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ARTICLE OPEN
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The significant heterogeneity in smoking behavior among smokers, coupled with the inconsistent efficacy of approved smoking
cessation therapies, supports the presence of individual variations in the mechanisms underlying smoking. This emphasizes the
need to shift from standardized to personalized smoking cessation therapies. However, informed precision medicine demands
precision fundamental research. Tobacco smoking is influenced and sustained by diverse psychopharmacological interactions
between nicotine and environmental stimuli. In the classical experimental rodent model for studying tobacco dependence, namely
intravenous self-administration of nicotine, seeking behavior is reinforced by the combined delivery of nicotine and a discrete cue
(nicotine+cue). Whether self-administration behavior is driven by the same psychopharmacological mechanisms across individual
rats remains unknown and unexplored. To address this, we employed behavioral pharmacology and unbiased cluster analysis to
investigate individual differences in the mechanisms supporting classical intravenous nicotine self-administration (0.04 mg/kg/
infusion) in male outbred Sprague–Dawley rats. Our analysis identified two clusters: one subset of rats sought nicotine primarily for
its reinforcing effects, while the second subset sought nicotine to enhance the reinforcing effects of the discrete cue. Varenicline
(1 mg/kg i.p.) reduced seeking behavior in the former group, whereas it tended to increase in the latter group. Crucially, despite this
fundamental qualitative difference revealed by behavioral manipulation, the two clusters exhibited quantitatively identical nicotine
+cue self-administration behavior. The traditional application of rodent models to study the reinforcing and addictive effects of
nicotine may mask individual variability in the underlying motivational mechanisms. Accounting for this variability could
significantly enhance the predictive validity of translational research.

Translational Psychiatry           (2024) 14:85 ; https://doi.org/10.1038/s41398-024-02774-6

INTRODUCTION
Nicotine is the principal psychoactive alkaloid responsible for the
reinforcing properties of tobacco and the development of
dependence [1]. Clinical and preclinical studies have consistently
shown that nicotine strongly modulates responses to environ-
mental stimuli, which can subsequently evolve into complex
interactions between nicotine and these stimuli [2–11]. These
interactions are deemed as a major factor in smoking cessation
failure, despite 70% of smokers wanting to quit [12].
The significant heterogeneity in smoking behavior and

motives for smoking urges [13], along with the inconsistent
success of approved tobacco cessation therapies [14], suggest
that these interactions do not contribute uniformly among all
smokers and are mediated by distinct psychobiological mechan-
isms. Notably, even with one of the most effective approved
pharmacotherapies [15, 16], Varenicline (Champix® or Chantix®),
only 40% of treated patients achieve abstinence after a 12-week
treatment [17–19]. Collectively, the evidence strongly supports
the adoption of precision medicine and a departure from the

“one-size-fits-all” approach toward personalized smoking cessa-
tion therapy [20].
Despite their value and effectiveness in clarifying translatable

mechanisms of nicotine seeking [2–11], animal models of nicotine
dependence exhibit restricted therapeutic predictive validity
[21–24]. A possible explanation could be that most of these
animal models do not investigate the potential variations in how
individuals might be affected by the intricate nature of interac-
tions between nicotine and its surrounding stimuli. This becomes
evident with intravenous (i.v.) nicotine self-administration meth-
ods, which are the standard procedures used to study the
reinforcing and motivational impacts of nicotine in animal
research. These methods typically involve the simultaneous
presentation of a cue [3–5], primarily visual, alongside nicotine
delivery [25]. Our findings, along with those of others [26–30],
have demonstrated that this type of visual stimulus is not as
motivationally neutral as previously believed, as it can support
instrumental responding, thus acting as a mild primary reinforcer
whose value can be enhanced by nicotine [2–11]. Now, whether
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individual rats maintain instrumental responding to nicotine, the
visual reinforcer, or an interaction between both, has remained
unknown and largely unexplored.
In this study, we investigated qualitative disparities in the

interactions between nicotine and the associated discrete cue as
possible sources of individual variations in the psychopharmaco-
logical mechanisms underlying classical nicotine self-administration
in rats. Through an unbiased cluster analysis that considered the
behavioral outcomes during the selective omission of either
nicotine or the cue, we identified two clusters of rats that exhibited
distinct contributions of nicotine and the cue to instrumental
responding during classical nicotine self-administration.
Subsequently, we compared these clusters in terms of their

sensitivity to the reinforcing properties of nicotine, their response
to the disruption of the nicotine-cue contingency, and the impact
of Varenicline on instrumental responding to the cue in the
absence of nicotine. The observed distinctions between the two
clusters lend support to the idea that they pursue nicotine
through distinct psychopharmacological mechanisms. One cluster
primarily sought nicotine for its inherent reinforcing effects,
whereas the second cluster sought it for its ability to enhance the
reinforcing effects of the discrete cue. Notably, Varenicline
reduced cue-seeking behavior in the former cluster, while tending
to augment it in the latter cluster.
Our findings demonstrate that conventional rodent models,

used to study the reinforcing and addictive effects of nicotine,
potentially mask individual variability in the motivational and
psychopharmacological mechanisms underlying nicotine seeking
and consumption.

MATERIALS AND METHODS
Animals
Male Sprague–Dawley rats (Charles River, France), weighing 280–300 g
(10 weeks of age) at the beginning of the experiments, were singly housed
under a 12 h reverse dark/light cycle. In the animal housing room,
temperature (22 ± 1 °C) and humidity (60 ± 5%) were controlled. Rats were
familiarized with environmental conditions and experimental handling for
15 days before initiation of the experimental procedure. Standard chow

food and water were provided ad libitum. All procedures involving animal
experimentation and experimental protocols were evaluated by the
Animal Care Committee of Bordeaux (CEEA50, N° 50120168-A), approved
by the French MESRI (Ministry of Higher Education, Research and
Innovation), and conducted in accordance with the guidelines of the
European Union Directive 2010/63/EU regulating animal research.

Surgery
A silastic catheter (internal diameter= 0.28mm; external diameter= 0.61mm;
dead volume= 12 μL) was implanted in the right jugular vein under
ketamine/xylazine anesthesia. The proximal end reached the right atrium
through the right jugular vein, whereas the back-mount passed under the
skin and protruded from the mid-scapular region. Ketamine hydrochloride
(80mg/kg) (Imalgène 1000; Rhône Mérieux, Lyon, France) and xylazine
hydrochloride (16mg/kg) (Rompun; Rhône Mérieux, Lyon, France) were
mixed in sterile 0.9% physiological saline (saline) and administered
intraperitoneally (i.p.) in a volume of 2mL/kg of body weight.

Experimental timeline
After 5–7 days of post-surgical recovery, rats were trained for intravenous
nicotine + cue (n= 62) or intravenous saline + cue (n= 8) self-administra-
tion, according to the experimental timeline depicted in Fig. 1. Rats were
randomly assigned to the saline+cue and nicotine+cue groups, while
ensuring that the two groups were balanced in terms of average body
weight. The sample size for the nicotine+cue group was chosen,
considering that the goal of the study was to conduct clustering analysis
and subsequently run additional tests on independent subgroups of the
identified clusters. The sample size of the saline+cue group, used as
control for the procedure was chosen based on previous experiments from
the research group [28] and was in accordance with those estimated by
power analysis using G∗power software [31].

Nicotine intravenous self-administration
The self-administration setup consisted of 48 self-administration chambers
made of plexiglas and metal (Imetronic, France). Each chamber (40 cm
long × 30 cm width × 36 cm high) was located in an opaque sound-
attenuating cubicle equipped with an exhaust fan to assure air renewal
and mask background noise. Each chamber was equipped with: (a) two
holes, located at opposite sides of the chamber at 5.5 cm from the grid
floor; (b) a common white light (white LED, Seoul Semiconductor, South
Korea, 5 Lux), 1.8 cm in diameter, located 8.5 cm above one hole, and
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Fig. 1 Experimental timeline. After jugular catheterization (Surgery), rats were trained in a nicotine+cue (a) or saline+cue intravenous self-
administration protocol (b) with holes as manipulanda (FR3, 3 h/session). After 12 standard protocol sessions, a series of tests were performed
on the whole population up to session 28: Cue omission in session 13 (CueOm), nicotine omission in session 18 (NicOm), Varenicline effect on
a NicOm test (NicOm+VAR) in session 23, Progressive ratio under cue omission (PR-CueOm) in sessions 26 and 27. In sessions 29 to 38, a
subgroup of representative nicotine+cue rats was tested in a dose-response for nicotine alone (CueOm), while another representative
subgroup was tested from sessions 35 to 39 in a disconnection test after 7 nicotine+cue baseline sessions (28–34). The disconnection test
consisted of disconnecting nicotine and cue deliveries.
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commonly designed as cue light; (c) a pump driving a syringe (infusion
speed: 20 μL/sec) located outside the chamber on the opaque cubicle.
Nose-poke visits to the two holes were recorded. (-)-Nicotine-hydrogen-
tartrate (Glentham, UK) was dissolved in sterile 0.9% physiological saline
and pH adjusted to 7.0 for a final training dose of 0.04 mg/kg free base,
which was self-administered by the rats via intravenous route in a volume
of 40 µL per self-infusion. Nicotine solutions with concentrations different
(0.02mg/kg and 0.06mg/kg free base) than the training dose were
prepared afresh and used instead of the training dose where indicated.

Self-administration standard protocol. At the start of the session, each rat
was placed inside one chamber and connected to the pump-driven syringe
through its chronically implanted i.v. catheter. Rats were trained for i.v.
nicotine+ cue or i.v. saline+ cue self-administration on daily 3-hour sessions,
running 5 days a week (Monday to Friday), except for the first session, which
took place on a Tuesday. Sessions began two hours after the onset of the
dark phase. Nose-poke in the active hole under an FR3 schedule produced
the simultaneous activation of the infusion pump (40 μL over 2 s) and the
cue light located above it (over 4 sec). Nose-pokes at the inactive hole were
recorded but had no scheduled consequences. Rats were placed under an
FR3 schedule of reinforcement from the first session onwards. No food
training was used. Rats had no limit to the number of self-infusions available.
To maintain catheter patency, catheters were flushed with ~10 µL of
heparinized saline (30 IU/mL) after each self-administration session, and
before the self-administration sessions run on Monday. During the standard
nicotine self-administration sessions, two variables were measured: (1) the
total number of infusions per session and (2) the loading proportion,
calculated as the percentage of infusions achieved within 60min. Given that
rats within the same population may vary in the total amount of infusions
they consume per session, we opted to normalize the initial loading to the
total number of infusions [Loading proportion= (Infusions at time 60min/
total infusions) × 100]. The loading proportion captured the speed at which
rats load infusions at the beginning of the session. The 60-minute time
threshold was selected as it corresponds to the time when the population
entered in a regular level of infusions (see Fig. S1).

Cue omission and nicotine omission tests. After the initial training
involving 12 standard protocol sessions, we conducted cue omission
(CueOm) and nicotine omission (NicOm) tests. In session 13, we assessed
self-administration behavior when the cue was omitted, and in session 18,
we replaced nicotine with 0.9% physiological saline to evaluate self-
administration behavior during nicotine omission. Standard self-
administration sessions were conducted between these two tests. For
each rat, the effect of cue or nicotine omission on self-administration was
evaluated using two variables: (1) The Omission Global Effect (Om-GE),
calculated as the percentage change in the total number of infusions
caused by the omission: [CueOm- or NicOm-GE= ([total infusions in
omission test–total infusions in baseline]/total infusions in baseline) × 100].
This provides quantitative information about the overall impact of the
omission test on the infusions typically achieved during baseline sessions.
(2) The Omission Loading Effect (Om-LE), calculated as the difference in the
loading proportion produced by the omission: [CueOm- or NicOm-
LE= loading proportion in omission test–loading proportion in baseline].
This provides insights into the influence of omission on the initial loading
of infusions, which can reveal temporary increases in instrumental
responding known as “extinction bursts” when access to the reinforcer is
suddenly removed [32, 33]. Baseline values for each type of omission effect
were determined based on the two standard protocol sessions preceding
the test (sessions 11 and 12 for CueOm, sessions 16 and 17 for NicOm).

Dimensional analysis and cluster identification based on
nicotine and cue omission tests
Z score normalization of cue omission and nicotine omission variables.
Dimensional analysis such as principal component analysis (PCA) and
clustering algorithms are sensitive to the scale of the variables. Normal-
izing the data using z-scoring ensures that each variable contributes
equally to the analysis and prevents scale-related biases. Z score
normalization was performed for the four variables of interest (CueOm-
GE, CueOM-LE, NicOm-GE, NicOm-LE). The z score formula for a given
individual and a given variable is the following: zi= (xi-µ)/σ, where xi is the
value of the data point of the individual for the given variable, μ and σ are
respectively the mean and the standard deviation of all dataset (n= 62
rats) for this variable. The z score normalization transforms the data in such
a way that each variable has a mean of 0 and a standard deviation of 1.

Principal component analysis (PCA). Using Bartlett’s test of sphericity and
Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy, we first assessed
that our set of variables justified the use of multivariate analysis methods,
such as PCA, which we performed to analyze the underlying dimension-
ality of the normalized CueOm and NicOm variables in our i.v. nicotine+cue
group dataset (n= 62).

Ascending hierarchical clustering (AHC). We investigated the grouping
patterns based on the scores of the four normalized variables of interest
(CueOm-GE-zscore, NicOm-GE-zscore, CueOm-LE-zscore, and NicOm-LE-
zscore) using AHC. AHC does not require specifying the number of clusters
beforehand and is generally less sensitive to outliers compared to other
clustering algorithms like K-means. Secondly, we analyzed how the clusters
identified by AHC relate to the components identified through PCA.

Behavioral characterization of the identified clusters
The two AHC-identified clusters A and B underwent additional tests to assess
their sensitivity to the primary reinforcing effects of nicotine, the reliance of
instrumental responding on the contingency between nicotine and cue
(disconnection test), and the impact of Varenicline on their seeking behavior.
These behavioral tests were conducted in two stages. During the first

stage (session 19 to session 28), rats underwent the following tests:
Varenicline effect on self-administration behavior supported by the

cue, conducted during session 23. Varenicline is a smoking cessation aid
used to support abstinence and prevent cravings and relapse. We
evaluated how Varenicline affected instrumental responding driven by
the cue in the absence of nicotine (NicOm). Rats (n= 29 Cluster A, n= 26
Cluster B) participated in a NicOm session after receiving an intraperitoneal
(i.p.) injection of Varenicline (1mg/kg) 30min before the session began.
7,8,9,10-Tetrahydro-6,10-methano-6H-pyrazino[2,3-h] [3]benzazepine tar-
trate (Varenicline, Tocris, UK) was dissolved in sterile 0.9% physiological
saline for a final dose of 1 mg/kg free base, and administered i.p. in a
volume of 2.5 mL/kg. To habituate them to i.p. injections, rats were
handled and received dummy i.p. injections 30mins before the session
during the two days immediately preceding the Varenicline session.
Motivation for nicotine self-administration through a progressive

ratio, conducted during sessions 26 and 27: We assessed the strength of the
primary reinforcing effects of nicotine by measuring the rats’ motivation to
self-administer nicotine (n= 34 Cluster A, n= 27 Cluster B). These sessions
were similar to the CueOm session, except that the response-to-nicotine
infusion ratio increased after each infusion (see SI for details). The breakpoint,
which represents the maximum number of responses a rat performed to
obtain one infusion (the last completed ratio), was the variable of interest. In
all other sessions during this stage, rats performed the standard nicotine+cue
self-administration sessions.
During the second stage (sessions 29–38), 45 rats were selected based

on catheter patency and cluster membership, and then were assigned to
one of two experiments: Behavioral impact of altering the contingency
between nicotine and cue (disconnection test) (n= 22). Rats participated
in five consecutive sessions where nicotine and cue were no longer
contingent. Instead, each was independently accessible through different
operanda. Nose-pokes at the previously active hole under the
FR3 schedule activated only the cue light, while nose-pokes at the
previously inactive hole under the FR3 schedule activated the pump-
associated syringe, resulting in the delivery of a nicotine infusion. In order
to facilitate the rats’ learning that the previously inactive hole was now
reinforced by nicotine infusions, nose-pokes at the active holes were not
reinforced for the first 20 min of the initial disconnection session,
encouraging exploration of the inactive hole. Sensitivity to the primary
reinforcing effects of nicotine through dose-response for nicotine self-
administration (n= 23). Rats participated in sessions that were identical to
the CueOm session, except that the training nicotine solution (0.04 mg/kg)
was replaced by a solution containing either 0.02 or 0.06mg/kg of
nicotine-free base. Rats completed at least three consecutive sessions with
each new dose. Rats from the saline+cue group underwent the same tests
as the nicotine+cue group until session 28.

Quantification of plasma nicotine and metabolites
Immediately after the end of session 21, 400 µL blood was gently collected
from the catheter and immediately replaced with an equivalent volume of
0.9% saline, in 12 nicotine + cue rats. Blood was put in heparin-containing
microtubes (Sarsted 41.1393.005), mixed and placed immediately on ice.
Samples were kept on ice until centrifuged (760 G, 10min, 4 °C). Once
plasma was separated, 100 µL were carefully pipetted out, placed in 500 µL
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Eppendorf tubes and stored at −80 °C up to quantification. Nicotine (NIC)
together with its main metabolites, cotinine (COT) and 3 hydroxycotinine
(OHCOT), were measured in these plasma samples using a liquid
chromatography with tandem mass spectrometry detection (LC-MS/MS)
method (see SI for details). In line with the literature, we utilized the ratio of
the main metabolite (cotinine) to the parent drug (nicotine) as an index for
metabolism. Unlike in humans, where the two primary metabolites,
cotinine (COT) and hydroxycotinine (OHCOT), are found in close range, rats
exhibit low levels of OHCOT compared to COT. This disparity makes the
OHCOT/COT ratio (referred to as the nicotine metabolite ratio or NMR) less
relevant in rats.

Statistics
Self-administration behavior was analyzed using one-way or repeated
measures ANOVA with Time [sessions or time (min) within session], Hole
(active vs inactive), treatment (NicOm vs NicOm+VAR) as within-subject
factor, and Cluster (Cluster A vs Cluster B) as between-subject factor.
Significant main effects or interactions were explored by pairwise
comparisons of means using the Duncan post hoc test. A linear regression
was performed to test the relationships between the cotinine/nicotine
ratio and the number of nicotine self-infusions. A Grubbs test was
performed to statistically verify the existence of an outlier for one of the
variables of the disconnection test.
ANOVAs, linear regression and Grubbs test were performed using the

STATISTICA 13.3.0 (2017) data analysis software (TIBCO Software Inc, Palo
Alto, CA, USA). XLSTAT was used to run PCA and AHC (Data Analysis and
Statistical Solution for Microsoft Excel, Addinsoft, Paris, France, 2017).
Significance was set as p < 0.05.

RESULTS
Acquisition of self-administration
All nicotine+cue rats successfully acquired and stabilized their self-
administration behavior during the initial 12 sessions (Fig. S2a, b,
and detailed results in SI). The behavior was dependent on
nicotine, as it differed significantly from the behavior observed in
the saline+cue group (Fig. S2e, f, and detailed results in SI).
Additionally, the plasma cotinine/nicotine ratio, measured in a
subset of rats after a standard self-administration session,
exhibited a positive correlation with the number of self-infusions
(r= 0.92, r2= 0.85, p < 0.0001) (Fig. S2c, and detailed results SI).
This finding is consistent with a faster nicotine metabolism
(indicated here by a higher cotinine/nicotine ratio) promoting a
higher nicotine intake, as shown previously [34, 35].

Contribution of nicotine and cue to self-administration
Both nicotine and the nicotine-paired cue contributed to self-
administration behavior. The omission of the cue (CueOm) during
session 13 (Fig. 2a) and the omission of nicotine (NicOm) during
session 18 (Fig. 2b) led to modifications in instrumental responding
when compared to the baseline, although in distinct ways.
Specifically, CueOm resulted in an ~40% reduction in total self-
infusions, while NicOm tended to increase self-infusions (Fig. 2c-left),
resulting in an opposed global effect (GE) for CueOm and NicOm
[Global_Omission type effect, F(1,61)= 83.7, p < 0.00001] (Fig. 2c-
right). The Loading proportion increased in both conditions (Fig. 2d-
left), but with a higher loading effect (LE) in response to NicOm
[Loading_Omission type effect, F(1,61)= 7.39, p < 0.01] (Fig. 2d-
right). Large individual variations were observed in the effects of
CueOm (Fig. S3a, b) and NicOm (Fig. S3c, d), including variations of
opposed directions. These variations provide support for the
hypothesis that individuals differ in how nicotine and the cue
interact to influence their self-administration behavior.
The four variables of interest were normalized using Z scores

before applying dimensional and clustering methods.

Principal component analysis (PCA)—components underlying
the four variables of interest
The suitability of our variables and dataset for PCA was confirmed
through the Bartlett test (p < 0.001) and the KMO value (>0.5)

(Table S1). Initially, a Pearson correlation matrix (Table S2) was
employed to explore the relationships between the original
variables prior to conducting the PCA itself. The Global Effect (GE)
and Loading Effect (LE) variables were identified as non-redundant
and capable of capturing different aspects of the omission effect.
Notably, there was no proportional relationship between CueOm-
GE and CueOm-LE (r2=−0.131, ns). Likewise, NicOm-GE and
NicOm-LE displayed a weak association (r2=−0.379, p < 0.05).
This observation was further corroborated by the PCA analysis,
which revealed four components. Among the four components
identified by the PCA, the inflection point on the scree plot and
the eigenvalues indicated three primary components (F or Factors)
that collectively explained about 88% of the total variance (F1:
42.5%, F2: 25.4%, and F3: 20%) (Fig. 2e). For both NicOm and
CueOm, the two types of variables (GE and LE) loaded differently
on the different PCA factors (Fig. 2f, top) and their variance was
differently explained by the different factors (Fig. 2f, bottom),
underscoring their differences.
Analyzing the correlations between the original variables and

the components, as well as the squared cosines of the variables for
each factor, unveils distinct relationships (Fig. 2f). Specifically, F1
appears to capture the response to NicOm: this primary
component (F1) displays substantial loadings for the two NicOm
variables (Zscore_NicOm-GE and Zscore_NicOm-LE). F2 seems to
encompass the loading effect regardless of the omission type: F2
is primarily associated with Zscore_CueOm-LE, while
Zscore_NicOm-LE contributes nearly equally to both F2 and F1.
Lastly, F3 seems to represent the global effect of CueOm, as
indicated by its stronger correlation with Zscore_CueOm-GE.

Individual variations in the respective contribution of nicotine
and the cue to self-administration: identification and
characterization of two clusters (A and B) and relationships
with the PCA factors
In order to explore whether distinct response patterns to CueOm
and NicOm are present, we conducted Ascendant Hierarchical
Clustering analysis (AHC) on the four normalized variables of
interest. Our nicotine+cue dataset (n= 62) satisfied the require-
ments for minimum sample for clustering techniques (2d where d
is the number of dimensions) [36]. AHC identified two clusters of
individuals as the optimal choice, determined by the Hartigan
method (Table S3 top). Cluster A included 39 rats, whereas Cluster
B encompassed 23 rats. Analysis of variance reveals significant
differences between the two clusters across the four variables of
interest (Table S3 bottom). However, four rats classified in Cluster
A were subsequently reclassified due to receiving a negative
silhouette score, which indicated misclassification.
While the two clusters differed in their response to CueOm and

NicOm (Fig. 3a–d, Fig. S4, SI), they did not exhibit differences in
the acquisition and maintenance of nicotine+cue self-
administration (Fig. 3e–g).
We analyzed how the members of the two AHC-generated

clusters contributed to the three main components isolated by the
PCA. The members of the two clusters best segregated according to
F1 coordinates, a component that translates the response to NicOm,
as mentioned above (Fig. 3h). To gain further insight into the
qualitative differences between the two clusters, the average cos2 of
observations for each main factor was compared between clusters
(Fig. 3i). The two clusters exhibited differences in their fit with the
three main factors [Cluster x Factor, F(2120)= 5.58, p < 0.005], with
Cluster B fitting better than Cluster A with F1, representing the
response to NicOm, and Cluster A fitting better than Cluster B with
F2, representing the loading effect regardless of the omission type.
Altogether, the qualitative and quantitative differential effects

of CueOm and NicOm observed in the two clusters (Fig. 3) suggest
that their self-administration behavior is supported by different
interactions between nicotine and the cue. In Cluster A, both
nicotine and the cue contribute to, and are necessary, to support
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the behavior. In Cluster B, the cue alone is capable of supporting
self-administration behavior. While an initial “extinction burst” is
evident, the time course of infusions eventually follows a pattern
similar to the baseline (Fig. 3d). Although nicotine alone (CueOm)
in Cluster B exhibits an extinction-like profile (increased loading
proportion and decreased maximal infusions) (Fig. 3c), this effect
is less pronounced compared to Cluster A (Fig. 3a).

Psychopharmacological features of clusters A and B
Response to the reinforcing effects of nicotine: progressive ratio and
dose-response curve for nicotine. To evaluate the primary reinforcing

effects of nicotine, we conducted progressive ratio (PR) and FR3
dose-response tests in CueOm conditions.
Rats from Cluster B exhibited a higher breakpoint for nicotine self-

administration (Fig. 4a-left) [Cluster, F(1,59)= 16.34, p < 0.0005] and
sustained responding throughout the PR session (Fig. 4a-right). Data
were averaged over the two sessions of PR as the difference
between clusters was similar in the two sessions [Cluster x Session,
F(1,59)= 0.37, p= 0.54, not shown].
Additionally, self-administration behavior, as measured through

the mean number of injections per session, was dose-dependent
[Dose effect, F(2,42)= 13.72, p < 0.0001]. The dose-relationship was
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different in the two clusters [Cluster, F(1,21)= 1.49, p= 0.23; Cluster x
Dose, F(2,42)= 3.12, p < 0.05]. Cluster B maintained self-
administration for the lower nicotine dose (Fig. 4b). These findings
support the results from the CueOm test (Fig. 3c vs Fig. 3a), the
loading of Cluster B rats on PCA factor F1 (Fig. 3h) and their highest
mean squared cosine value for F1 as well (Fig. 3i), indicating that rats
in Cluster B appear more sensitive to the reinforcing effects of
nicotine.

Effect of altering the contingency between nicotine and cue
(disconnection test). To examine the nature of the interaction
between nicotine and cue during self-administration, we con-
ducted a disconnection test. In this test, the cue and nicotine
delivery were dissociated and delivered through the active hole
and previously inactive hole, respectively (Fig. 4c). Rats learned the
new rule during the first 20 min of the first session when only the
nicotine hole was active and delivered infusions, while visits to the
cue hole had no scheduled consequence. During these initial
20 min, there were no significant differences between the two
clusters in terms of total responding [Cluster effect,
F(1,22)= 0.004, p= 0.95] and the time course of responding
[Cluster x Time, F(1,22)= 0.32, p= 0.58] (Fig. S5). Notably, both
clusters reached the same level of responding for the hole
delivering nicotine. For this first session, there were no significant
differences between the two clusters (Fig. S6).
Over the next five sessions, the two clusters did not differ for

total nose-poking, including total responding over sessions
[Cluster effect, F(1,20)= 0.09, p= 0.76; Cluster x Session,
F(4,80)= 0.76, p= 0.55]. However, the distribution of the
responses in the two holes progressed differently over sessions
between the two clusters [Session x Hole x Cluster,

F(4,80)= 2.69, p < 0.05] (Fig. 4d, e). Cluster B decreased
responding in the hole delivering the cue light, with the
opposite tendency for the hole delivering nicotine (Fig. 4e).
Differently, Cluster A maintained a stable behavior in both holes
from the first to the last session (Fig. 4d). This result further
supports that standard nicotine+cue self-administration beha-
vior in Cluster A is driven by nicotine-induced enhancement of
cue reinforcing effects. Both the cue and nicotine are required
for self-administration behavior to be maintained, but not
necessarily in a contingent manner. In contrast, for Cluster B,
when disconnected from nicotine delivery, self-administration
of the cue alone progressively extinguishes over sessions,
consistent with the cue exerting secondary reinforcing proper-
ties [37].
To gain further insight into the timing of seeking cues and

nicotine, we calculated two mean time intervals: one between
each cue and the next nicotine infusion, and the second
between each nicotine infusion and the next cue. The two
clusters exhibited significant differences [Cluster effect,
F(1,62)= 4.63, p < 0.05], and this difference was primarily driven
by the INF-Cue interval [Cluster x Interval, F(1,62)= 4.06,
p < 0.05] (Fig. 4f). In Cluster A, we observed a time-balanced
distribution of cues and nicotine infusions. The Cue-INF and INF-
Cue intervals were similar (Fig. 4f) and correlated with each
other [r= 0.36, r2= 0.13, p < 0.05], supporting the hypothesis
that nicotine and cue were spaced evenly (Fig. 4g). The
correlation was increased (r= 0.68, r2= 0.47, p < 0.0001) after
the exclusion of an outlier confirmed by a Grubbs test (Grubbs
test statistic = 3.84, p < 0.0005 for INJ-Cue interval). This profile
is in accordance with the reinforcement-enhancement tracking
of the circulating levels of nicotine [38, 39].
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In Cluster B (Fig. 4f–h), however, the time distribution of cues
and nicotine infusion was unbalanced and depended on which
occurred first. The mean INF-Cue interval was significantly
longer than the Cue-INF interval and they were uncorrelated,
suggesting that nicotine was more reinforcing than the cue.

Varenicline effect on nicotine seeking in Clusters A and B. Vareni-
cline had a differential effect on seeking behavior in clusters
A and B when nicotine was omitted [Cluster effect,
F(1,53)= 38.84, p < 0.00001; Cluster x Treatment, F(1,53)= 8,85,
p < 0.005] (Fig. 4i).
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As mentioned earlier, during nicotine omission sessions
(NicOm), Clusters A and B exhibited significant differences
compared to their respective baselines. Cluster A showed a
decrease in drug-seeking behavior, while Cluster B showed an
increase (p < 0.001) (Figs. 3b, d and 4i). Varenicline reduced this
increase (NicOm+Var) in Cluster B, but it had no significant
effect in Cluster A (Fig. 4i-left). Varenicline acted in opposite
ways on the two clusters [Cluster effect, F(1,53)= 8.85,
p < 0.005], decreasing seeking in Cluster B and tending to
increase it in Cluster A (Fig. 4i-right).

DISCUSSION
In line with clinical studies, animal models used for studying
tobacco addiction have consistently demonstrated the involve-
ment of various psychopharmacological mechanisms in nicotine
self-administration. However, it is important to note that animal
models do not account for individual variations in the mechan-
isms underlying nicotine self-administration, which may limit their
predictive validity [40].
To address this issue, we conducted a psychopharmacological

profiling study in male Sprague–Dawley rats trained for intravenous
nicotine self-administration. We employed an unbiased clustering
method [41], and identified two distinct clusters (referred to as
Clusters A and B) characterized by different psychopharmacological
mechanisms driving their self-administration behavior. These
distinct mechanisms were revealed by manipulating either nicotine
or the cue in different test sessions. Furthermore, we examined the
effects of Varenicline, a partial α4β2 nicotinic acetylcholine receptor
agonist, on self-administration behavior supported by the nicotine-
associated cue in these two clusters. Interestingly, Varenicline
exerted opposing effects on self-administration behavior in the two
clusters, highlighting the differential response to pharmacological
interventions based on the underlying psychopharmacological
mechanisms.

Contribution of nicotine and cue to self-administration
Acquisition of secondary reinforcing properties by the cue
requires time [42], while nicotine-induced enhancement of cue-
reinforcing effects is an acute immediate effect [43–45].
Nicotine omission (i.e., cue self-administration alone) is com-

monly used as a test to evaluate the secondary reinforcing effects
of the cue. Already after 12 sessions, we observed a slight but
significant increase in behavior by nicotine omission (Fig. 2b),
similar to Cohen et al. [37] after 10 sessions of nicotine+cue self-
administration, indicative of the cue acting as a secondary
reinforcer. Differently, Clemens et al. observed a significant
decrease in total active responses by nicotine omission after
10 standard self-administration sessions [42], similar to Caggiula
et al. [2] after 20 sessions, while total active responses were no
more affected by nicotine omission after 41 standard self-
administration sessions [42].
Procedural differences can explain that the cue acquires

secondary reinforcing properties at different speeds. Factors, such
as session duration, nicotine dose, cue duration, food restriction,
housing conditions, could play a role individually or in interaction.
The procedural differences between these studies that could
contribute to the faster acquisition of secondary reinforcing
properties by the cue, are the cue duration in Cohen et al. (20 sec,
instead of 1 sec and 3 sec for Caggiula et al. [2] and Clemens et al.
[42], respectively) and session duration and dose in our study (3 h
sessions and 0.04 mg/kg, instead of 1 hr sessions and 0.03 mg/kg
for the three other studies).
Cue omission, i.e., nicotine self-administration alone, is less

commonly tested. Differently from nicotine omission, Clemens
et al. [42] and Caggiula et al. [2] had opposite results regarding the
ability of nicotine alone to sustain self-administration. In Clemens
et al., behavior was maintained by nicotine alone at the same level

as compared to standard sessions. Caggiulia et al. [2] observed an
~55% decrease in nicotine infusions in response to cue omission,
close to the 40% decrease we observed in our study. This supports
that the contribution of nicotine and cue to self-administration at
the population level are differentially influenced by experimental
conditions. It is speculative to attribute a procedural difference as
the explanation for the discrepancy with Clemens et al. regarding
cue omission. Still, in Clemens et al., rats were trained at FR1,
whereas they were trained at FR5 and FR3, in Caggiula et al. [2]
and our study, respectively, making the maintenance of self-
administration in the absence of the cue more challenging.
Another distinction is housing: rats were housed four per cage and
food-restricted in Clemens et al. [42], which could generate
competition and stress. Eventually, it cannot be discarded that in
Caggiula et al. [2], the population of rats would be enriched in
Cluster A-type rats, leading to a decrease in behavior by both cue
and nicotine omission.

Cluster A: the reinforcement-enhancing effect (REE) of
nicotine as a primary driver of nicotine self-administration
Our findings indicate that rats belonging to Cluster A (comprising
55% of the tested rats) are primarily motivated by the ability of
nicotine to enhance the reinforcement value of the cue light. The
omission tests revealed that instrumental responding in these rats
relied on the presence of both nicotine and the cue (Fig. 3a–c),
even when they were independently accessible through different
operanda (Fig. 4d–f).
Importantly, their behavior in the disconnection test aligns with

previous studies demonstrating that the REE of nicotine can be
observed without the need for prior learning associations or
contingency with nicotine [4, 44–48].
The REE of nicotine, initially observed in animal models

[4, 26, 46, 49], has been substantially documented in human
studies [45, 48, 50–53]. However, the neurobiological mechanisms
underlying the REE are still not fully understood [54]. It is
considered one of the key factors contributing to the addictive
properties of tobacco [11, 44]. Furthermore, it may be involved in
withdrawal-induced sensory anhedonia, which strongly promotes
relapse [55–58]. The REE hypothesis also supports the notion of
“self-medication,” whereby individuals with socioeconomic or
health conditions associated with limited opportunities for reward
may be more prone to seeking nicotine as a means of alleviating
their reward deficits [59–62].

Cluster B: nicotine and the ‘classical’ nicotine-cue conditioning
as a primary driver for nicotine self-administration
Rats in Cluster B (constituting 45% of the tested rats) appeared to
be primarily driven by a combination of the primary reinforcing
effects of nicotine and the nicotine-paired cue acting as a
conditioned reinforcer, capable of driving self-administration even
in the absence of nicotine [37, 44, 63, 64]. The omission tests
revealed that their instrumental responding can be partially
maintained by either nicotine or cue (Fig. 3c, d). Also, Cluster B rats
demonstrated greater sensitivity to the reinforcing effects of
nicotine alone compared to Cluster A rats, as evidenced by their
performance in progressive ratio and dose-response tests
(Fig. 4a, b). Additionally, disrupting the nicotine-cue contingency
led to a decrease in instrumental responding for the cue in Cluster
B rats (Fig. 4e), contrasting with the behavior of Cluster A rats (Fig.
4d). This finding supports the notion that the cue in Cluster B rats
has acquired conditioned reinforcing properties that gradually
extinguish over time [37, 65].
In humans, the environmental stimuli that become conditioned

reinforcers due to their association with nicotine are major sources
of craving in some individuals [66, 67], and thus contribute to
relapse [68]. Some smokers who have been switched to de-
nicotinized cigarettes report lower cravings to smoke [64, 69, 70],
suggesting that the conditioned stimuli associated with smoking,
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such as rolling a cigarette [71], or the oropharyngeal sensations of
smoking [72, 73], have become strong reinforcers. Similarly, some
smokers report an increase in craving after observing friends
smoking, or when visiting the places associated with smoking
[9, 74–76].
Further studies would need to explore whether the observed

psychopharmacological profiles remain the same after protracted
nicotine exposure, and whether Cluster B-like rats would be more
prone to cue-induced reinstatement.

Varenicline can have different behavioral outcomes
depending on the psychopharmacological profile of nicotine-
seeking
Consistent with its nature as a partial agonist at the α4β2-containing
nicotinic cholinergic receptors [77–79], we report that Varenicline
can moderately enhance cue-reinforcing effects in rats self-
administering i.v. saline+cue (Fig. S7), and antagonize nicotine-
induced enhancement of cue reinforcing effects (Fig. 4i), consistent
with a previous study done in our laboratory [28]. We also observed
relevant differences in response to Varenicline between the clusters.
In Cluster B rats, Varenicline strongly diminished the increased
seeking behavior observed during NicOm, suggesting that the
partial pharmacological agonism by Varenicline was enough
to compensate for the removal of nicotine, bringing the seeking
behavior closer to baseline. Varenicline slightly increased seeking
behavior in Cluster A (Fig. 4i), consistent with a reinforcement-
enhancement effect.
Varenicline was used here as a tool to explore interactions

between nicotine and the cue in the observed clusters. The aim of
our study was not to test Varenicline with a view to therapeutic
use, i.e., applied chronically [80]. However, our data confirm that
animal models such as nicotine self-administration could prove
useful for precision pharmacology.

Individual differences in nicotine seeking: an opportunity to
improve preclinical models of nicotine reinforcement
Clinical data strongly suggest that individuals differ as regards the
breadth of motives and mechanisms that determine the urge to
smoke [for review (40)], warranting the emergence of research in
precision medicine for tobacco addiction. A systematic exploration
of individual variations in behavior or pharmacological responses
could help improve the translational and predictive value of
preclinical models of nicotine reinforcement. Exploration of
individual variations in nicotine self-administration is at an early
stage [35, 81, 82], but our study, together with few others,
supports consistent individual differences in nicotine psychophar-
macology [35, 82].
In recent years, nicotine metabolism has attracted interest as a

phenotypic biomarker of heavy smoking [34] and therapeutic
response [83]. While fast metabolizers are at risk for heavy
smoking [34], slow metabolizers benefit from nicotine replace-
ment therapies, and normal metabolizers benefit from treatments
such as Varenicline [83]. Consistently, in rats, the rate of nicotine
clearance predicted the threshold of nicotine reinforcement [35],
and Varenicline reduced nicotine self-administration more in rats
with a higher demand for nicotine [84]. Interestingly, while in our
protocol nicotine demand was positively related to the cotinine/
nicotine ratio (Fig. S2c), our two clusters expressed the same self-
administration behavior in standard protocol sessions (Fig. 3e–g).
It thus remains unlikely that the observed behavioral differences
are due to individual differences in nicotine metabolism. However,
the study by Grebenstein et al. [35] suggests that nicotine seeking
might be controlled by pharmacokinetics factors in some
individuals, and less so in others. Echoing the fast/slow
metabolizer phenotypes in humans [34], these observations offer
interesting perspectives for studying how individual differences in
nicotine metabolism could drive variations in the primary
reinforcer and reinforcer enhancer properties of nicotine.

Our results highlight qualitative individual variations in the
mechanisms supporting nicotine+cue self-administration beha-
vior, with nicotine playing either a major role as primary reinforcer
or enhancer, depending on the individuals. Sved et al. [85] recall
that ‘These two actions of nicotine, primary reinforcer and reinforcer
enhancer, undoubtedly relate to the high incidence of nicotine use
disorder and they must also be taken into account when considering
smoking cessation pharmacology.’ Although there is still a lot to
investigate, these mechanisms appear to involve distinct mole-
cular and neurobiological substrates (for review [85]). Notably,
individual variations have been observed in incentive salience
attribution to drug-associated cues, with nicotine-associated
specificities. In the so-called sign trackers rats (STs), food- or
drug-(cocaine, opioid)associated discrete cues are both more
attractive (elicit approach) and more wanted (are conditioned
reinforcers) than in goal trackers rats (GTs), in which presentation
of reward-associated cues elicits approach to the location of
reward delivery. Regarding nicotine, Yager and Robinson [82]
showed that STs rats want more nicotine-associated cue, but they
do not approach a nicotine-cue more than GTs rats, demonstrat-
ing nicotine-specific mechanisms of salience attribution. This
model offers the opportunity to study how individual variations in
salience attribution to nicotine cues relate to individual variations
in the psychopharmacological mechanisms supporting nicotine
+cue self-administration.
In the footsteps of oncology, precision medicine in tobacco

dependence [86–90] focuses on pharmacogenetics-based markers,
i.e., the identification of genetic makers that predict response to
smoking cessation drugs. However, smoking is a complex behavior
and data support a polygenic contribution to vulnerability and to
treatment efficacy [89]. Interplay between genetic factors could
shape dependence vulnerability and variations in nicotine psycho-
pharmacology (e.g., [91]). Therefore, behavioral
psychopharmacology-based markers could efficiently complement
genetic markers, and precision psychopharmacology in animal
models could help define such behavioral markers in humans.
The aim of this study was to question individual psychopharma-

cological profiles arising at the intersection of IV nicotine delivery
and the presentation of a contingent visual stimulus, the most
widely used model of nicotine self-administration. Since tobacco
addiction is a complex phenomenon at the intersection of social,
environmental and biological factors [92, 93], further studies would
need to address whether the identified psychopharmacological
profiles are differently modulated by sex, protracted nicotine use,
access to alternative rewards, social interactions, and stress, all
factors which are known to impact drug-seeking [22, 94, 95] and
which are also sources of individual variability. Finally, and of special
interest to translational approaches, whether these psychopharma-
cological profiles predict transitioning into addiction-like nicotine
seeking, and whether approved cessation therapies, like Varenicline,
are more beneficial to individuals fitting a particular profile
compared to the other, remains to be explored.
In summary, the individual differences found in this study could

contribute to the observed complexity in both human and animal
studies. They have the potential to reshape current discussions on
vulnerability to nicotine addiction and to open discussions about
precision psychopharmacology from a translational perspective.
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