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Abstract: The therapeutic management of Crohn’s disease (CD), a chronic relapsing–remitting
inflammatory bowel disease (IBD), is highly challenging. Surgical resection is sometimes a necessary
procedure even though it is often associated with postoperative recurrences (PORs). Tofacitinib, an
orally active small molecule Janus kinase inhibitor, is an anti-inflammatory drug meant to limit PORs
in CD. Whereas bidirectional interactions between the gut microbiota and the relevant IBD drug are
crucial, little is known about the impact of tofacitinib on the gut microbiota. The HLA-B27 transgenic
rat is a good preclinical model used in IBD research, including for PORs after ileocecal resection (ICR).
In the present study, we used shotgun metagenomics to first delineate the baseline composition and
determinants of the fecal microbiome of HLA-B27 rats and then to evaluate the distinct impact of
either tofacitinib treatment, ileocecal resection or the cumulative effect of both interventions on the
gut microbiota in these HLA-B27 rats. The results confirmed that the microbiome of the HLA-B27
rats was fairly different from their wild-type littermates. We demonstrated here that oral treatment
with tofacitinib does not affect the gut microbial composition of HLA-B27 rats. Of note, we showed
that ICR induced an intense loss of bacterial diversity together with dramatic changes in taxa relative
abundances. However, the oral treatment with tofacitinib neither modified the alpha-diversity nor
exacerbated significant modifications in bacterial taxa induced by ICR. Collectively, these preclinical
data are rather favorable for the use of tofacitinib in combination with ICR to address Crohn’s disease
management when considering microbiota.

Keywords: Crohn’s disease; HLA-B27 transgenic rat model; microbiota; tofacitinib; ileocecal resection;
postoperative occurrence

1. Introduction

Crohn’s disease (CD) is a chronic relapsing–remitting pathology with a multifaceted
etiology involving genetic predisposition, environmental factors and intestinal dysbiosis
combined with an aberrant immune reaction against the gut microbiota [1,2]. The role of
the microbiome and its associated metabolome in the host’s immune and metabolic patho-
logical signaling in CD is well established so far [3–5]. The therapeutic management of
Crohn’s disease is highly challenging, as no treatments are yet curative. Indeed, many CD
patients are non-responders and/or become (progressively) refractory to anti-inflammatory
molecules. Of note, interactions between the intestinal microbiota and relevant IBD drugs
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are crucial, as treatments may directly affect taxonomic microbial profiles, whereas spe-
cific commensal microbes can conversely metabolize therapeutic molecules and strongly
modify pharmacokinetics [6]. This may obviously contribute to explaining distinct indi-
vidual responses and prognostic outcomes to various treatments of this complex chronic
inflammatory bowel disease [7].

Moreover, given the high frequency of necessary surgical resections of macroscopic
ileocecal or colonic lesions (30% to 50% throughout the patient’s lifetime), predominant
subclinical (endoscopic) postoperative recurrences at anastomotic sites (reaching up to
70% rate) and further clinical extents also have to be taken into account to improve the
efficiency of either prophylactic or therapeutic approaches. The physiopathology-sustaining
postoperative recurrences of Crohn’s disease remain unknown, although interactions
between the enteric and systemic immune system and the gut microbiota at mucosal sites
are highly suggested [8,9]. Additionally, it is also well established that overall intestinal
surgeries, including ileocecal resection and colorectal surgery, can strongly modify the
gut microbiome structure and affect its functionality [10–14]. Collectively, gut microbiota
perturbation is thus central in (i) the contribution of the clinical parameters of Crohn’s
disease (initiation, maintenance and perpetration of inflammation); (ii) the postoperative
recurrence of the disease, defining resilience and remission following surgical intervention;
and (iii) drug-based therapeutic responses, considering bidirectional interactions between
microbes and active molecules.

The HLA-B27/β2 microglobulin transgenic rat is a good model for mimicking in-
flammatory disorders broadly used in IBD research. It includes several drugs [15–17] and
dietary interventions targeting colitis-likely diet types, such as exclusive enteral nutrition
impact [18], nutrients [19,20], minerals [21], antioxidants [22,23], prebiotics [24–26] and
probiotics [24,27–29]. The HLA-B27 rat model has revealed gut dysbiosis with similar
intestinal microbiome traits to those seen in CD [30–35]. Recently, a reliable model of
postoperative recurrence of gut inflammation was successfully modeled via ileocecal re-
section in HLA-B27 transgenic rats [29]. In addition, based on evidence that an abnormal
JAK/STAT activation is involved in postoperative occurrence [36], a 2-week preventive
treatment with tofacitinib—a potent and orally active small-molecule Janus kinase inhibitor
highly selective to JAK-1 and JAK-3—is thus a favorable treatment. In the same vein, tofaci-
tinib could prevent postoperative recurrences of Crohn’s disease via the abovementioned
model of ileocecal resection in HLA-B27 transgenic rats. This was achieved through a
pilot and exploratory study derived from a more extensive functional preclinical study
(33 animals). In the present study, we used shotgun metagenomics to first delineate the
baseline composition and determinants of the fecal microbiome of HLA-B27 rats and then,
whereas little is known on the impact of tofacitinib on the gut microbiota [6,37] to evaluate
the distinct impact of either a two-week tofacitinib treatment, ileocecal resection or the
cumulative effect of both interventions on the gut microbiota in HLA-B27 rats.

2. Results
2.1. Bacterial Intestinal Ecology of the HLA-B27 Rat at Baseline (W9)

When comparing the fecal microbiota composition of 9-week-old age-matched wild-
type (not transgenic) rats (n = 2) with HLA-B27 (n = 7), the overall alpha diversity
was not affected, as reported by the Chao1, Simpson and Shannon indices (respectively,
Figure 1A-B-C). PCoA multivariate analysis clearly revealed significant differences between
the two groups (Figure 1D) (p-value = 0.03). Of note, the relative abundance of bacterial
species of individuals was relatively consistent within groups independent of any cage
or gender effect both at the phylum and species levels (Figure 2A and B, respectively).
However, as previously reported, the distribution of bacterial taxa from HLA-B27 showed
substantial differences within the dominant species (>1% of relative abundance) corre-
spondingly in wild-type and transgenic rats (Figure 2C,D). Indeed, some dominant and
rarer taxa were significantly overrepresented in HLA-B27. Of note, Akkermansia muciniphila
was drastically more present, dropping from 0.6% in wild-type rats to up to 21% (p < 0.05).
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Prevotella rara and Prevotella marseillensis, which are undetectable in wild-type rats, both
reached 8% in HLA-B27 (p < 0.05 and p < 0.01). Among the rare species detected in the
wild-type animals, several taxa were also strongly more abundant, with fold increases
ranging from 4 to 200 times, like some Bacteroides spp. and Alistipes communis and several
Clostridiaceae. Conversely, specific bacteria in the wild-type animals had selectively less
abundance when compared with HLA-B27 (Figure 3C,D). This includes, for instance, Mirac-
ulum spp. (p < 0.05); Duncaniella spp. (p < 0.05); Bacteroides caecimuri (p < 0.05); Enterococcus
faecalis; and E. coli.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 16 
 

wild-type animals, several taxa were also strongly more abundant, with fold increases 
ranging from 4 to 200 times, like some Bacteroides spp. and Alistipes communis and several 
Clostridiaceae. Conversely, specific bacteria in the wild-type animals had selectively less 
abundance when compared with HLA-B27 (Figure 3C,D). This includes, for instance, Mi-
raculum spp. (p < 0.05); Duncaniella spp. (p < 0.05); Bacteroides caecimuri (p < 0.05); Enterococ-
cus faecalis; and E. coli. 

 
Figure 1. Distinct α- and β-diversity in intestinal ecology of wild-type and transgenic HLA-B27 rats. (A) 
Chao1 α−diversity index; (B) Shannon α−diversity index; (C) Simpson α−diversity index. Box and 
whisker plots for wild-type (white bars) and HLA-B27-Tg rats (gray bars). (D) Bray–Curtis distance in 
principal coordinate analysis as β-diversity measurement between wild-type (W9-nTg) and transgenic 
HLA-B27 rats (W9-Tg). Statistically significant p-values are marked with an asterisk. * p < 0.05; ns: non-
significant. 

 

Figure 1. Distinct α- and β-diversity in intestinal ecology of wild-type and transgenic HLA-B27
rats. (A) Chao1 α-diversity index; (B) Shannon α-diversity index; (C) Simpson α-diversity index.
Box and whisker plots for wild-type (white bars) and HLA-B27-Tg rats (gray bars). (D) Bray–Curtis
distance in principal coordinate analysis as β-diversity measurement between wild-type (W9-nTg)
and transgenic HLA-B27 rats (W9-Tg). Statistically significant p-values are marked with an asterisk.
* p < 0.05; ns: non-significant.

2.2. Impact of Tofacitinib Treatment on Wild-Type and HLA-B27 Rat Microbiota

As a pilot study, the impact of a 2-week daily oral treatment with tofacitinib on
microbiota composition was evaluated in five rats (four HLA-B27 and one wild type) and
compared with saline (three HLA-B27 and one wild type). Paired evolutions in the nine
individuals following the respective treatments only showed moderate and inconsistent
changes (Figure 4). The overall impact of tofacitinib on the rat microbiome thus appears
to be marginal and no more marked than the slight 3-week time shift of the commensal
inhabitants (Figure 5A,B). Consequently, no significant effect of either the 2-week PBS
or tofacitinib treatments on fecal microbiota alpha diversity was identified at week 12
(Figure 6A), and neither is depicted by Bray distance following PCoA multivariate analysis
(p-value = 0.296) (Figure 6D).
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Figure 2. Distinct bacterial relative abundances of the fecal microbiota of wild-type and transgenic
HLA-B27 rats. (A) Individual relative abundance at the phylum level and (B) at the species level.
(C) Selective representation of the dominant species (>1% in wild-type rats) in wild-type and HLA-B27
rat groups. (D) Selective representation of the dominant species (>1% in HLA-B27 rats) in wild-type
and HLA-B27 rat groups. Data are expressed in relative % of total phylum and species abundance,
respectively, for wild-type and HLA-B27-Tg rats.
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Figure 3. Distinct bacterial species relative abundances of the fecal microbiota of wild-type (white
bars) and transgenic HLA-B27 (grey bars) rats. (A) Representation of bacterial taxa overrepresented in
HLA-B27 rats among dominant species (>1% of relative abundance). (B) Representation of bacterial
taxa overrepresented in HLA-B27 rats among sub-dominant species (<1% of relative abundance).
(C) Representation of bacterial taxa underrepresented in HLA-B27 rats among dominant species
(>1% of relative abundance). (D) Representation of bacterial taxa underrepresented in HLA-B27 rats
among sub-dominant species (>1% in HLA-B27 rats).
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Figure 4. Impact of 2-week oral tofacitinib treatment on rat gut microbiota. Individual bacterial
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rats. Animals were fed with either saline (PBS) or tofacitinib (Tofa). Data are expressed in relative %
of total species abundance.
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Figure 5. Impact of tofacitinib on the gut microbiota of HLA-B27 rats. (A) Bacterial species relative
abundance of the fecal microbiota of wild-type HLA-B27 rats fed with either saline (PBS) or tofacitinib
(Tofa) before (W9) or after (W12) a 2-week oral treatment. Data are expressed in % of total species
abundance. (B) Bray–Curtis distance (principal coordinate analysis) as a β-diversity measurement of
fecal microbiota before saline (PBS-W9) or tofacitinib (TOFA-W9) or after corresponding treatments,
respectively, PBS-W 12 and TOFA-W12.
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The most noticeable changes are represented in Figure 7. The majority of taxa, such 
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Figure 6. Impact of tofacitinib and ileocecal resection (ICR) on rat fecal microbiota. (A) Chao1
α−diversity index of 2-weeks saline- (PBS) and tofacitinib-treated rats before ICR (W9). (B) Chao1
α−diversity index of 9-weeks saline- (PBS) and tofacitinib-treated rats 6 weeks after ICR. (C) Chao1
α−diversity index of all rats 6 weeks after ICR (red bars). Box and whisker plots for PBS (blue
bars) and tofacitinib (green bars) before ICR (plain bars) or after ICR (hatched bars). Statistically
significant p-values are marked with an asterisk and written in bold. *** p < 0.001, ns: non-significant.
(D) Bray–Curtis distance in the principal coordinate analysis as β-diversity measurement between
saline- (W12-PBS) and tofacitinib-treated rats (W12-TOFA).

2.3. Impact of Ileocecal Resection (ICR) on Wild-Type and HLA-B27 Rat Microbiota

All animals (n = 9) were subjected to ileocecal surgery, whereas treatments (either
saline or tofacinib, respectively, three HLA-B27 and one wild type and four HLA-B27 and
one wild type) were maintained for 6 weeks before microbial composition achievement.
The distinct treatments (saline or tofacitinib) in both wild-type and transgenic animals had
no major effect, with similar respective alpha-diversity Chao1 indices among the groups
(Figure 6A,B). However, ICR strongly modified the fecal bacterial taxonomy of all animals,
as demonstrated by a significant reduction in Chao1 (p < 0.01), corresponding to a decrease
of nearly 50% in OTU richness (Figure 6C). The marked changes with ICR are evidenced
by significant PCoA multivariate analysis at week 18 compared with week 9 and week 12
(p-value = 0.001) (Figure 7A).
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eggerthii and Phascolarctobacterium succinatutens, were specifically influenced by tofacitinib 
in the context of ICR (Supplementary Figure S1).  
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Figure 7. Impact of ileocecal resection (ICR) on rat fecal microbiota. (A) Bray–Curtis distance in
principal coordinate analysis (PCoA) as β-diversity measurement before W9 and W12 and after ICR
(W18). (B) Representation of changes in bacterial taxa before (white bars) and after ICR (black bars)
for the most dominant species. (C) Representation of bacterial taxa overrepresented after ICR for the
most dominant species. Data are expressed in relative % of total species abundance.

The most noticeable changes are represented in Figure 7. The majority of taxa, such
as Muribaculaceae and Akkermansia muciniphila—representing up to 25% of the relative
abundance at baseline—became undetectable after ICR, whereas rare bacterial species
like Ligilactobacillus murinus and Escherichia coli each dropped to near 20% of the relative
abundance 6 weeks post-surgery (Figure 7B). In addition, ICR led to a significant increase in
(i) Lactobacillus spp. and some anaerobic taxa, such as Bacteroides uniformis and Clostridium
representatives (Enterocloster clostridioformis and C. cuniculi). The genus Duncaniella (D.
muris and unidentified species) and Prevotella spp. (P. rara and P. marseillensis), which
were all at least represented by 2% of the fecal microbiota, became negligible in terms of
abundance (Figure 7C). The overall drastic changes in microbial richness and composition
associated with ICR are also visualized in a heatmap (Figure 8). In the same vein, our
principal coordinate analysis revealed a non-significant Bray–Curtis distance between the
animals between week 9 and week 12, regardless of treatments (saline versus tofacitinib),
whereas a significant extended distance was demonstrated for all animals at week 18, after
ICR; treatment-discriminating saline with tofacitinib had no overall effect, as seen at week
18 when combined with ICR (p-value 0.147) (Figure 9). However, the analysis of fecal
microbiota in the experimental design focused on the most abundant bacterial species and
showed that treatment with tofacitinib could recapitulate some rare but specific changes.
Only a few bacterial species, such as Akkermansia muciniphila, Bacteroides clarus, Bacteroides
eggerthii and Phascolarctobacterium succinatutens, were specifically influenced by tofacitinib
in the context of ICR (Supplementary Scheme S1).
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Figure 8. Impact of ileocecal resection (ICR) on HLA-B27-Tg rat fecal microbiota. Heatmap repre-
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ary.  
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Figure 8. Impact of ileocecal resection (ICR) on HLA-B27-Tg rat fecal microbiota. Heatmap represen-
tation of the relative abundance of 135 bacterial taxa in individual rats before and 6 weeks after ICR.
Warm (red-like) colors indicate the most abundant species, whereas cold (blue-like) colors indicate
low abundance. White is unchanged abundance and light red, pink, light blue are intermediary.
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duced by ICR.  
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of C. arthromitus-promoted inflammation. It may support pluralism redundancy among 
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the bacterium is linked to an inflammatory context, whereas it has been largely claimed 
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Figure 9. Impact of tofacitinib and ileocecal resection (ICR) on HLA-B27-Tg rat fecal microbiota.
Bray–Curtis distance in principal coordinate analysis (PCoA) as β-diversity measurement for saline
and tofacitinib before ICR (W9-PBS, W19-TOFA, W12-PBS and W12-TOFA) and after ICR (W18-PBS
and W18-TOFA).

3. Discussion

The aim of this “mostly descriptive” research study was to delineate the baseline
composition and changes in the fecal microbiome of rats in the context of spontaneous
inflammation and follow further treatments to target this original Crohn’s disease model.
The present study (i) confirms that the microbiome of HLA-B27 rats is fairly different from
their wild-type littermates and (ii) indicates that oral treatment with tofacitinib in HLA-B27
rats does not affect the gut microbial composition and (iii) neither increases the loss of
bacterial diversity nor exacerbates dramatic changes in (pro-inflammatory) taxa induced
by ICR.

Indeed, although only two age-matched wild-type rats were used, we first confirmed
that HLB-B27 expression in the Fisher genetic background per se clearly modified the
composition of fecal microbiota compared to littermates. This was previously reported
in both the Fisher and the Lewis rat genetic backgrounds, which are both associated with
gut inflammation [35]. Of note, HLA-B27 transgenic rats in a third genetic background
i.e., Dark Agouti, resistant to gut inflammation and without arthritis traits, showed no
overall modification of intestinal microbiota. In this context, it is, however, difficult to
define specific dysbiotic microbes in HLA-B27 rats, as they are highly dependent on
individuals (along with time, according to disease variability); the environment; genetic
backgrounds; and even the anatomical sample type and site, e.g., the cecum and colon,
lumen or mucosa and fecal pellets. Gill and colleagues hypothesized the pro-inflammatory
pathobiont role of Candidatus arthromitus (segmented filamentous bacteria, also known as
SFB), which is predominant in both HLA-B27 Levis and Fisher rats but lacking in Dark
Agouti rats. On the one hand, Candidatus arthromitus was not detected in either wild-type
or HLA-B27 Fisher rats from our facility, suggesting the non-essential, non-universal role
of C. arthromitus-promoted inflammation. It may support pluralism redundancy among
deleterious bacterial species according to the environment. On the other hand, the increase
in Akkermansia muciniphila in HLA-B27 Fisher rats we noticed here was also previously
reported in spondyloarthritis models. The dual role of Akkermansia is intriguing, as here,
the bacterium is linked to an inflammatory context, whereas it has been largely claimed
elsewhere to bring benefits in metabolic issues such as obesity and diabetes in mice and
even humans [38]. The intrinsic capacity of A. muciniphila to degrade the mucus and to
disrupt the gut barrier, together with exacerbating Salmonella–induced inflammation [39]
and food allergy [40], may prompt us to classify the bacterium as pro-inflammatory. In
contrast, a large body of evidence suggests that A. muciniphila strains should be considered
beneficial, including recommendations to address some inflammatory events via probiotic
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intervention [41,42]. Similarly, the Prevotella genus, as a saccharolytic bacterium, was at
first highly suggested to act as a symbiont, providing beneficial health properties within
and outside the gut [43]. In contrast, some Prevotella species have also been associated with
chronic inflammation [44,45] and even elevated serum IL-6 [46], underlying a dual and
paradoxical effect [47]. Lastly, few data are available on the pro- or anti-inflammatory status
of Duncaniella spp., and mostly, species and, above all, strains matter [48,49]. Consequently,
it is still tricky to identify colitogenic inhabitants of the HLA-B27 rat microbiota based
on the abundance or rarefaction of some specific species. Indeed, we cannot rule out the
presence of regulatory bacteria in limiting and counteracting damage due to inflammation,
even within an inflammatory context. It was recently discovered that profiling pathobionts
from rodent models and attempts to extrapolate data to human pathologies have limits [50],
and several individual and environmental factors have to be considered [51]. However,
even though we cannot clearly define a dysbiotic status in HLA-B27 rats, it is interesting
to address the resilience of this modified commensal flora based on drugs or surgical
treatments targeting inflammation.

Here, we report that the 2-week oral tofacitinib treatment had no significant impact
on either the alpha- or beta-diversity of rat fecal microbiota, in line with any substantial
changes in the relative abundances of bacterial taxa. These preclinical data, although
based on a small sample size, are somewhat encouraging, as the treatment per se does not
induce or aggravate a possible pre-established dysbiosis. In contrast, Hablot and colleagues
found a moderate influence on microbiota following a 2-week tofacitinib treatment in
mice subjected to collagen-induced arthritis, also based on a small sample size. This
effect was accompanied by a strong reduction in inflammatory markers and immune cells.
Noticeably, those changes were more due to a reduction in pathobiont species together
with an overrepresentation of beneficial phyla [37], suggesting a more healthy treatment.
Interestingly, Yadav and colleagues recently showed that ileocolonic-targeted tofacitinib, in
order to lower the side effect of systemic JAK-inhibitors, was highly stable in the presence of
rat colonic microbiota and even more efficient than gastric release [52]. Again, it is difficult
to discriminate the direct impact of tofacitinib on the microbiota from the secondary events
linked to reduced inflammation.

The most striking effect of this study is the strong impact of ileocecal resection on
the fecal microbiota, defining an intense reshaping of the microbial composition and a
strong drop in the alpha-diversity. This was previously documented in both wild-type and
colitis-susceptible IL-10−/− mice subjected to ICR [53,54]. The resection-induced dysbiosis
in our study was highly similar to that recently reported in mice [13] and could define
a signature of specific taxa. Indeed, analogous changes were measured in three distinct
resection models and showed reduced diversity and a dramatic decrease in Muribaculaceae
and Akkermansia, two mucus-degrading species [55], which was offset by an increase in
Proteobacteria (mostly the aerotolerant E. coli) and Firmicutes, including Clostridiaceae, in both
limited ICR, extended ICR and even small bowel resection (SBR) experimental models. It
should be noted that these procedures and, notably, those with caecum suppression, were
obviously linked to intestinal insufficiency. It is well known that anatomical reconstructions
lead to changes in the physiological function and composition of gut microbiota, including
ICR and small bowel SBR, as well as other intestinal surgeries, such as Roux-en-Y gastric
bypass procedures [56–58]. All may promote a loss of diversity and the deep modification
of the microbiota associated with pro-inflammatory events. Luminal exposure to oxygen
facilitates the depletion of anti-inflammatory obligate anaerobes and a bloom of pro-
inflammatory aerotolerant organisms comprising gammaproteobacteria and modifies short-
chain fatty acid production.

Thus, perioperative gut microbial shifts have to be taken into account for thera-
peutic efficiency, depending on microbiota recolonization after ICR. The postsurgical re-
establishment of the intestinal microbiota population and its functional consequences on
the microenvironment are poorly understood [59]. Defining the anastomotic mucosal
environment could be helpful in designing the timing of therapeutics when combined with
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ICR. This was clearly demonstrated by Madsen and collaborators using oral tributyrin treat-
ment [55], whereas prebiotic intervention combined with ICR was, in fact, more deleterious,
exacerbating the loss of diversity, as well as systemic and local inflammation [12]. Here,
tofacitinib does not seem to impact ICR-induced dysbiosis and could even be favorable,
possibly by preserving the abundance of lactobacilli.

In conclusion, the present study (i) confirms that the microbiome of HLA-B27 rats
is fairly different from their wild-type littermates and (ii) indicates that oral treatment
with tofacitinib in HLA-B27 rats does not affect the gut microbial composition and (iii)
neither increases the loss of bacterial diversity nor exacerbates dramatic changes in (pro-
inflammatory) taxa induced by ICR. Collectively, these preclinical data are rather favorable
for the use of tofacitinib in combination with ICR to address Crohn’s disease management
in the broadest context possible. Future research directions may also be highlighted.

4. Materials and Methods
4.1. Chemicals and Reagents

Chemicals and reagents were purchased from Sigma-Aldrich Chemical (Saint-Quentin-
Fallavier, France) unless otherwise stated. Ultrapure water corresponds to PURELAB
Option-Q from Veolia Water (Saint-Maurice, France). Tofacitinib citrate (Pfizer, Paris,
France) (Tofa) was dissolved in PBS and administered twice daily by oral gavage at the
optimal concentration of 15 mg/kg/d according to previous functional studies performed
in experimental murine models with colitis [60] and corresponding to daily induction doses
for the treatment of ulcerative colitis in humans [61].

4.2. Animals

HLA-B27 transgenic (Tg) and nontransgenic (nTg) control Fisher rats (strain F344)
were provided by Professor M. Breban (Cochin Institute, INSERM U1016, Paris, France). In
total, 9 rats (7 Tg and 2 nTg) were maintained in a specific pathogen-free (SPF) facility at the
Institut Pasteur de Lille (Lille, France) and were fed a standard diet with free access to water.
Animals were kept at a constant temperature of 22 ◦C ± 2 ◦C; humidity ranged between 35%
and 75%; and there was a 12 h light/dark cycle. Experiments were carried out following
European directive 2016/63/UE enforced by decree n◦2013-118 and authorized by regional
ethics committee CEEA75 (n◦CEEA 2018092818147464). The animal study protocol was
also approved by the French government, MINISTERE DE L’ENSEIGNEMENT ET DE LA
RECHERCHE ET DE L’INNOVATION (authorization, APAFIS n◦#17092-2018092818147464;
decision date, 6 April 2019), for studies involving animals.

4.3. Experimental Design

In total, 9 age-matched rats (7 Tg and 2 nTg, males and females) were included in
the current study and randomized in i. a Tg PBS group (n = 3) and ii. An nTg PBS group
(n = 1), both receiving a placebo composed of PBS, and iii. a Tg Tofa group (n = 4) and
iv. An nTg Tofa group (n = 1), both receiving Tofa, as previously described [29]. Placebo
(saline) or tofacitinib was administered to conscious animals starting at 10 weeks of life
(W10) until W18 via intragastric gavage administration using appropriate 16G straight
gavage needles. At W12, rats received an ileocecal resection (ICR) of 3 cm in length with
end-to-end anastomosis. The ICR procedure was blindly performed by one operator (CD)
under general anesthesia with 2% isoflurane. Briefly, after an abdominal incision, the
mesenteric vessels were linked before the digestive section; then, the small intestine was
cut 3 cm from the valve and 3 cm from the caecum. The anastomosis was performed with
single stitches by using polypropylene surgical sutures (Prolene 6.0), whereas the parietal
closure was realized on muscular and then cutaneous layers by using non-absorbable
sutures made of Vicryl 2.0 and then Mersuture 1, respectively. A postoperative analgesic
treatment via opioid administration was provided over three days. Fecal pellets from each
animal were collected and stored at −80 ◦C until processed at age W9 for baseline; W12
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to appraise the saline versus tofacitinib 2-week treatments; and at W18 corresponding to
6 weeks after surgery and 8 weeks of tofacitinib administration.

4.4. Metagenomic Analysis

An optimized and standardized DNA extraction protocol dedicated to bacterial DNA
extraction from stool samples was used (GenoScreen, Lille, France). Genomic DNA ex-
traction was performed with the QIAamp Fast DNA Stool Mini Kit (Qiagen, Courtaboeuf,
France) with an optimized protocol for the lysis step. Genomic DNA extraction from swab
samples was performed with the Nucleopin Microbial DNA Mini Kit (Macherey-Nagel,
Hoerdt, France) with an optimized protocol for the lysis step. After DNA extraction, the
concentration was quantified with the SybrGreen Assay Kit (Life Technologies, Villebon-
sur-Yvette, France). The sequencing libraries were prepared by using the Illumina DNA
Prep Kit (Illumina, Evry, France). Libraries were sequenced with the Illumina NovaSeq
6000 instrument, aiming for 20 M reads per sample following a paired-end 150 bp sequenc-
ing protocol. Positive and negative controls and technical replicates were included for
extraction and sequencing; all passed QC. The number of raw sequence reads per sample
ranged from 25 M to 40 M. Raw paired-end reads were subjected to the Cosmos ID process.

4.5. Statistical Analysis

Graphs were plotted, and statistical tests were performed using the GraphPad Prism
software (version 6.0; GraphPad Software Inc., San Diego, CA, USA) or Excel (Microsoft
Office, Redmond, WA, USA). In all cases, experimental groups were compared with their
respective controls in a nonparametric, one-way analysis of variance (a Mann–Whitney
U test), as appropriate for low-count samples. Quantitative variables were quoted as
the mean ± standard deviation (SD). The threshold for statistical significance was set to
p < 0.05. For some analytical procedures and graphical representations, we used the freely
accessible application Shaman [62].
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