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Asthma is often associated with airway eosinophilia, and therapies targeting eosinophils are now available to treat severe
eosinophilic asthma. Eosinophilic asthma is often due to a type-2 immune response and production of IL-5, which leads to
eosinophilopiesis and recruitment of mature eosinophils in the airways. A concomitant type-2 and type-17 response has been
reported in some individuals. IL-17 may be enhanced by IL-1β production and can lead to neutrophilic inflammation. In fact,
both eosinophilic and neutrophilic (mixed granulocytic) inflammation are simultaneously present in a large population of
patients with asthma. In monocyte/macrophage cell populations, release of mature IL-1β occurs via toll-like receptor
ligand-induced activation of the inflammasome. Within the inflammasome, a cascade of events leads to the activation of
caspase-1, which cleaves pro-IL-1β protein into a mature, releasable, and active form. We have demonstrated that eosinophils
can release IL-1β in a Toll-like receptor ligand-independent fashion. The objective of this study was to determine the
mechanisms underlying the production and maturation of IL-1β in cytokine-activated eosinophils. Using eosinophils from
circulating blood and from bronchoalveolar lavage fluid after an airway allergen challenge, the present study demonstrates that
cytokine-activated eosinophils express and release a bioactive form of IL-1β with an apparent size less than the typical 17 kDa
mature form produced by macrophages. Using a zymography approach and pharmacological inhibitors, we identified matrix
metalloproteinase-9 (MMP-9) as a protease that cleaves pro-IL-1β into a ~15 kDa form and allows the release of IL-1β from
cytokine-activated eosinophils. Therefore, we conclude that activated eosinophils produce MMP-9, which causes the release of
IL-1β in an inflammasome/caspase-1-independent manner. The production of IL-1β by eosinophils may be a link between the
eosinophilic/type-2 immune response and the neutrophilic/type-17 immune response that is often associated with a more severe
and treatment-refractory type of asthma.

1. Introduction

Eosinophils are leukocytes present and active in tissues dur-
ing a variety of disease manifestations, including allergy
and asthma. Eosinophils can release toxic proteins and
inflammatory mediators (cytokines, chemokines, and
lipids) [1], and their presence in the airway is often associ-
ated with more severe asthma [2, 3]. Typically, eosinophilic
asthma is linked with a type-2 immune response character-
ized by the production of IL-4, IL-5, and IL-13. IL-5 and
IL-13 are both generated by innate lymphoid cells (ILC)

and lymphocytes in response to danger signals and aller-
gens [4]. Distinctively, neutrophilic asthma is associated
with the inflammasome/IL-1 pathway and a type-17
immune response [5, 6] that contributes to a treatment-
refractory asthma phenotype [7]. However, the dichotomy
between eosinophilic versus neutrophilic asthma is not
absolute since mixed granulocytic asthma is observed in
~20% of the severe asthmatic population [8, 9]. Moreover,
CD4+ T lymphocytes producing both type-2 and type-17
cytokines have been reported in the blood and airways of
asthmatic patients [10, 11]. Notably, Seys et al. have
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described the coexpression of type-2 and type-17 cytokines
in the airways of subjects with poorly controlled asthma
[12]. Interestingly, these type-2/type-17 “high” patients also
displayed higher concentrations of IL-1β in bronchoalveo-
lar lavage (BAL) fluid that was highly correlated with the
numbers of airway Th2/Th17 cells [13]. Leaker et al. reported
that a nasal allergen challenge induced both type-2 inflam-
mation and the production of IL-1β [14]. In addition, we
recently showed that although the sputum expression level
of IL-1/IL-17 molecular markers most strongly correlated
with neutrophilia, all type-2 and type-17 markers, as well
as the IL-1 receptor expression levels tended to correlate
with each other, indicating a lack of clear-cut separation
between these different types of immune responses in
asthma [6].

The IL-1 receptor is present on Th17 lymphocytes [15],
and IL-1β alone can induce the expression of the master
Th17 differentiation factor RAR related orphan receptor C
(RORC) in naïve CD4+ T [16]. IL-1β also increases IL-17
production by memory T lymphocytes [17, 18] and activates
ILC type-2 (ILC2) [19]. The importance of IL-1β in asthma is
highlighted by the observations that IL-1β is elevated in BAL
fluid and sputum [20, 21]; it is associated with nocturnal
asthma [22]; and the expression of its receptor (IL-1R1) is
positively correlated to stress markers in asthmatic patients
[23]. The expression of the IL-1 receptor on fibroblasts and
epithelial and airway smooth muscle cells [24–26] suggests
that IL-1 may play a role in lung tissue remodeling and loss
of pulmonary function in asthma [27]. Thus, the IL-1 path-
way has been proposed as a potential therapeutic target in
asthma [28].

Macrophages are a principle source of inflammasome-
dependent IL-1β generation [29, 30]. In macrophages,
IL-1β is produced as a 31 kDa proform that is cleaved into
a biologically active 17 kDa mature form. These processes
are dependent on cell activation by both a toll-like receptor
and adenosine triphosphate (ATP), which activate the
inflammasome [31]. An inflammasome is composed of a
nucleotide-binding oligomerisation domain (NOD), leucine
rich repeat and pyrin domain containing (NLRP), which
recruits and activates caspase-1, which in turn cleaves the
pro-IL-1β into an active and releasable form [32].

Eosinophils isolated from the gastrointestinal tract of
mice produce large amounts of IL-1β [33]. IL-1β is also
released by mouse eosinophils from fibrotic liver tissues
in a caspase-1-mediated pyroptosis manner [34]. In
humans, blood eosinophils activated with monosodium
urate and toll-like receptor ligands release IL-1β [35, 36].
We have previously shown that human eosinophils cul-
tured in vitro with a low (prosurvival) amount of GM-
CSF could spontaneously release enough IL-1β to increase
the production of IL-17 by CD4+ T lymphocytes [18].
However, the mechanisms of IL-1β production and matu-
ration in eosinophils remain unknown. In the present
study, we have used an established model of potent eosin-
ophil activation by concurrent treatment with IL-3 and
TNF-α [37, 38] to induce the production of IL-1β and
thereby examine the mechanisms mediating its expression,
maturation, and release.

2. Materials and Methods

2.1. Human Subjects. Twenty-eight blood donors partici-
pated in the study. All had a history of allergy (at least one
positive skin prick test) with or without rhinitis or mild
asthma. Subjects with prescriptions for low doses of inhaled
corticosteroids did not use their corticosteroids the day of
the blood draw. Twenty-eight subjects participated in this
study. The University of Wisconsin-Madison Health Sci-
ences Human Subjects Committee approved the study proto-
cols and informed written consent was obtained from each
subject prior to participation.

2.2. Eosinophil Purification. Eosinophils were purified by
negative selection as previously described [39]. Briefly, hepa-
rinized blood was diluted 1 : 1 in HBSS and was overlaid
above Percoll (1.090 g/ml). After centrifugation at 700 × g
for 20min at room temperature, the mononuclear cells were
removed from the plasma/Percoll interface and erythrocytes
were eliminated from the cell pellet by hypotonic lysis with
water. The remaining pellet was resuspended in 2% NCS in
HBSS. Cells were then incubated with anti-CD16, anti-CD3,
anti-CD14, and anti-Glycophorin-A beads from Miltenyi
Biotec (San Diego, CA) and run through an AutoMACS
(Miltenyi Biotec). Eosinophil preparations with purity > 99
% and viability~98% were cultured the same day, ~6-8 h after
the blood draw.

2.3. Bronchoalveolar Lavage (BAL) Fluid and Airway
Eosinophil (BAL Eosinophil) Preparation. As previously
described [40], BAL were performed 48h after segmental
bronchoprovocation with an allergen (SBP-Ag) in allergic
subjects with mild asthma. BAL EOS were purified from
BAL cells using a two-step Percoll gradient. EOS were col-
lected from the 1.085/1.100 g/ml interface.

2.4. Eosinophil Culture. Eosinophils were cultured at
1-2 × 106 cells/ml in RPMI-1640 containing HEPES, L-glu-
tamine, 10% FBS, 1% antibiotic-antimycotic (Thermo Fisher
Scientific, Waltham, MA, USA), and 10μg/ml ciprofloxacin
hydrochloride (Bioworld/Thermo Fisher Scientific). Cells
were stimulated with 10 ng/ml of a βc chain-signaling cyto-
kine (IL-3 or IL-5) alone or in combination with 10 ng/ml of
TNF-α for up to 72 h or as indicated. In specified experi-
ments, eosinophils were preincubated (30min) with phar-
macological inhibitors of caspase-1 (Z-WEHD-FMK, Enzo
Life Sciences Inc., Farmingdale, NY, USA) or MMP-9
(MMP-9 inhibitor 1, Enzo Life Sciences Inc.), both used at
5μM, or vehicle alone.

2.5. Quantitative Reverse Transcription Polymerase Chain
Reaction (RT-qPCR). As previously described [41], total
RNA was extracted from eosinophils using the RNeasy Mini
Kit (Qiagen, Valencia, CA, USA). The reverse transcription
reaction was performed using the Superscript III system
(Invitrogen/Life Technologies, Grand Island, NY, USA).
mRNA expression was determined by qPCR using SYBR
Green Master Mix (SABiosciences, Frederick, MD, USA)
and human IL-1β- (forward: tggaccccttggtaaaagaca, reverse:
gaagaaatcagtagagctatgaaacaaataag) specific primers. Primers
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were designed using Primer Express Software v3.0 (Applied
Biosystems, Carlsbad, CA, USA) and blasted against the
human genome to determine specificity using http://www
.ncbi.nlm.nih.gov/tools/primer-blast. The reference gene,
β-glucuronidase ((GUSB), forward: caggacctgcgcacaagag,
reverse: tcgcacagctggggtaag), was used to normalize the sam-
ples. Standard curves were performed and efficiencies were
determined for each set of primers. Efficiencies ranged
between 91 and 96%. Data are expressed as fold change using
the comparative cycle threshold (ΔΔCt) method and the
values presented are fold change = 2−ΔΔCt .

2.6. IL-1β mRNA Decay. As previously described [38], the
transcription inhibitor 5,6-dichloro-1-β-D-ribofuranosyl-
benzimidazole (DRB; 25μgml/ml) was added to eosinophil
cultures 4.5 h after the addition of TNF-α plus IL-3 (cyto-
kines at 10 ngml/ml), and eosinophils were harvested 30
and 90min thereafter. IL1B mRNA levels present immedi-
ately before the addition of DRB (T = 0 h) were set to
100%. The percentage of IL1B mRNA remaining com-
pared with T = 0 h was presented for each time point after
the addition of DRB. The half-life of mRNA was defined
as the time required to attain a 50% reduction of mRNA
after DRB addition.

2.7. IL-1β Elisa. IL-1β concentration in cell-culture superna-
tants was determined using the R&D Systems DuoSet Devel-
opment kit (DY201, Minneapolis, MN, USA), which detects
mature IL-1β (<7% cross-reactivity with pro-IL-1β).

2.8. IL-1β Bioassay. A HEK-Blue™ IL-1β reporter cell line
(InvivoGen, San Diego, CA, USA) that expresses a NF-κB/A-
P-1-inducible SEAP reporter gene was used to measure IL-1β
bioactivity in eosinophil-conditioned media. The reporter
cells were incubated overnight with either conditioned media
from resting or TNF-α plus IL-3-activated eosinophils, or a
recombinant human (rh) mature IL-1β (#201-LB R&D Sys-
tems, Minneapolis, MN, USA) used at different concentra-
tions. The IL-1β-induced NF-κB signaling pathway was
monitored using spectrophotometer absorbance values at
650nm. Bioactivity in eosinophil cultures was interpolated
using the standard curve that was created using absorbance
values at 605nm versus known concentrations of recombi-
nant human IL-1β. To test the specificity of IL-1β, a soluble
recombinant human IL-1β receptor antagonist, rhIL1RA
(0.4μg/ml; R&D Systems), was added on HEK cells 30min
before the conditioned media.

2.9. Western Blot. Eosinophil lysates were prepared by add-
ing 1-2 million eosinophils to 35μl of RIPA lysis buffer (Cell
Signaling Technology, Danvers, MA, USA) containing
20mM Tris HCl (pH7.5), 150mM NaCl, 1mM EDTA,
1mM EGTA, 2.5mM sodium pyrophosphate, 1mM sodium
orthovanadate, 1μg/ml leupeptin, 1mM β-glycerophos-
phate, 1% sodium deoxycholate, 1% NP-40, and 0.1% SDS.
PMSF (1mM) and a cocktail of mammalian protease inhib-
itors including AEBSF, aprotinin, bestatin, E-64, leupeptin,
and pepstatin A (P8340, Sigma-Aldrich Corp., St. Louis,
MO, USA) were added just prior to use. Eosinophil culture
supernatants were concentrated 12.5-fold using Amicon

Ultra centrifugal filters of 50,000 and 3,000 kDa (Millipore/-
Sigma-Aldrich Corp., Burlington, MA, USA). Lysates and
concentrated culture supernatants were resolved by electro-
phoresis on 15% SDS-polyacrylamide gels and transferred
to a PVDFmembrane. Protein was detected with a polyclonal
goat antibody to an epitope mapping at the C-terminus of
IL-1β (C-20, Santa Cruz Biotechnology, Dallas, Texas,
USA) or a polyclonal rabbit antibody to the 17 kDa mature
form of human IL-1β (Cell Signaling Technology, Danvers,
MA, USA), followed by the use of a secondary HRP-
conjugated donkey anti-goat antibody (Santa Cruz Biotech-
nology) or secondary HRP-conjugated anti-rabbit IgG anti-
body (Pierce/Thermo Fisher Scientific, Rockford, IL, USA).
β-Actin was used as a loading control. Mouse monoclonal
anti-β-actin was purchased from Sigma-Aldrich Corp.
Imaging was performed with a SuperSignal™ West Femto
chemiluminescent substrate (Life Technologies, Grand
Island, NY, USA) on an ImageQuant™ LAS 4000 imager
(GE Healthcare, Piscataway, NJ, USA). For western blots
using BAL fluids, two rhIL-1β were mixed to visualize
the pro- and mature form of IL-1β. The rhIL-1β proform
(~17 kDa) was from Sino Biological, Wayne, PA, USA, and
the mature form (~31 kDa) was from HumanZyme Inc.,
Chicago, IL, USA.

2.10. Zymography. For cell lysate preparation, two million
inactivated or TNF-α plus IL-3-activated eosinophils were
added to 35μl of RIPA lysis buffer (Cell Signaling Technol-
ogy) supplemented with 0.1% SDS and 1% Triton X-100.
PMSF (1mM) and the protease inhibitors aprotinin
(10μg/ml), leupeptin (2μg/ml), and pepstatin (20μg/ml)
were added just prior to use. The cell suspension was soni-
cated 2 times with 2 second pulses (output setting 2, Sonica-
tor 3000, Misonix, Farmingdale, NY, USA), repeatedly
passed through a syringe (28-gauge needle), and clarified by
centrifugation (12,000 × g/10min/4°C). Zymography was
performed as previously described [37, 42] with the following
modifications. One μg/ml recombinant proIL-1β (Sino Bio-
logical/InvivoGen, San Diego, CA USA) was copolymerized
into a 12% polyacrylamide gel for 48h. Cell lysates were elec-
trophoresed under nonreducing conditions on the pro-IL-
1β-containing gel. The pro-IL-1β zymograms were rena-
tured and incubated overnight under conditions compatible
with the activation of caspases (50mM Tris pH7.2, 200mM
NaCl, 0.02% Brij, and 0.5 EDTA) or MMPs (50mM Tris,
200mM NaCl, 5mM CaCl, 1μM ZnCl, and 0.005% Brij).

2.11. Detection of Proteases for Pro-IL-1β by ELISA and Mass
Spectrometry-Based Proteomics. Each lane of the pro-IL-1β
zymogram gel was excised and sequentially cut into 1mm
slices. The size of proteins in each gel slice was calculated
by determining and plotting the relative migration distance
(Rf =migration distance of the protein/migration distance of
the dye front) of each molecular weight marker against its
molecular mass and interpolating the apparent size based
on the Rf of the center of the gel slice. Proteins were allowed
to diffuse out of the gel by incubating the slices overnight at
4°C with 55μl PBS/0.1% Tween-20. The IL-1 β ELISA
described above was performed to determine which slices

3Mediators of Inflammation

http://www.ncbi.nlm.nih.gov/tools/primer-blast
http://www.ncbi.nlm.nih.gov/tools/primer-blast


contained matured/cleaved IL-1β. Additionally, slices under-
went western blotting. Slices were placed in the wells of a
13.5% SDS-polyacrylamide gel and underwent electrophore-
sis, and proteins were then transferred to a PVDL membrane
and probed for IL-1β. Finally, gel slices were also submitted
to the University of Wisconsin Biotechnology Center for
mass spectrometry-based proteomics by in-gel digestion
followed by nanoLC-MS/MS to identify potential proteinases
for IL-1β. Protein annotations, identification of significance,
and spectral-based quantification were done with the help of
Scaffold software (version 4.3.2, Proteome Software Inc.,
Portland, OR, USA). Protein identifications were accepted
if they could be established at greater than 80.0% probability
within a 1% false discovery rate and contained at least 2 iden-
tified peptides. Protein probabilities were assigned by the
ProteinProphet algorithm [43]. Proteins that contained sim-
ilar peptides and could not be differentiated based onMS/MS
analysis alone were grouped to satisfy the principles of
parsimony.

2.12. THP-1 Cell Line. The monocyte cell type, THP-1, was
obtained from ATCC (ATCC, Manassas, VA, USA) and cul-
tured in a medium similar to the eosinophil culture medium
described above (RPMI and 10% FBS). THP-1 was differenti-
ated into macrophages by overnight incubation with 100nM
PMA and 10ng/ml of IFN-γ (R&D Systems). THP-1 was
then pretreated (30min), similarly as for eosinophils, with
pharmacological inhibitors of caspase-1 (Z-WEHD-FMK,
5μM) or MMP-9 (MMP-9 inhibitor 1, 5μM), or vehicle

alone, before activation with LPS (100 ng/ml; Sigma-
Aldrich Corp., St. Louis, MO, USA) for 24-48 h. Cell super-
natants were stored at -80°C before analysis of IL-1β release
by ELISA.

2.13. Statistical Analysis. Statistical analysis was performed
using SigmaStat software (Systat Software Inc., Chicago, IL,
USA). Comparison of different treatments in paired samples
was performed using the t-test and the Mann–Whitney rank
sum test (for not normally distributed values). For compari-
son of more than 2 groups, one-way analysis of variance
followed by the Holm-Sidak method were used. A p value
of <0.05 was considered significant.

3. Results

3.1. Activated Eosinophils Express and Stabilize IL1B mRNA.
Circulating blood eosinophils activated with TNF-α plus a
common β-chain family cytokine (IL-5 or IL-3) expressed
a high level of IL1B mRNA (Figure 1(a)). In TNF-α plus
IL-3-activated cells, the maximum expression of IL1B
mRNA was maintained from 3 to 6 hours after the begin-
ning of activation, and the level remained high after 9 h.
Figure 1(b) shows that between 3 and 6 hours (4.5 h) after
the beginning of activation, IL1B mRNA was stabilized in
TNF-α plus IL-3-activated eosinophils compared to inacti-
vated (resting) cells, with a half-life time of 70min versus
33min, respectively.
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Figure 1: Activated eosinophils express a high level of IL-1β mRNA. (a) Blood eosinophils were cultured for 0 (T0), 3, 6, 9, and 20 h with
medium, (resting) TNF-α (TNF), IL-3 (IL3), IL-5, TNF-α plus IL-3 (TNF + IL3), or TNF-α plus IL-5 (TNF + IL5). Levels of IL1B mRNA
were determined by RT-qPCR, normalized to GUSB and expressed as fold change (2−ΔΔCt) from T0. Data are mean ± SEM of experiments
on eosinophil preparations from three subjects. ∗p < 0 05 for TNF-α plus IL-3 versus resting, IL-3, IL-5, or TNF-α alone or IL-5 plus
TNF-α; #p < 0 05 for TNF-α plus IL-3 versus resting, IL-5, and TNF-α, at corresponding time points. (b) Eosinophils were cultured with
medium alone (resting) or TNF-α plus IL-3 for 4.5 h, before the addition of DRB. After DRB addition, cells were harvested at T0, 30, and
90min and IL1B mRNA was quantified by RT-qPCR. Data were normalized to GUSB and expressed as the percentage of mRNA
remaining compared to T0. Data are presented as the mean of experiments on eosinophil preparations from 4 donors. The half-life time
of IL1B mRNA for both conditions is indicated in the legend on the graph.
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3.2. Activated Eosinophils Release Bioactive IL-1β Protein
with an Apparent Size < 17 kDa. Unlike TNF-α plus IL-5
(not shown), TNF-α plus IL-3-activated blood eosinophils
released a mature form of IL-1β, measurable by ELISA
(Figure 2(a)). Maximum production was observed starting
48 h after the beginning of culture and was maintained for
at least 72 h. At 72 h, IL-1β bioactivity was also significantly
detected using a HEK-Blue™ IL-1β reporter cell line
(Figure 2(b)). The specificity of the activity was further dem-
onstrated by its inhibition using IL1RA, which competes with
IL-1β to bind the IL-1 receptor (Figure 2(b)). Figure 2(c)
shows that a proform of IL-1β was readily visible in eosino-
phils 20 h and 44 h after the beginning of activation with
TNF-α plus IL-3. In addition, multiple different sizes of
IL-1β were also identified, all with an apparent MW< 17

kDa (Figure 2(c)). The strongest band just below 15 kDa
was also detected by western blot in supernatants from eosin-
ophils activated for 44 h (Figure 2(c)), while no detection was
observed in this condition at 20 h (not shown). Markedly,
IL-1β with an apparent size of <17 kDa was also detected in
BAL fluids 48 h after mild asthmatic subjects had received a
segmental allergen challenge (Figure 2(d)).

3.3. Identification of Matrix Metalloproteinase-9 (MMP-9) as
a Potential Protease to Cleave IL-1β in Activated Eosinophils.
Blood and BAL eosinophils were activated with TNF-α plus
IL-3 for 48 or 72h, and cell lysates were loaded on a pro-
IL-1β-containing SDS-PAGE gel (Figure 3). Using this
zymography approach, we found 3 gel fractions possessing
a protease activity toward pro-IL-1β. Proteins in these 3 gel
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conditioned media obtained 72 h after eosinophil stimulation with TNF + IL3. Data are mean ± SEM of experiments on eosinophil
preparations from five to six subjects (a) and three subjects (b). ∗p < 0 05 for TNF-α plus IL-3 versus resting, at the corresponding time
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using three different blood eosinophil donors. (d) BAL fluids (BALF) obtained by bronchoscopy before (Pre) and 48 h after (Post) a
segmental allergen challenge were evaluated by western blot for the presence and size of IL-1β. Positive control (rhIL-1β) includes both
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fractions had an apparent MW of ~80 kDa (57 proteins iden-
tified by mass spectrometry-based proteomics), ~32 kDa (85
proteins), and ~22 kDa (48 proteins) (Figure 3). The exhaus-
tive lists of proteins found in the ~80 kDa and ~32 kDa frac-
tions are presented in supplemental Tables E1 and E2. The
cleavage activity on IL-1β in the ~80 kDa gel fraction was
found in both blood and BAL eosinophils, and the size of
IL-1β in this fraction was <17 kDa (~15 kDa) (Figure 3,
western blot inset). In both blood and BAL eosinophils,
MMP-9, which has a molecular weight of 82 kDa, was listed

as highly abundant in the ~80 kDa fraction (Figure 3). As
predicted on http://cleavpredict.sanfordburnham.org [44],
multiple potential sites in IL-1β exist for MMP-9, including
3 sites around ELKA, a well-known cleavage site for MMPs
[45], that would generate IL-1β sizes between 15 kDa and
14 kDa (Figure 4).

3.4. MMP-9 Is Involved in the Release of Mature IL-1β by
Activated Eosinophils. Blood eosinophils were prepared from
seven subjects (4 females and 3 males, 18 to 53 years old, with
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Figure 3: Identification of matrix metalloproteinase-9 (MMP-9) as a potential protease for IL-1β cleavage in cytokine-activated eosinophils.
Blood and BAL eosinophils were cultured in medium alone (inactivated) or with TNF-α plus IL-3 (both at 10 ng/ml; activated) for 48 h and
72 h, respectively. Using a zymography approach, eosinophil lysates were electrophoresed in a 12% SDS-PAGE gel copolymerized with
pro-IL-1β. The pro-IL-1β zymograms were renatured and incubated overnight under conditions compatible with the activation of
proteases. Each lane of the pro-IL-1β zymogram was excised and sequentially cut into 1mm slices. The sizes of proteins (MW) in each gel
slice are shown on the x-axis of the graphs. Proteins were allowed to diffuse out of the gel slices. The y-axis of the graphs indicates the
amount of matured/cleaved IL-1β present in each gel slice as measured by ELISA. As shown on the upper graph, gel slices underwent
western blotting for IL-1β to identify the size of the IL-1β proteins. Western blot using the ~80 kDa gel slice from two experiments using
blood eosinophils from two different subjects is shown, and it identifies the IL-1β with a size of ~15 kDa. The ~80 kDa, ~32 kDa, and
~22 kDa (∗) gel slices were also submitted to the University of Wisconsin Biotechnology Center for mass spectrometry-based proteomics.
On the right side of the figure are listed the top 40 genes coding for identified proteins. The lists of genes coding for proteins present in (i)
the ~80 kDa gel slice for both activated blood and BAL eosinophils (n = 2), (ii) the ~32 kDa gel slice in activated blood eosinophils (n = 2),
and (iii) the ~22 kDa gel slice in activated eosinophils (n = 1) are shown. Genes with asterisk possess a protease activity according to
DAVID Bioinformatic Resources 6.8 (beta) (National Institute of Allergy and Infectious Diseases (NIAID), NIH) [65].
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allergy). Eosinophils were pretreated with inhibitors ofMMP-
9andcaspase-1, or vehicle alone, before activationwithTNF-α
plus IL-3. The MMP-9 inhibitor significantly reduced the
release of IL-1β by activated eosinophils (Figure 5(a)) in all 7
subjects. The caspase-1 inhibitor seemed to also inhibit IL-
1β release (Figure 5(a)), although it did not reach statistical
significance due to variability among eosinophil donors,
including eosinophils from 3 subjects who did not (2 subjects)
or only slightly (1 subject with <15% inhibition) responded to
the caspase-1 inhibitor. This suggests heterogeneity among
subjects regarding the role of the inflammasome in the release
of IL-1β by eosinophils. Conversely, used as a control for the
pharmaceutical inhibitors, the monocyte/macrophage cell
line THP-1 activated with LPS showed that the release of
mature IL-1β was inflammasome/caspase-1-dependent as
the caspase-1 inhibitor strongly diminished the release of
IL-1β while the MMP-9 inhibitor was totally ineffective
(Figure 5(b)).

4. Discussion

Although there are a few reports showing that eosinophils are
a source of IL-1β [18, 35, 36], no studies have shown the
mechanisms of IL-1β expression, maturation, and release
by eosinophils. By the present study, we demonstrate that
cytokine-activated eosinophils stabilize and accumulate
IL1BmRNA, and then they mature and release IL-1β protein
in a MMP-9-dependent manner.

In a cell-free system, thematrixmetalloproteinasesMMP-
3 and MMP-9 have been reported as IL-1β-converting
enzymes, with MMP-9 generating a bioactive IL-1β with a
MW< 17 kDa [46]. While MMP-3 expression was not
detected in activated eosinophils, we have previously reported
that TNF-α plus IL-3-activated eosinophils produce and
release a large amount of pro-MMP-9 protein starting
between 24 and 48h after the beginning of activation, with
levels reaching as much as 30 ng/ml after 72 h [37]. This
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Figure 4: Identification of potential cleavage sites for MMP-9 in IL-1β. Potential cleavage sites for MMP-9 resulting in <17 kDa matured
IL-1β sizes were identified using http://cleavpredict.sanfordburnham.org [41].
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Figure 5: MMP-9 activity is involved in IL-1β release by activated eosinophils. (a) Blood eosinophils were cultured with TNF-α plus IL-3
(10 ng/ml) for 48 h after a 30min treatment with Z-WEHD-FMK (caspase-1 (CASP1) inhibitor) or MMP-9 inhibitor 1 (MMP-9
inhibitor) used at 5μM or vehicle alone (-). The amount of matured IL-1β in the supernatant culture was measured by ELISA. ∗ indicates
that MMP-9 inhibition significantly reduced IL-1β compared to no treatment (-) (p < 0 05, n = 7 different subjects (Table E3)). (b) The
THP-1 cell line was differentiated into macrophages using PMA and IFN-γ overnight. Cells were treated with caspase-1 inhibitor
(CASP1), MMP-9 inhibitor (MMP9), and vehicle alone (-), the same as for blood eosinophils in (a), and were activated with LPS
(100 ng/ml) for 24 h. Matured IL-1β released by THP-1 cells was measured by ELISA. ∗ indicates that caspase-1 inhibition significantly
reduced IL-1β release compared to (-) and MMP-9 (p < 0 05, n = 5).
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particular time point for MMP-9 production is in agreement
with the kinetics of IL-1β maturation and release monitored
in the present study, where 48 and 72 h of activation were
required to detect significant amounts of active IL-1β in eosin-
ophil supernatants. However, it is uncertain within these con-
ditions how the pro-MMP-9 form was converted into an
active form that was able to cleave IL-1β. Eosinophils stimu-
lated to undergo basement membrane transmigration pro-
duce the active 84 kDa form of MMP-9 [47–49]. Yet, we did
not detect a significant amount of activeMMP-9 released from
TNF-α plus IL-3-activated eosinophils [37]. It is however pos-
sible that a portion ofMMP-9matures intracellularly in eosin-
ophils. Notably, the protease, cathepsin G (CTSG), was
detected by mass spectroscopy in the 22 kDa fraction of our
zymogram gel. Cathepsin G is an activator of pro-MMPs, par-
ticularly MMP-9 [50], and its production in eosinophils has
been previously reported [51, 52].

As mentioned above, it is known that in a cell-free sys-
tem, MMP-9 generates a bioactive IL-1β with an apparent
MW< 17 kDa [46]. Analysis using http://cleavpredict.
sanfordburnham.org [44] indicates that MMP-9 may in fact
cleave IL-1β in many different sites, all generating an IL-1β
fragment < 17 kDa. In the present study, we did indeed
observe multiple IL-1β apparent sizes < 17 kDa by western
blot. Even though the most abundant cleaved form of
IL-1β, which was present both in cell culture in vitro and in
BAL fluids after in vivo allergen challenge, migrated slightly
below 15kDa, other signals were also detected with apparent
sizes around 14 kDa and 16 kDa. Although the ELISA used in
this study has little cross-reactivity (<7%) with the proform
of IL-1β, it is not known howmuch of each different matured
IL-1β form that was detected by western blot (between 14
and 16 kDa) was also detected by ELISA with sufficient
efficiency. Nevertheless, the ELISA measured as much
IL-1β as our bioactivity assay performed on the IL-1β-re-
sponsive cell line, suggesting that the ELISA did not
underestimate the amount of bioactive IL-1β released from
activated eosinophils. It is also interesting to note that the
kinetics of IL-1β generation as detected by ELISA and the
bioactivity assay are not superimposable since the maxi-
mum bioactivity was observed 24 h after the maximum
IL-1β release detected by ELISA. Therefore, the possibility
of further maturation of IL-1β after being released from
eosinophils and the exact IL-1β cleavage sites in eosino-
phils remain unknown.

Besides MMP-9, our zymography analysis demonstrated
the presence of an unidentified protease in the 32 kDa
fraction of the gel. In addition, detection of a protease activ-
ity for IL-1β in the 22 kDa fraction of our zymogram gel sug-
gested an inflammasome-dependent and caspase-1 (~20
kDa) activity in both activated and resting eosinophils.
While we did not detect caspase-1 protein in this fraction
by mass spectrometry, we observed that the inhibition of
caspase-1 reduced IL-1β release by TNF-α plus IL-3-
activated eosinophils obtained from most of the subjects
included in this study. This indicates that caspase-1 may also
have a role in IL-1β production in eosinophils; at least in a
subpopulation of allergic individuals that remains uncharac-
terized to that point due to the limited number of subjects

included (n = 7). The identification and characterization of
the subjects whose eosinophils use caspase-1 to mature
IL-1β are of interest, but it would require a larger number
of individuals, which is beyond the scope of the present
study. The implication of caspase-1 in certain subjects is
however in agreement with previous studies that reported
IL-1β converting enzyme activity and the presence of the
p10 subunit of caspase-1 in resting human eosinophils [53,
54]. In addition, zinc oxide nanoparticles induce human
eosinophil production of IL-1β, which is reversed by the
inhibition of caspase-1 [55], and bone marrow-derived
murine eosinophils undergo caspase-1-mediated pyroptosis
with the release of IL-1β [34]. Besides the implication of cas-
pase-1, inflammasome-independent maturation of IL-1β by
serine proteases has been described in other cell types (neu-
trophils and mast cells). Most of these inflammasome-
independent proteases cleave IL-1β into bioactive forms
with molecular weights at or slightly above the caspase gen-
erated 17 kDa form [56, 57]. The cytotoxic T lymphocyte
granule protein, granzyme A, also produces a biologically
active form of IL-1β, but with a size slightly below 17 kDa
[58]. Interestingly, calpain-1 (CAPN1) was also detected by
mass spectrometry in our 80 kDa fraction. CAPN1 is known
to cleave IL-1α into a 17 kDa active form [59], and yet its
role on IL-1β in our model was not investigated.

Even a modest increase in mRNA stability has a signifi-
cant impact on protein production [60]. We show here that
IL1B mRNA levels in activated eosinophils depend on
mRNA stability. This is in agreement with previous works
showing the stabilization of other transcripts such as CSF2
[61] and INHBA mRNAs in activated eosinophils particu-
larly in TNF-α plus IL-3-activated eosinophils [38]. IL1B
mRNA has already been shown to be stabilized in other types
of activated cells such as fibroblasts and monocytic or macro-
phage cell lines [62, 63] via AUUUA motifs present in the 3′

TNF‐�훼 + IL‐3

EOS

IL-1�훽 mRNA stabilization
and accumulation

MMP‐9

Maturation and release of an
active IL-1�훽 protein with
molecular weight <17kDa

Proform IL-1�훽 protein

Cleavage

Figure 6: Schematic diagram of the findings. In eosinophils (EOS),
TNF-α plus IL-3 trigger stabilization and accumulation of IL-1β
mRNA and IL-1β protein production. TNF-α plus IL-3 activation
also leads to the production of MMP-9, which cleaves the proform
of IL-1β protein into a mature and active IL-1β protein with an
apparent molecular weight < 17 kDa.
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untranslated region [64]. The involvement of gene transcrip-
tion into the accumulation of IL1B mRNA was not analyzed
in the present study.

5. Conclusion

As summarized in Figure 6, we show here that eosinophils
express and produce IL-1β with apparent sizes between 16
and 14 kDa. We had previously demonstrated that activated
eosinophils produce MMP-9, and we now reveal that
MMP-9 produced by activated eosinophils significantly par-
ticipates in the cleavage and release of a bioactive form of
IL-1β with an apparent size < 17 kDa. Therefore, via the
production of IL-1β, eosinophils may participate in profi-
brotic and proinflammatory events leading, for instance,
to a Th17/neutrophilic and treatment-refractory phenotype
in asthma.
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