using the optimal
clustering size by the elbow method (minimum of three clusters Supplemental Figure S3).
A similar grouping was obtained, where the pre-SBP-Ag samples where closely related,
but the post-SBP-Ag samples were separated by the second dimension and found in two
separate groups (Figure 2B). Collectively, the data from the PCA, PAM, and k-means
clustering led us to conclude that the metabolomics patterns produced at least two distinct
subject groupings.

To further explore the relationships of metabolite profiles to one another and to post-
challenge grouping, two-dimensional hierarchical agglomerative clustering was performed
on the 549 analytes after z-score normalization. In a manner consistent with the PAM/k-
means clustering, hierarchical clustering clearly separated the pre- vs. post-SBP-Ag groups,
and further identified two metabolomic populations in the post-SBP-Ag group (Figure 3A).
One of these subgroups, including subject IDs 6, 11, and 9, clustered on the basis of metabo-
lite expression but also represented those with a high abundance of eosinophils in the BALF
(eosinophil number for each patient is annotated on the top). However, subject IDs 2 and 8
with a high abundance of eosinophils (EOS number in 200 µL BALF > 3 × 105) were not
clustered with subject IDs 9, 11, and 6. We next asked whether sufficient information was
contained in the 72 identified metabolites; hierarchical clustering was performed using this
subset. These metabolites also clustered the volunteers into the same two distinct SBP-Ag
groups; subjects 6, 11, and 9 with the highest eosinophil numbers were distinct (Figure 3B).
These findings indicated that information was contained in the identified groups that
distinguished the SBP-Ag responses.
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Figure 2. Global expression analysis. (A) Partition around medoids (PAM). The abundance of
549 significant metabolites were subjected to PAM. Subjects before challenge were grouped into one
cluster (orange). After challenge, patients were grouped into two distinct clusters (clusters indicated
by blue- and yellow-colored ellipses). (B) K-means clustering. K-means clustering of significant
metabolites. The mean of each centroid is represented by the large-filled symbol. Note that SBP-Ag
produces similar divergence of subjects into two classes with subject no. 12 being indeterminate.

Metabolites 2022, 12, 381 6 of 15 
 

 

 
Figure 3. Hierarchical clustering. (A) Hierarchical cluster for 549 significant metabolites. Metabolite 
abundance was expressed by feature intensity and normalized by the z-score. Metabolites are rows, 
patients are columns. Patient IDs indicated by “-” are baseline (pre) challenge. Each patient is anno-
tated by the number of eosinophils in the BALF sample (number × 104)/mL shown in the bar graph 
at top. Note that three major clusters of patients (columns) were separated by pre- vs. post-treat-
ment. (B) Hierarchical cluster with 72 identified metabolites. At the top is the annotation of eosino-
phil numbers (EOS) and macrophage numbers (Macs) in each sample. Note that, (1) the dendro-
grams are very similar; (2) volunteers subjected to SBP-Ag are clearly separated from the pre-chal-
lenge (columns); and (3) two distinct groupings of post-SBP-Ag are produced. Chemical formulas 
are shown on the right. 

2.4. Pathway Analysis 
To obtain biological understanding, pathway analysis was conducted for the 72 dis-

criminant metabolites. Ten pathways were identified in the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) library, a library consisting of >15,000 compounds. The top-en-
riched pathways included (index metabolites indicated in parentheses): biosynthesis of 
unsaturated fatty acids (palmitic acid, stearic acid), phenylalanine metabolism (hippuric 
acid), porphyrin metabolism (bilirubin, chenodeoxycholate) and fatty acid elonga-
tion/degradation (palmitic acid) (Figure 4A). Similarly, pathways were enriched relative 
to the Small Molecule Pathway Database (SMPDB), a library containing > 40,000 com-
pounds [24]. In a manner consistent with the KEGG library analysis, multiple representa-
tions of fatty acid biosynthesis, elongation, and metabolism were also found (Figure 4B). 
SMPDB pathways identified included phenylacetate metabolism (alpha-N-phenylacetyl-
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Figure 3. Hierarchical clustering. (A) Hierarchical cluster for 549 significant metabolites. Metabolite
abundance was expressed by feature intensity and normalized by the z-score. Metabolites are rows,
patients are columns. Patient IDs indicated by “-” are baseline (pre) challenge. Each patient is
annotated by the number of eosinophils in the BALF sample (number × 104)/mL shown in the
bar graph at top. Note that three major clusters of patients (columns) were separated by pre- vs.
post-treatment. (B) Hierarchical cluster with 72 identified metabolites. At the top is the annotation
of eosinophil numbers (EOS) and macrophage numbers (Macs) in each sample. Note that, (1) the
dendrograms are very similar; (2) volunteers subjected to SBP-Ag are clearly separated from the
pre-challenge (columns); and (3) two distinct groupings of post-SBP-Ag are produced. Chemical
formulas are shown on the right.
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2.4. Pathway Analysis

To obtain biological understanding, pathway analysis was conducted for the 72 dis-
criminant metabolites. Ten pathways were identified in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) library, a library consisting of >15,000 compounds. The top-enriched
pathways included (index metabolites indicated in parentheses): biosynthesis of unsatu-
rated fatty acids (palmitic acid, stearic acid), phenylalanine metabolism (hippuric acid), por-
phyrin metabolism (bilirubin, chenodeoxycholate) and fatty acid elongation/degradation
(palmitic acid) (Figure 4A). Similarly, pathways were enriched relative to the Small Molecule
Pathway Database (SMPDB), a library containing > 40,000 compounds [24]. In a manner
consistent with the KEGG library analysis, multiple representations of fatty acid biosyn-
thesis, elongation, and metabolism were also found (Figure 4B). SMPDB pathways identi-
fied included phenylacetate metabolism (alpha-N-phenylacetyl-L-glutamine), glycerolipid
metabolism (palmitic acid), plasmalogen synthesis (stearic acid), mitochondrial beta oxida-
tion of saturated fatty acids (L-octanoylcarnitine), bile acid biosynthesis (chenodeoxycholic
acid glycine conjugate) (Figure 4B). Collectively, these data identified a focal group of
metabolites whose expressions were further examined.
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metabolites in the BALF data set relative to that of the entire pathway. Significance of enrichment is
indicated by color, as indicated in the scale on the right. (A) KEGG library. (B) SMPDB library. Note
that saturated fatty acid synthesis and metabolism are highly enriched in both analyses.

2.5. SBP-Ag Induced Changes in Metabolite Expression Produces Two Classes of Response

From this analysis, 10 pathway-informing “index” metabolites that mapped to bi-
ologically relevant pathways whose pairwise changes in abundance was examined in
response to SBP-Ag. These metabolites included L-tryptophan, whose abundance changed
from 0.8 ± 0.3 to 2.9 ± 2.8 (these and subsequent values are given as median ± 25–75%
IQR × 103 intensity) after SBP. Octanoyl-L-carnitine increased from 4.9 ± 4.1 to 24.9 ± 36.5
after SBP. Hippurate went from 0.7 ± 0.6 to 2.4 ± 11.3. Phenylacetylglutamine changed
from 0.99 ± 0.4 to 3.8 ± 7.4. Stearic acid increased from 63.7 ± 270 to 345.9 ± 475. Palmitic
acid increased from 153 ± 386 to 488.6 ± 451.1.

To better visualize the differences between the two post metabolic phenotypes elicited
by SBP-Ag challenge, the 10 index metabolites are plotted for each grouping (Figure 5A–G).
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Although these numbers are small, these data suggest distinct distributions of metabolite
concentrations for the post-SBP subgroups as indicated by the violin contour estimation
(Figure 5A–H).
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isons of intensities of major metabolites for the pre-challenge (Pre) or two distinct post-challenge
samples. Each symbol is a BALF measurement: Pre, before SBP-Ag; Post_1, subject IDs 1, 2, 3, 4,
5, 7, 10, and 12 after SBP-Ag; Post_2, subject IDs 6, 8, 9, and 11 after SBP-Ag. Subject ID 8 was
included in Post_2 subgroup because it was closer to the Post_2 subgroup in both PAM and k-
means clustering. (A) 3-Methyl hippuric acid (C10H11NO3). (B) Octanoyl-L-carnitine (C15H29NO4).
(C) Hippurate (C9H9NO3). (D) L-tryptophan (C11H12N2O2). (E) Chenodeoxycholate (C26H43NO5).
(F) Phenylacetylglutamine (C13H16N2O4). (G) Stearic acid (C18H36O2). (H) Palmitic acid (C16H32O2).
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2.6. Correlations of Metabolite Abundance with Cellular Inflammation

To better understand the complex relationships between the BALF metabolites and
immune cell accumulation, a systematic correlation analysis was conducted. Here, the
Pearson correlations of the abundance of the index metabolites and total cell counts in the
same sample and the FCFeNO were calculated and presented as a correlogram. In this
analysis, we grouped the two subgroups together to enhance power.

Consistent with the global analysis and that of the hierarchical clustering, the abun-
dance of 3-methyl hippuric acid (C10H11NO3) was inversely correlated with eosinophil
(Figure 6A). By contrast, tryptophan (C11H12N2O2) was positively correlated with eosinophil
numbers as well as the octanoyl-L-carnitine (C15H29NO4) and palmitic acid (C16H32O2)
(Figure 6A).
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Figure 6. Correlation of metabolites and phenotypic features. Index metabolites were subjected to
correlation analysis with BAL immune cell counts and FENO. (A) Correlation matrix correlogram
from each sample (pre- and post-SBP-Ag) was used for the correlation. For each pairwise comparison,
the Pearson correlation coefficient is indicated by the color scale (at right). Note the inverse correlation
between 3-methyl hippuric acid (C10H11NO3) and leukocyte abundance (PMN, EOS, and total cells).
In contrast, a strongly positive correlation was observed between C11H12N2O2 (L-Tryptophan) and
eosinophil counts and a strong correlation between C15H29NO4 (octanoyl-L-carnitine) and eosinophil
number. (B–D) Correlation plots of highly significant associations. (B) Linear regression modeling
for Log2(Eos) vs. C10H11NO3 (3-methyl hippuric acid) abundance. Scatterplot and linear regression
(in red) shown. Confidence interval of the regression is indicated by shading. Statistical significance
(p) is indicated. (C) Log2(Eos) vs. C11H12N2O2 (L-tryptophan).
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The most significant correlations were subjected to linear regression after regulariza-
tion of the eosinophil count by Log2 transformation. Highly statistically significant linear
regression relationships were observed for the inverse relationship between 3-methyl hip-
puric acid (C10H11NO3) and Log2 transformed eosinophil number (Figure 6B), tryptophan
(C11H12N2O2) and Log2 transformed eosinophil number (Figure 6C), and octanoyl-L-
carnitine (C15H29NO4) with Log2 transformed eosinophil number (Figure 6D).

2.7. Validation of Presence of Fatty Acid-Related Proteins in Blood Eosinophils

Because the changes in metabolites part of fatty acid pathways were correlated with
the change in BAL eosinophil numbers, we analyzed the most abundant proteins present
in blood eosinophils from subjects with allergies (see Supplement Methods and [25] for
more details). In that previous publication [25], >5300 proteins were measured with relative
abundances between 10.1 and 27.8. Here, we analyzed the 2000 most abundant of these
proteins (abundance between 20.7 and 27.8) using DAVID Bioinformatic Resources 6.8
(Beta) (National Institute of Allergy and Infectious Diseases (NIAID), NIH) [26] to identify
proteins part of the fatty acid pathway. We found four highly significant pathway related
to fatty acid, including fatty acid metabolism (p(Benjamini corrected) = 1.2 × 10−5); fatty
acid degradation (p(Benjamini corrected) = 1.4 × 10−4); and fatty acid beta-oxidation
(p(Benjamini corrected) = 7.2 × 10−4) (Supplemental Table S4). A total of 39 proteins were
part of these pathways. Therefore, these data confirm the tight association between the
eosinophil and fatty acid metabolism that we identified by analysis of the BALF metabolites.

3. Discussion

In this study, metabolomics profiling was applied to SBP-Ag to identify allergen-
inducible phenotypes with the intent of elucidating potential endotypes of exacerbations.
A striking finding is that unbiased associations of 549 metabolites identified at least two
distinct metabolic profiles in response to the aeroallergen challenge that only emerged after
the SBP-Ag challenge. From 72 identified metabolites, we identify the pathway signatures
of fatty acid synthesis pathways, mitochondrial beta oxidation of saturated fatty acids, and
other pathways relevant to asthma. From this pathway analysis, a discriminant group of
10 index metabolites were studied. These index metabolites show complex positive and
negative relationships with each other, as well as measures of cellular inflammation.

Previous studies using blood and urine metabolic profiling have largely focused on
differentiating asthma as a disease vs. normal controls [27]. This is the first demonstration,
to our knowledge, of an unbiased/data-dependent approach using metabolic profiling to
identify allergen-inducible phenotypes in allergic asthma and offer potential approaches
for elucidating disease-relevant endotypes.

Our study focuses on the application of unbiased identification of inducible endotypes
in acute asthma exacerbations. In support of this approach, we note that in the pre-challenge
state, the resting abundance of metabolites are overlapping and do not discriminate between
the response groups. By contrast, allergen challenge induces wide variations in metabolite
abundance, indicated by the PCA, PAM, k-means clustering, and hierarchical clustering
analysis. Importantly, these differences are not explainable by differences in the analyte
collection since all patients were sampled under a standardized protocol.

Substantial effort has been devoted toward identifying endotypes of asthma to inform
precision treatments. Large scale cohorts, such as the SARP [12,13] and U-BIOPRED [14],
have approached this problem using diverse sources of information, including age of
onset, type of inflammation, exacerbators and presence of allergy, and/or remodeling to
identify patients who may have similar endotypes [11]. However these clusters still contain
substantial within-cluster heterogeneity, overlapping features [11], indicating that more
work is needed to arrive at precision endotypes that are generalizable.

In this study, we focused on the development of a rigorous platform to analyze BALF
metabolites and provide a proof-of-principle that distinct metabolic outcomes can be gener-
ated by an allergen challenge. Here, we make the surprising finding that there are at least
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two metabolic outcomes of the allergen challenge; because this study cohort was restricted
to mild–moderate asthmatics, we anticipate a greater number of metabolic phenotypes in
the larger spectrum of allergic disease. We also note that a more robust clinical classification
may be achieved by the integration of additional data types, including protein profiling,
transcriptomics [28], blood based biomarker panels [29], and clinical features.

Both KEGG and SMDB pathway analyses show that SBP-Ag induces changes in
fatty acid metabolism, whose presence has been validated by blood eosinophil proteomic
analyses. Previous mechanistic work has shown that fatty acid oxidation (FAO) enzymes
significantly increased in a mouse model from OVA or HDM exposure [30]. In this model,
HDM exposure enhanced the expression of the rate-limiting enzyme of the FAO pathway,
carnitine palmitoyltransferase 1 (CPT1 or CPT1A), a pathway that regulates the entry of
long-chain fatty acids into the mitochondria through converting acyl-CoAs to acylcarnitine
derivatives. CPT1 expression is upregulated in the airway epithelium, neutrophils, and
Siglec-F+ eosinophils, and its neutralization by a small molecule inhibitor reduced allergen
induced reactivity [30]. Interestingly, inhibition of FAO reduced leukocytic inflammation,
leading the investigators to propose that activated leukocytes require FAO to produce ATP.

It is established that IL-5 and eosinophils are associated with the late phase response
to an antigen and eosinophils induce ROS generation [31,32]. Defective mitochondrial beta
oxidation of fatty acids has been linked to metabolic syndrome [33] and positively linked to
asthma severity [34]. It will be of interest to examine dynamic changes in mitochondrial beta
oxidation in future studies, controlling for levels of insulin resistance and body mass index.

In this study, we further identified hippurate and 3-methyl hippuric acid as being
index metabolites associated with a subgroup of high eosinophil responses. Previous
work using nuclear magnetic resonance to measure exhaled breath condensates identified
(and validated) hippurate as a discriminant marker of stable asthmatics versus normal
controls [35]. However, this study did not examine the response to the aeroallergen
challenge. Our work demonstrates this induction and relates hippuric acid metabolic
pathways to eosinophils.

We note the presence of chenodeoxycholate (CDCA) in our index metabolites. Of
interest, CDCA is a natural farnesoid X receptor (FXR) agonist and has been expressed
in a mouse model of allergic airway inflammation, suggesting its role in normal and
pathological lung physiology [36]. FXR functions as an antagonist to innate NF-κB sig-
naling [37]. Interestingly, exogenous treatment with CDCA reduced OVA induced TNF
secretion, cellular infiltration, goblet cell hyperplasia, and Th2 cytokine expression [36].
These findings suggest that some of the index metabolites may be involved in the resolution
of inflammation.

4. Materials and Methods

See Online Supplement for additional methods.

4.1. Segmental Bronchoprovocation with Allergen (SBP-Ag)

The University of Wisconsin–Madison Health Sciences Institutional Review Board
(Madison, WI, USA) approved the study, and each participant provided written informed
consent. As previously described [38], subjects had mild allergic asthma (aeroallergen
skin prick test positive, FEV1 albuterol reversibility ≥ 12% or methacholine provocative
concentration causing a 20% fall in FEV1 ≤ 8 mg/,mL pre-albuterol FEV1 ≥ 70%, and post-
albuterol FEV1 ≥ 80%) and none of the subjects were using inhaled or oral corticosteroids.
Participants underwent the bronchial allergen challenge (BAC) to determine AgPD20,
the allergen provocation dose resulting in a 20% reduction in FEV1 within 1 h of the
challenge. Three allergens were used, including Dermatophagoides farinae (house dust mite),
GS ragweed mix, or Fel d1 (cat) (all from Greer Labs, Lenoir, NC, USA). One month later, a
baseline bronchoscopy with BAL was performed followed by SBP-Ag at a dose of 20% of
each subject’s AgPD20. Forty-eight hours later, bronchoscopy with BAL was performed
in the same challenged segment. The volume of saline for BAL was 160 mL and as an
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average ± SD, 115 ± 15 mL were recovered. A total of 14 subjects finished the SBP-Ag
protocol and 2 were excluded for lower percentages of EOS in BAL after SBP-Ag (<15%).
BAL cell differentials were determined by counting a total of 1000 cells on two cytospin
preparations stained with the Wright–Giemsa-based Hema-3 (Thermo Fisher, Pittsburgh,
PA, USA). Cell-free BALF were stored at −80 ◦C.

4.2. LC–MS/MS Analysis of BALF Samples

LC–MS/MS experiments were performed using a Bruker Impact II quadrupole time-
of-flight (QTOF) mass spectrometer (Bruker Daltonics, Bremen, Germany) coupled to a
Waters nanoACQUITY UPLC system (Waters Corporation, Milford, MA, USA) using the
workflow in Figure 7. The metabolites were loaded on a Waters nanoEase M/Z HSS T3
trap column (100 Å, 5 µm, 300 µm × 50 mm) for online desalting. A Waters nanoEase
M/Z HSS T3 column (100 Å, 1.8 µm, 300 µm × 100 mm) was used for reversed-phase
separation of the metabolites. The LC–MS/MS data were acquired in both positive and
negative ion modes. For positive ion modes, mobile phases A and B were 0.1% formic acid
in H2O and 0.1% formic acid in ACN, respectively. For negative ion modes, mobile phases
A and B were 0.1% (m/v) ammonium bicarbonate in H2O and 0.1% (m/v) ammonium
bicarbonate in ACN, respectively. The metabolites were trapped on the trap column for
5 min at 8 µL/min flow rate, and then were separated on the reversed-phase column at
4 µL/min flow rate using a 30 min stepwise gradient (99% A-0 min, 99% A-3 min, 1% A-10
min, 1% A-24 min, 99% A-24.2 min, 99% A-30 min). The column temperature was 40 ◦C.
The metabolites eluted from the column were infused into the mass spectrometer using
an electrospray ion (ESI) source. The end plate offset was 500 V, and the capillary voltage
was 4500 V for the positive ion mode, and 3500 V for the negative ion mode. Nebulizer gas
pressure was set to 0.5 Bar. Dry gas flow rate was 4.0 L/min, and dry gas temperature was
220 ◦C. MS/MS data were acquired in a data-dependent acquisition, dynamically choosing
the top 10 precursor ions from the surveyor scan (MS) for collision-induced dissociation
(CID). The same precursor ion was excluded after 2 spectra, and released after 0.3 min.
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4.3. Data Analysis

Bucket (mass) lists in the positive and negative modes were generated using the T-ReX
3D workflow in MetaboScape 4.0 (Bruker Daltonics, Bremen, Germany). The mzDelta
was set to 0.50 mDa. The maximum charge state was set to 3, and the intensity threshold
was set to 0. The minimum number of features for the result was set to 5. The bucket
lists in the positive and negative modes were merged into one bucket list with 1.0 ppm
m/z tolerance. Metabolites were identified by searching the LC–MS/MS data against
the databases downloaded from MassBank of North America (MoNA), including NoNA-
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export-LipidBlast, NoNA-export-Experimental_Spectra, NoNA-export-HMDB, NoNA-
export-MassBank, NoNA-export-LC–MS-MS_Spectra databases. Pathway analysis was
performed using KEGG and SMPDB libraries.

4.4. Statistical Analysis

Significant differences in analyte abundance were determined by an empiric Bayes
approach using statistical analysis of microarray (SAM) [21]. In brief, SAM assigns a
score to each analyte on the basis of change in metabolite expression relative to the stan-
dard deviation of repeated measurements. For metabolites with scores greater than an
adjustable threshold, SAM uses permutations of the repeated measurements to estimate
the false discover rate. In this study, statistical significance was adjusted, a delta of 1.0, and
expressed as a “q-value”, adjusted for multiple hypothesis testing. The principal compo-
nent analysis was in R (v.3.6). Hierarchical clustering involved using metabolic feature
intensities in the pheatmap package (version 1.0.12) in R. Pathway enrichment of signifi-
cant metabolites was performed in MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/,
accessed on 1 May 2021), and mapped to KEGG pathways. The matrix and graphical
representation of Pearson’s correlations were calculated for metabolites and features by the
corrplot library (version 0.92) in R. Log transformation of cell counts was used to satisfy
parametric requirements.

5. Limitations

Our study is limited by small numbers and limited numbers of metabolite identifica-
tions. Improved methods to enhance the number of metabolite identifications will extend
the biological pathways. We also note that some index metabolites are components of
multiple pathways; more improvements in pathway inference will enhance the application
of metabolomics to provide actionable precision endotyping in the pathophysiology of
asthma. As discussed earlier, we recognize that our study is limited to mild–moderate
allergic asthma. Moreover, the correlative analyses performed at the peak of the inflam-
matory response used cell differential only, while inclusion of BAL mediators (cytokines,
matrix proteins, etc.) would have been very informative to relate with the identified
BAL metabolites.

6. Conclusions

Unbiased identification of inducible phenotypes in experimentally–induced asthma
exacerbations was performed using high resolution MS of a segmental bronchial allergen
challenge. We identified disease-relevant metabolic pathways, including saturated fatty
acid synthesis, mitochondrial beta oxidation, and bile acid synthesis.
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of proteins part of fatty acid pathways.
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