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Abstract

Periostin, which is induced by interleukin (IL)-13, is an extracellular matrix (ECM) protein

that supports αMβ2 integrin-mediated adhesion and migration of IL-5-stimulated eosinophils.

Transforming growth factor (TGF)-β-induced protein (TGFBI) is a widely expressed perios-

tin paralog known to support monocyte adhesion. Our objective was to compare eosinophil

adhesion and migration on TGFBI and periostin in the presence of IL-5-family cytokines.

Eosinophil adhesion after 1 h and random motility over 20 h in the presence of various con-

centrations of IL-5, IL-3, or granulocyte macrophage-colony stimulating factor (GM-CSF)

were quantified in wells coated with various concentrations of TGFBI or periostin. Results

were compared to video microscopy of eosinophils. Cytokine-stimulated eosinophils

adhered equivalently well to TGFBI or periostin in a coating concentration-dependent man-

ner. Adhesion was blocked by anti-αMβ2 and stimulated at the lowest concentration by GM-

CSF. In the motility assay, periostin was more potent than TGFBI, the coating-concentration

effect was bimodal, and IL-3 was the most potent cytokine. Video microscopy revealed that

under the optimal coating condition of 5 μg/ml periostin, most eosinophils migrated persis-

tently and were polarized and acorn-shaped with a ruffling forward edge and granules gath-

ered together, in front of the nucleus. On 10 μg/ml periostin or TGFBI, more eosinophils

adopted a flattened pancake morphology with dispersed granules and nuclear lobes, and

slower migration. Conversion between acorn and pancake morphologies were observed.

We conclude that TGFBI or periostin supports two modes of migration by IL-5 family cyto-

kine-activated eosinophils. The rapid mode is favored by intermediate protein coatings and

the slower by higher coating concentrations. We speculate that eosinophils move by hapto-

taxis up a gradient of adhesive ECM protein and then slow down to surveil the tissue.

Introduction

The extracellular matrix (ECM) protein periostin [1] is upregulated by type 2 immunity medi-

ators such as IL-13 in the asthmatic airway [2]. Substrate-bound purified periostin is known to
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support adhesion of IL-5- IL-3-, or GM-CSF-stimulated eosinophils and migration of IL-

5-stimulated eosinophils [3–6]. Adhesion of IL-5-activated eosinophils to periostin is mediated

by αMβ2 integrin [3, 5, 6]. We have suggested, therefore, that periostin is a mediator of eosino-

phil enrichment and persistence in the asthmatic airway [1, 3, 4, 7].

Transforming growth factor (TGF) β-induced protein (TGFBI, βig-h3) is a paralog of perios-

tin and, like periostin, contains an amino (N)-terminal cysteine-rich sequence and four fasci-

clin-1 (FAS1) modules [1]. The disulfide pattern of TGFBI was recently determined [8]. Inter-

module bridges between the cysteine-rich sequence and the second FAS1 module and between

the first two FAS1 modules indicate that the N-terminal cysteine-rich sequence and the first

two FAS1 modules adopt a complicated fold, possibly leaving the third and fourth FAS1 mod-

ules exposed [8]. This model should be applicable to periostin, which contains the same set of

cysteine residues [1]. Unlike periostin, TGFBI lacks an alternatively spliced tail carboxy (C) ter-

minal to the fourth FAS1 module [1]. TGFBI is an ECM protein that is widely expressed,

including in the lung, and is induced by TGF-β in bronchial myofibroblasts and other fibro-

blasts [1, 9, 10]. Genetic deletion of TGFBI is not lethal but has multiple effects, including defec-

tive development of alveolar structure and function in mice [11]. Although studies comparing

and contrasting activities of TGFBI and periostin head-to-head are sparse, TGFBI and periostin

were recently found to act similarly in the heart in affecting fibrosis and disease responsiveness;

however, TGFBI is seemingly not necessary in the heart after myocardial infarction injury and

is fully compensated by the more prominently expressed effector periostin [12].

TGFBI is known to support αMβ2-integrin-mediated adhesion of monocytes [13]. We

asked whether TGFBI adsorbed in a microtiter plate, like adsorbed periostin, supports eosino-

phil adhesion and migration induced by IL-5 family cytokines in short-term adhesion and

long-term bead-clearing migration assays, which model adhesion to and migration on ECM

molecules. To complement the bead-clearing assay, we examined the migratory behavior of

eosinophils on TGFBI or periostin adsorbed on glass by video differential interference contrast

(DIC) microscopy. We report that TGFBI and periostin are both adhesive ligands for eosino-

phil αMβ2 integrin that may be important for eosinophil recruitment and retention in ECM,

and that IL-5 family cytokines acting on eosinophils have different potencies for adhesion and

migration and potentially play different roles at various times after eosinophil activation. We

observed two morphologies and modes of migration of activated eosinophils on TGFBI or

periostin that are pertinent to the migration results: rapidly-migrating polarized, acorn-shaped

cells, which tended to be most frequent on intermediate periostin coating, and slower flatter,

pancake-shaped cells most frequent on high protein coating.

Materials and methods

Eosinophils

Eosinophils were obtained and purified from heparinized blood of donors with allergy and

with or without mild allergic asthma by negative selection using a cocktail of anti-CD16, anti-

CD14, anti-CD3, and anti-glycophorin beads as before [4]. Subjects with prescriptions for low

doses of inhaled corticosteroids (ICS) did not use their ICS on the day of the blood draw. The

purity and viability of eosinophils were� 98% [4]. The studies were approved by the Univer-

sity of Wisconsin-Madison Health Sciences Institutional Review Board (protocol No. 2013–

1570). Informed written consent was obtained from each subject before participation.

TGFBI and periostin

Human TGFBI (Uniprot identifier No. Q15582) complementary DNA (cDNA) was obtained

by reverse transcription of RNA isolated from MG-63 cells using M-MLV reverse transcriptase

Cytokine-driven eosinophil migration on TGFBI and periostin
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(Promega, Madison, WI, USA) and a TGFBI-specific oligonucleotide (5’ tgc att cct cct gta gtg c

3’) coding for a sequence at the beginning of the 3’ untranslated region. The cDNA was used as

template for polymerase chain reaction (PCR) and cloned into pAcGP67.coco [14] using stan-

dard molecular biology techniques. The complete insert sequence was verified before expres-

sion. TGFBI was produced as a secreted protein by insect cells using a baculovirus system and

purified as described [14]. PN-S, the shortest splice variant of human periostin containing the

N-terminal cysteine-rich sequence and the four FAS1 modules but lacking variably spliced C-

terminal sequences encoded by exons 17, 18, 19, and 21 (Uniprot No. Q15063-7), was pro-

duced in insect cells as before [3, 4, 15]. Recombinant human TGFBI and longest periostin var-

iant (PN-L) (Uniprot No. Q15063-1) [3, 4], expressed by mouse NSO cells, were purchased

from R&D Systems (Minneapolis, MN, USA).

Antibodies and other reagents

Inhibitory monoclonal antibodies (mAbs) to integrin subunits (anti-αM clone 2LPM19c and

anti-β2 TS1/18) were from Santa Cruz Biotechnology (Dallas, TX, USA) and BioLegend (San

Diego, CA, USA), respectively. Isotype control mouse IgG1 (clone MOPC-21) was from BD

Biosciences (Franklin Lakes, NJ, USA). Recombinant human IL-5, IL-3, and GM-CSF were

from R&D Systems. 4’,6-diamidino-2-phenylindole (DAPI) was from Life Technologies

(Eugene, OR, USA).

Cell adhesion assay

Eosinophil adhesion for 1 h was quantified using an eosinophil peroxidase assay as described

[3], with the following modifications. After eosinophils were resuspended at 2 x 106/ml in Ros-

well Park Memorial Institute (RPMI) medium with 0.2% bovine serum albumin (BSA), cells

were equilibrated for 1 h at 37˚C [16] before dilution and addition to coated wells. Further, the

colored eosinophil peroxidase product was measured in a SpectraMax M5 plate reader (Molec-

ular Devices, Sunnyvale, CA, USA).

Cell motility assay

Motility of eosinophils, equilibrated as in the cell adhesion assay, was assessed in a bead clear-

ing assay that ran for 20 h with wells viewed in an Eclipse Ti inverted microscope (Nikon, Mel-

ville, NY, USA) and images acquired and quantified as before [4].

Differential interference contrast (DIC) video microscopy

Glass bottom culture 35 mm diameter Petri dishes with 14 mm glass diameter No. 1.0 coverslip

(MatTek, Ashland, MA, USA) were used. The glass area was coated with 350 μl protein (5 or

10 μg/ml) in Tris-buffered saline (TBS), pH 7.4, for 2 h at 37˚C, washed with TBS, blocked

with neat fetal bovine serum (FBS) for 30 minutes at 37˚C, and washed with TBS. Eosinophils,

resuspended at 2 x 106/ml in RPMI with 10% FBS and equilibrated as above, were diluted in

the same medium to 2 x 105/ml, and 2 ml of this cell suspension was added to the dish. Two μl

of IL-5 stock solution (50 μg/ml) was added, yielding a final concentration of 50 ng/ml. Cells

were viewed in a DMi8 inverted wide-field microscope (Leica, Buffalo Grove, IL, USA) with a

motorized stage and Tokei Hit temperature- and CO2-controlled chamber using a 63x oil

immersion objective, at the University of Wisconsin-Madison Optical Imaging Core facility.

Five minute videos with 1 frame/s were acquired up to 35 minutes after addition of IL-5, and

videos and individual images were exported, using Leica Application Suite X (LASX) software.

Cells defined as having an acorn-shaped morphology were polarized with a ruffling leading

Cytokine-driven eosinophil migration on TGFBI and periostin
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edge and pseudopods, the nuclear lobes at the rear, and the granules closely gathered together

between the forward edge and the nucleus and moving as a unit in a coordinated manner.

Cells defined as having a “pancake-shaped” morphology were flatter, more spread with dis-

persed granules and nuclear lobes. Cells defined as unactivated were round, not polarized, not

flat, and not spread. Cell area was quantified using Fiji software (http://fiji.sc/Fiji).

Statistical analysis

Student’s t test was used to compare data between two groups. This was complemented for

some experiments by analysis of variance (ANOVA) with Dunnett’s or Tukey’s multiple com-

parisons post test in order to compare data among groups. P� 0.05 was considered significant.

Analyses were performed using Prism (GraphPad, San Diego, CA, USA).

Results

TGFBI supports eosinophil adhesion with similar coating concentration

dependence as periostin variants

In order to determine whether TGFBI supports eosinophil adhesion and compare it to perios-

tin, assays were performed in microtiter plates in which wells were coated with different con-

centrations of recombinant human TGFBI commercially available from R&D Systems or

produced in insect cells in our laboratory, the longest human periostin splice variant pur-

chased from R&D (PN-L), or the shortest human periostin splice variant (PN-S) produced in

insect cells. Wells were post-coated with neat fetal bovine serum (FBS). Control wells were

coated only with FBS.

R&D and insect cell TGFBI supported adhesion at 1 h of eosinophils stimulated with IL-5

(10 ng/ml) compared to the FBS control in a manner dependent on the coating concentration

(Fig 1A). R&D PN-L or insect cell PN-S also supported adhesion of IL-5-stimulated eosino-

phils in a coating concentration-dependent manner (Fig 1A), as we found previously [3]. The

coating concentration dependences of R&D TGFBI, baculovirus TGFBI, PN-L, and PN-S were

similar, with no significant difference among the four proteins at each coating concentration

(Fig 1A).

Eosinophil adhesion to TGFBI is mediated by αMβ2 integrin

Pre-incubation of IL-5-treated eosinophils with inhibitory mAbs 2LPM19c and TS1/18 to αM

and β2 integrin subunits, respectively, inhibited eosinophil adhesion to TGFBI (Fig 1B). This

inhibition of adhesion by anti-αM or anti-β 2 was similar to that on periostin [3].

GM-CSF stimulates eosinophil adhesion to TGFBI with a different dose-

response curve than does IL-5 or IL-3

The stimulating effect of IL-5 on eosinophil adhesion to TGFBI at 1 h was dose dependent (Fig

1C). The IL-5 family cytokines IL-3 and GM-CSF also stimulated adhesion to TGFBI (Fig 1C).

IL-3 stimulated adhesion with a similar dose-response curve as did IL-5 (Fig 1C). The dose-

response curve of GM-CSF was shifted left compared to those of IL-5 or IL-3, with GM-CSF

being clearly active down to 0.1 ng/ml; thus, GM-CSF was active at a lower concentration than

IL-5 or IL-3 (Fig 1C). These curves were similar to those for cytokine-stimulated eosinophil

adhesion to periostin, on which GM-CSF was also active down to 0.1 ng/ml [3].

Cytokine-driven eosinophil migration on TGFBI and periostin
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Fig 1. Eosinophil adhesion to TGFBI and periostin; effects on adhesion to TGFBI of mAbs and cytokines. Adhesion of IL-

5-activated eosinophils (A) to TGFBI and periostin, (B) effects on eosinophil adhesion to TGFBI by anti-αM or anti-β2 integrin

monoclonal antibody (mAb), and (C) eosinophil adhesion to TGFBI in the presence of different cytokines. Adhesion of purified

blood eosinophils incubated for 1 h in the presence of IL-5, 10 ng/ml (A and B), or in the presence of different concentrations of

IL-5 IL-3, or GM-CSF (C) in wells of microtiter plates. (A) Wells were coated with the following proteins at different

concentrations: transforming growth factor (TGF)-β-induced protein (TGFBI) purchased from R&D Systems, TGFBI produced

using baculovirus, the longest periostin splice variant (PN-L) from R&D Systems, and the shortest periostin splice variant lacking

alternatively spliced C-terminal sequences (PN-S) produced using baculovirus. Wells were post-coated with FBS. Symbols and

brackets: mean ± standard error of the mean (SEM), n = 3 donors; �P< 0.05 versus FBS post-coat alone (for R&D TGFBI or

PN-L at 5 μg/ml and for baculovirus TGFBI or PN-S at 10 μg/ml). ANOVA with Dunnett’s post test confirmed P< 0.05 for R&D

TGFBI and PN-S at 5 and 10 μg/ml, respectively. Further, ANOVA showed no significant difference among the four proteins at

Cytokine-driven eosinophil migration on TGFBI and periostin
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TGFBI supports motility of eosinophils but is less effective than periostin

The effect of TGFBI on surface-dependent motility (haptokinesis) of eosinophils over 20 h was

assessed with a microbead monolayer assay [3, 4]. After protein coating and blocking,

microbeads were added at a concentration that, after centrifugation of the plate, forms a nearly

confluent “lawn” of beads. In Fig 2A, a positive example with PN-L coated at 5 μg/ml, white

areas cleared of microbeads represent paths of migration in contrast to the dark bead mono-

layer background. Fig 2B shows a negative example with a control well only coated with neat

FBS. Motility was quantified as cleared area of tracks using Fiji software [4]. Immobilized

TGFBI supported random motility of IL-5-stimulated eosinophils (Fig 2D). However, the

motility on TGFBI in the presence of 10 ng/ml IL-5 was variable among donors (compare the

three donors in Fig 2D with a mean of 7% of area cleared and the three donors in Fig 2C with

1% under the same experimental conditions). In a comparison using the same donors, TGFBI

was less effective in supporting motility than PN-L or PN-S in the presence of 10 ng/ml IL-5

(Fig 2C). At a 10 μg/ml coating concentration, PN-S or PN-L were more effective in support-

ing eosinophil motility than TGFBI (Fig 2C). Further, at 5 μg/ml, PN-L was more effective

than PN-S (Fig 2C). Motility on PN-L was maximal at this concentration (5 μg/ml) (Fig 2C),

as we have found before [3].

IL-3 stimulates eosinophil motility on TGFBI or periostin to a higher

degree than does IL-5 or GM-CSF

The stimulating effect of IL-5 on eosinophil motility to TGFBI (Fig 2D) or PN-L (Fig 2E) over

20 h was dose-dependent. IL-3 and GM-CSF also stimulated motility on TGFBI (Fig 2D) and

PN-L (Fig 2E). IL-3 stimulated motility up to a higher maximal level than did IL-5 or GM-CSF

on TGFBI or PN-L, with IL-3 having a greater effect than IL-5 on both proteins (Fig 2D and

2E). In addition, we observed that in the absence of cytokine (i.e., at 0 ng/ml), there was no or

essentially no motility on TGFBI (Fig 2C and 2D), whereas there was, as we have noted before

[3], a low degree of motility on PN-L (Fig 2E).

Video microscopy of eosinophil motility on TGFBI or periostin

Video microscopy with differential interference contrast optics was performed up to 35 min-

utes after addition of IL-5, to compare further the effects of adsorbed TGFBI and periostin,

and of two different coating concentrations (5 and 10 μg/ml), on eosinophil motility, and to

examine the morphology of migrating eosinophils and mode of migration. The majority of

eosinophils migrating on TGFBI or periostin had a polarized morphology and were acorn-

shaped (Fig 3A and S1–S4 Movies, particularly S1 Movie). The morphology was somewhat

similar to eosinophils that have been activated by IL-5 in suspension and examined after cytos-

pinning [16], except that the migrating cells had a ruffling leading edge with pseudopods (Fig

3A and S1–S4 Movies). This morphology tended to be most frequent on periostin coated at

5 μg/ml (82% ± 7% of the cells, mean ± standard error of the mean [SEM], n = 5, at 5–10 min-

utes) (see S1 Movie). Migration of acorn-shaped IL-5-activated eosinophils was persistent and

each coating concentration. (B) Wells were coated with R&D TGFBI at 5 μg/ml followed by post-coat with FBS. Eosinophils were

preincubated with mAb (10 μg/ml) to the indicated integrin subunit. Mean ± SEM, n = 2 donors, ��P< 0.01, �P< 0.05 versus

isotype control. ANOVA confirmed significant difference (P< 0.01) among treatments and Dunnett’s post test confirmed

significant difference (P< 0.01) of each of the mAbs versus isotype control. The number of adherent cells with isotype control

was 27% ± 15%. (C) Wells were coated with R&D TGFBI at 5 μg/ml followed by post-coat with FBS. Mean ± SEM of two wells

per treatment in one representative experiment (of two). In addition, similar dose response curves were obtained in two

experiments in which wells were coated with 2 μg/ml TGFBI.

https://doi.org/10.1371/journal.pone.0201320.g001
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Fig 2. Eosinophil motility on TGFBI and periostin; effects of coating and cytokine concentrations. Microbead monolayer assay for cell motility (A, B),

and eosinophil motility on TGFBI and periostin variants in the presence of IL-5, 10 ng/ml (C) and on TGFBI (D) and periostin (E) in the presence of

different cytokines. (A, B) Paths of migrating eosinophils (in the presence of IL-5, 10 ng/ml) were revealed by perturbation of a monolayer of 1 μm-

diameter latex beads. Wells were photographed after 20 h. Morphometric analysis of track areas was performed using Fiji. Positive (A) or negative (B)

examples are shown. (A) PN-L coated at 5 μg/ml followed by post-coat with FBS, motility 16.1% of area. (B) FBS post-coat only, motility 0.1% of area. Bar,

500 μm. (C) Motility of eosinophils in wells coated with different concentrations of R&D TGFBI, baculovirus TGFBI, PN-L, or PN-S in the presence of IL-

5, 10 ng/ml. Symbols and brackets: mean ± SEM, n = 3 donors, ��P< 0.01 for PN-L at 5 μg/ml, �P< 0.05 for PN-L or PN-S at 10 μg/ml versus FBS post-

coat alone; +P< 0.05 for PN-L versus PN-S at 5 μg/ml or for PN-L or PN-S versus TGFBI at 10 μg/ml. (D, E) Motility of eosinophils in wells coated with

Cytokine-driven eosinophil migration on TGFBI and periostin
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occurred with the granules closely clustered together and moving as a unit in a coordinated

manner, and the nucleus and trailing tail at the rear (S1–S4 Movies, particularly S1 Movie).

Acorn-shaped eosinophils had a mean area of 108 μm2 (Fig 3D). The migration velocity of

R&D TGFBI, coated at 10 μg/ml (D), or PN-L, coated at 5 μg/ml (E), in the absence or presence of different concentrations of IL-5, IL-3, or GM-CSF.

Symbols and brackets: mean ± SEM, n = 3 donors for TGFBI (D), 4 donors for PN-L (E); ���P< 0.001, �P< 0.05 for IL-3 versus no cytokine; +P< 0.05

for IL-3 versus IL-5. ANOVA resulted in P = 0.01 for difference among IL-3 concentrations in (D) and Dunnett’s post test confirmed significant difference

(P< 0.01) for IL-3 100 ng/ml versus no cytokine and gave P< 0.05 for IL-3 10 ng/ml versus no cytokine in (D). ANOVA resulted in P< 0.01 for

difference among IL-3 concentrations in (E) and Dunnett’s post test confirmed signficiant difference (P< 0.01) for IL-3 100 ng/ml versus no cytokine in

(E).

https://doi.org/10.1371/journal.pone.0201320.g002

Fig 3. Morphology of eosinophils migrating on TGFBI or periostin. Morphology of eosinophils migrating on TGFBI or periostin in the

presence of IL-5, as observed by DIC video microscopy. Examples of eosinophils with (A) acorn-shaped or (B) pancake-shaped morphology,

Bar, 25 μm. Arrows, nuclear lobes; arrowheads, periphery of ruffling edge. (C) Percentage of eosinophils with pancake-shaped morphology on

PN-L or R&D TGFBI, coated at 5 or 10 μg/ml, in the presence of IL-5, 50 ng/ml, after 5–10 minutes. Symbols and brackets: mean ± SEM, n = 5

donors with a video with 6–19 cells scored for each condition; �P< 0.05 (versus PN-L at 5 μg/ml). (D) Quantification of area of cells with the

different morphologies. A frame from the middle time point of each of the four movies in Supporting Information S1–S4 Movies were used.

Cell area was quantified using Fiji. Bars, means; ���P< 0.001 versus acorn-shaped or unactivated, �P< 0.05 versus unactivated. ANOVA

confirmed significant difference (P< 0.001) among morphologies and Tukey’s post test confirmed significant difference (P< 0.001) of

pancake-shaped versus acorn-shaped or unactivated.

https://doi.org/10.1371/journal.pone.0201320.g003
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acorn-shaped eosinophils on periostin coated at 5 μg/ml was 0.2 μm/s. Some cells had a flatter,

more spread, and “pancake-shaped” morphology with dispersed granules and nuclear lobes

(Fig 3B, S1–S4 Movies, particularly S2 and S4 Movies). Of the pancake-shaped cells, some

migrated persistently albeit more slowly than the acorn-shaped cells, some migrated intermit-

tently, and some did not migrate at all. The pancake-shaped morphology was most frequent

on periostin or TGFBI coated at 10 μg/ml (Fig 3C). Pancake-shaped cells eosinophils had a

mean area of 199 μm2, which was significantly higher than that of acorn-shaped cells (Fig 3D).

In addition, a few cells were observed alternating between the acorn- and pancake-shaped

morphologies, transitioning back from pancake- to acorn-shaped (also see S1–S4 Movies).

Discussion

The widely expressed ECM protein TGFBI, which is a paralog of periostin and induced by

TGF-β in several cell types [1, 9], is shown to support specific adhesion and migration of blood

eosinophils stimulated by IL-5 family cytokines IL-5, IL-3, or GM-CSF. Eosinophil adhesion

was sensitive to the coating concentration of TGFBI and concentration of the activating cyto-

kine. Effects of coating concentration was similar for TGFBI and periostin, indicating that the

adhesive site(s) reside(s) somewhere in the homologous region encompassing the N-terminal

cysteine-rich sequence and the four FAS1 modules shared by the two proteins [1]. Eosinophil

adhesion to TGFBI was mediated by αMβ2 integrin, for which the highly activated conforma-

tion, reported by mAb CBRM1/5, is known to be induced by IL-5 or IL-3 [17–21]. The depen-

dence on αMβ2 for adhesion of eosinophils to TGFBI is consistent with the report that TGFBI

supports monocyte adhesion in an αMβ2-dependent manner [13]. The present adhesion results

indicate that the paralogs TGFBI and periostin support adhesion of eosinophils by similar

mechanisms. Immobilized TGFBI also significantly supported random motility of cytokine-

stimulated eosinophils. However, TGFBI was less effective than PN-L or PN-S, and PN-S was

less effective than PN-L in supporting migration. These quantitative differences in motility on

TGFBI, PN-S, and PN-L implicate the alternatively spliced sequences in the C-terminal tail of

periostin [1] as being important for maximal migration. Thus, in addition to (an) adhesive site

(s) in the major and conserved part of TGFBI and periostin, there appears to be another, pro-

migratory, site in full-length periostin’s tail.

GM-CSF was the most potent cytokine for adhesion to TGFBI at 1 h, being active at a lower

concentration than IL-5 or IL-3. The potency may be related to the greater abundance of

CS2RA (GM-CSF receptor α) in comparison to IL3RA (IL-3 receptor α) and IL5RA (IL-5

receptor α) subunits in blood eosinophils at baseline, as found by quantitative proteomic anal-

ysis [22]. IL-3 supported greater eosinophil motility over 20 h on TGFBI or periostin (PN-L)

than IL-5 or GM-CSF. This is in line with the observation that IL-3 upregulates the cell-surface

expression of and induces the high-activity conformation of αMβ2 integrin at 20 h to a signifi-

cantly greater degree than does IL-5 [21]. The differential effect between the cytokines may in

turn be a function of the fact that IL-3 upregulates the cell-surface level of its cognate IL-3

receptor α subunit (IL3RA), whereas IL-5 downregulates IL-5 receptor α (IL5RA) at 4–24 h

[20, 23–27]. Overall, the greater effect by IL-3 at 20 h is consistent with the scenario that IL-3

induces stronger and prolonged signaling and translation in eosinophils than does IL-5 or

GM-CSF [21, 25, 28–30]. Our results hint at important differences among IL-5 family cyto-

kines in their effects on eosinophil adhesion and migration at various times after eosinophil

activation. IL-5, IL-3, and GM-CSF are present in bronchoalveolar lavage (BAL) fluid from

subjects with mild allergic asthma and are increased after segmental lung antigen challenge

[31]. IL-5 is produced by several cell types including T helper cell type 2 (TH2) cells, mast cells,

NK cells, and type 2 innate lymphoid cells; IL-3 is produced by, e.g., T cells, macrophages,
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stromal cells, NK cells, and mast cells; and GM-CSF by a variety of cells such as T cells, macro-

phages, endothelial cells, fibroblasts, and epithelial cells [32, 33]. The greater effect by GM-CSF

and IL-3 than IL-5 on eosinophil adhesion at 1 h and migration over 20 h, respectively, may

motivate therapeutic targeting of GM-CSF or IL-3, or their receptors, in addition to or as an

alternative to IL-5 or its receptor, in order to inhibit activation of eosinophils and their interac-

tions with matrix in tissues in eosinophilic diseases.

Video microscopy revealed that periostin and TGFBI support two modes of migration by

IL-5 family cytokine-activated eosinophils. The majority of migrating eosinophils had, at least

during the first 35 minutes after activation with IL-5, a polarized acorn-shaped morphology

with a ruffled forward edge and migrated rapidly and persistently with granules closely clus-

tered together, in front of the nucleus. This morphology tended to be most frequent and thus

appears to be favored on periostin (PN-L) coated at 5 μg/ml. Cells with the acorn-shaped mor-

phology had a mean area of 108 μm2. In addition, this morphology is similar to that of newt

(Taricha granulosa) eosinophils migrating on quartz coverslips in the presence of newt serum;

the newt eosinophils were observed to be tear-drop shaped and polarized, crawling with an

advancing lamellipod and the nucleus located near the other, rear end [34, 35]. Some eosino-

phils in our experiments adopted a flattened pancake-shaped morphology with dispersed gran-

ules and nuclear lobes, and slower migration. This morphology was most frequent on a

protein coating concentration of 10 μg/ml. Eosinophils with the pancake-shaped morphology

had a mean area of 199 μm2, significantly greater than and almost twice as large as the acorn-

shaped cells. A few cells converted between the two morphologies transitioning back from

pancake- to acorn-shaped. We do not know how much time the eosinophils spend in either

mode or morphology during a longer time, e.g., during 20 h, which was the incubation time in

the bead-clearing motility assay. The acorn-shaped morphology appears to be somewhat simi-

lar to that described for migrating neutrophils [36], except that in the acorn-shaped migrating

eosinophils, the nucleus is localized at the rear end of the cell, a localization similar to that in

suspended acutely IL-5 activated eosinophils [16], whereas in migrating or suspended acti-

vated neutrophils the nucleus has a random localization [16, 36].

In the lung, TGFBI appears to be produced by resident cells and is localized to the vascular

and airway ECM [10]. TGF-β is synthesized by a large variety of cells, including epithelial cells,

fibroblasts, and immune cells [32], is produced in various disease states, and is believed to con-

tribute to tissue remodeling, e.g., in the airway in asthma [37–40]. Eosinophils themselves,

which contain TGF-β1 [22], are believed to be one source of TGF-β in eosinophilic disorders

[37]. Periostin is upregulated by IL-13 in bronchial epithelial cells and lung fibroblasts and

deposited widely in the bronchi of subjects with asthma [1, 41–44]. IL-13, which is secreted by,

e.g., TH2 cells [2], acts on epithelial cells to cause basal secretion of periostin [42]. Periostin is

not detected or detected at very low levels (pg/ml) in bronchoalveolar lavage from normal or

asthmatic subjects, indicating that secretion of periostin into the bronchial lumen does not

occur or is negligible [45]. In addition, periostin can be secreted by stromal cells stimulated by

TGF-β and other cytokines and growth factors at sites of injury or inflammation [41, 46–48].

It should be emphasized, however, that little is known about how TGFBI or periostin is depos-

ited in the ECM [1], and therefore caution should be taken in extrapolating studies done on

interactions of eosinophils with coatings of these proteins to events that may take place in the

lung. It should also be noted that nine splice variants of periostin have been identified, only

two of which were tested by us. Eight splice variants have been detected in normal fetal lung,

including the longest isoform and isoforms lacking 1–4 of exons 17, 18, 19, and 21, whereas

five variants, not including the longest one, were found in adult lung [49, 50]. In idiopathic

pulmonary fibrosis (IPF), exon 21 was discovered to be more likely spliced out than in controls

[51]. Nevertheless, the findings lead us to speculate that eosinophils move rapidly by haptotaxis
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up a gradient of adhesive ECM ligand in the form of periostin or possibly TGFBI and, when

having reached a site with higher density of ligand, slow down to surveil and “decide” whether

to reside quietly in the tissue or release effectors.

Supporting information

S1 Movie. DIC video microscopy of eosinophils migrating on periostin coated at 5 μg/ml.

PN-L (longest periostin variant), 20–35 minutes after addition of IL-5, 50 ng/ml. Representa-

tive experiment of five.

(MOV)

S2 Movie. DIC video microscopy of eosinophils migrating on periostin coated at 10 μg/ml.

PN-L, 20–35 minutes after addition of IL-5, 50 ng/ml. Representative experiment of five.

(MOV)

S3 Movie. DIC video microscopy of eosinophils migrating on TGFBI coated at 5 μg/ml.

R&D TGFBI, 20–35 minutes after addition of IL-5, 50 ng/ml. Representative experiment of

five.

(MOV)

S4 Movie. DIC video microscopy of eosinophils migrating on TGFBI coated at 10 μg/ml.

R&D TGFBI, 20–35 minutes after addition of IL-5, 50 ng/ml. Representative experiment of

five.

(MOV)
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