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Abstract: Chlorpyrifos (CPF) is a widely used organophosphate insecticide, though its excessive use
causes environmental contamination, raising concerns about its adverse effects on human health. In
this regard, Urtica dioica stands out as a promising candidate for counteracting chemical ‘contaminant’
toxicity thanks to its therapeutic properties. Therefore, our study aimed to investigate the potential of
an Urtica dioica ethanolic extract (UDE) to mitigate chlorpyrifos-induced toxicity. Eight compounds in
the Urtica dioica ethanolic extract have been identified, most of which present significant potential as
antioxidant, anti-inflammatory, and neuroprotective agents. Chlorpyrifos exposure altered hatching
rates, increased the incidence of teratogenic effects, and upregulated the expression of brain-derived
neurotrophic factor (Bdnf) in zebrafish larvae telencephalon. On the other hand, UDE demonstrated
a preventive effect against CPF-induced teratogenicity, which is expressed by a lower morphological
deformity rate. Moreover, the UDE showed a rather protective effect, maintaining the physiological
condition of the telencephalon. Additionally, CPF altered the locomotor behavior of larvae, which was
characterized by irregular swimming and increased activity. This defective behavioral pattern was
slightly attenuated by the UDE. Our findings suggest that the UDE possesses significant protective
properties against CPF-induced toxicity, probably conferred by its natural antioxidant and anti-
inflammatory contents. Still, further research is needed to elucidate the recruited mechanisms and
implicated pathways on UDE’s protective effects.

Keywords: Urtica dioica; nettle; chlorpyrifos; organophosphate pesticides; developmental toxicity;
neuroprotection; natural compounds

1. Introduction

CPF is a well-known organophosphate insecticide, acaricide, and miticide with the
chemical name O,O-diethyl-O-(3,5,6-trichloro-2-pyridinyl) phosphorothionate (CAS No.
2921-89-2). It is used to prevent and control crop pests and diseases, though its excessive
use causes environmental pollution.

The continuous and excessive use of CPF in recent decades has already led to widespread
environmental contamination. Indeed, it is commonly monitored in soils, ground water,
and surface water, as well as in solid and liquid dietary samples. Thus, there is no doubt
that the misuses of CPF and other organophosphate pesticides can have adverse effects on
non-target organisms, including humans [1].
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In the European Union, chlorpyrifos has been prohibited from being marketed for use
as an active substance in plant protection products since 2020 (Commission Implementing
Regulation (EU) 2020/18 of 10 January 2020). In the USA, the US Environmental Protection
Agency’s tolerance for chlorpyrifos for products with registered food uses was expired in
2022 [2].

Although CPF has been seriously limited in use in the United States and the EU,
pesticide manufacturing and sales to countries that have not yet banned it continue.

Being from the same family of chemicals as the sarin nerve gas agent, CPF functions by
attacking the nervous system [3]. Indeed, the central and peripheral nervous systems are the
primary target organs for CPF toxicity due to the ability of the chlorpyrifos-oxon metabolite
to inhibit the enzyme activities of acetylcholinesterase (AChE) and butyrylcholinesterase
(BuChE), the neurotransmitter choline ester catalyzers, which terminate neurotransmission
at cholinergic synapses [4].

From a detailed evaluation of the literature conducted by Eaton et al. [4], repeated
exposure to chlorpyrifos at a daily dose of less than 14 µg/kg/day has little or no effect
on either acetyl or butyryl cholinesterase activity in target tissue in adults. Thus, repeated
exposure to chlorpyrifos at a daily dose of less than ~10 µg/kg/day would not be expected
to have discernable effects on the enzyme activity of the target tissue AChE or BuChE [4].
At doses less than those causing frank neurological effects, chlorpyrifos do not show
significant toxicity in organ systems other than the nervous system. Moreover, it is not
considered to be teratogenic at doses that do not cause frank maternal toxicity [4].

Alternative mechanisms of action for CPF, other than the primary mechanism of
inhibiting the enzyme activity of acetylcholinesterase (AChE) and butlycholinesterase
(BuChE), could potentially contribute to toxic effects occurring in vivo at doses less than
those that would induce the primary mechanism; thus, there is a necessity to further
investigate the different mechanisms of action for CPF.

Moreover, it is well known that biologically active compounds found in medicinal
plants can enhance neurological function through multiple pathways [5]. Among these
plants, Urtica dioica, known as nettle, stands out for its remarkable medicinal properties. It
has a longstanding history as an herbal remedy and a valuable addition to the diet. Previous
research indicates that nettle possesses antioxidant, anti-inflammatory, anti-carcinogenic,
and anti-aging properties [6,7]. Numerous studies have associated Urtica dioica extract
with maintaining and enhancing cognitive performance [8,9]. Additionally, specific natural
components within the extract, such as carvacrol, have been shown to regulate dopamine
and serotonin levels in the hippocampus and prefrontal cortex, offering neuronal protection
against damage from focal cerebral ischemia/reperfusion [10–12].

Although rodents have been the models of choice and have significantly contributed
to our understanding of developmental neurotoxicity, experiments using large numbers
of rodents are time-consuming and expensive and raise ethical concerns [13]. Using
alternative non-mammalian animal models may relieve some of these pressures by granting
large numbers of subjects for testing while reducing expenses and minimizing the use
of mammals.

During the past decade, teleost fish have been introduced as successful vertebrate
models in scientific research [14–17], emphasizing zebrafish species (Danio rerio) [18,19].
Zebrafish offer multifaceted advantages in developmental neurotoxicity testing, as seen in
the concordance between zebrafish and human neurodevelopmental pathways reported
in many studies [5,20,21]. Beyond this concordance, the conservativeness in protein and
disease processes between humans and zebrafish further enhances their utility. Conse-
quently, drugs exhibiting efficacy in humans exert similar effects on zebrafish, targeting
the same biological pathways [22]. Moreover, the adaptability of zebrafish extends to their
capability to absorb a diverse range of compounds from their surrounding media. This
unique feature makes them particularly well suited for comprehensive drug screens [22].
Thus, the advantages of zebrafish underscore their significance in advancing research,
particularly regarding developmental neurotoxicity and drug screening.
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Considering the aforementioned data, we aimed to explore, for the first time, the
impact of an ethanolic extract from Urtica dioica on mitigating the toxic repercussions
induced by chlorpyrifos—an organophosphate insecticide with broad-spectrum effects—on
both the developmental progress and neurobehavioral performance of zebrafish larvae.

2. Results
2.1. DI-HRMS Analysis

Based on the obtained mass spectra with DI-HRMS, which were collected through
positive electrospray ionization (ESI+) and negative electrospray ionization (ESI−), as
well as the molecular formula and unsaturation degree (RDB—Ring and Double Bond)
values, various chemicals were identified in the ethanolic extract of Urtica dioica (UDE)
and compared to data from the literature. This approach allowed for the identification of
eight compounds. Concerning the ESI+ mode, five molecules were identified (isoledene,
hexadecanethiol, heptadecenoic acid, ethylene glycole, and bornyl acetate). On the other
hand, in the ESI− mode, three molecules were identified (oxo-octadecadienoic acid, esculin,
and p-Coumaric acid) (Table 1).

Table 1. High-resolution accurate mass data, tentative assignment, formula, and Ring and Double
Bond (RDB).

Tentative Assignment Formula [M-H] + Found [M-H] − Found RDB

Isoledene C15H24 219.17525 - 4.5

Hexadecanethiol C16H34S 256.13380 - 4

Heptadecenoic acid C17H34O2 278.07987 - 8

Ethylene glycol C18H38O4 318.30066 - 0

Bornyl acetate C12H20O2 153.13930 - 2.5

Oxo-octadecadienoic acid C18 H3003 - 293.17831 4.5

Esculin C15 H1609 - 339.19858 7.5

p-Coumaric acid C15 H1808 - 325.18317 7.5

2.2. Hatching and Survival Rates

The hatching rate was monitored in the different groups until 72 h post-fertilization
(hpf), which is the normal hatching period, and the total hatching rate was calculated.
In the control condition, the hatching rate was around 90.3%. After a one-way ANOVA
followed by Bonferroni correction, we recorded a 15% reduction in the hatching rate in UDE
I compared to the control group; however, this difference was insignificant. In the UDE II
I group, however, the observed difference in the hatching rates compared to the control
groups was almost negligible and did not reach statistical significance. In the CPF I group,
the amount of hatched larvae was almost 27% less than that in the control group, and
the delta hatching rate was statistically significant. Furthermore, in the two experimental
groups receiving both UDE and CPF, the hatching rate was considerably diminished
compared to the baseline group but slightly higher than that reported in the CPF I group
(Figure 1).

The survival rate, however, was monitored daily, and the UDE slightly increased the
survival rate compared to the control group. This effect was noticeable in both the early
treatment (UDE I) and the late treatment (UDE II) groups. Additionally, the toxic effect
of the CPF detected in the hatching scoring was less evident, and the CPF I group had a
lower survival rate compared to the CPF-free groups (control, UDE I, and UDE II). Still,
no significant difference between the different groups was reported for the survival rate
(Figure 2).
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Figure 1. The hatching success rate at 78 hpf of the larvae from the different experimental groups. The
data are expressed as the mean ± SD. The different lowercase letters indicate a significant difference
between the experimental and control groups (Bonferroni, p < 0.05).
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Figure 2. The survival rate at 24, 48, 72, and 96 hpf of larvae from the different experimental groups.
The data are expressed as the mean ± SD. No significant difference between the experimental and
control groups was reported (one-way ANOVA, Bonferroni, p < 0.05).

2.3. Teratology Screening

At five dpf, the larvae were assessed for morphological deformities. The morphological
scoring consisted of evaluating the morphology of the different anatomical structures.

The UDE exposed the groups; thus, UDE I and UDE II had deformity rates that were
comparable to that of the control group. The larvae exposed to CPF in both CPF I and CPF II,
however, showed a significant increase in the percentage of individuals with morphological
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deformations. In both the preventive and curative groups, the deformation incidence was
significantly lower than that of the CPF groups (Figure 3).
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Figure 3. The deformity rate between 24 and 96 hpf of larvae from the different experimental groups.
The data are expressed as the mean ± SEM. The different lowercase letters indicate a significant
difference between the experimental and control groups (one-way ANOVA, Bonferroni, p < 0.05).

Among the deformities registered during the experiment, there were deformities
affecting the spinal cord, and three types of spinal curvatures could be differentiated,
namely (1) the inward curving of the spine (or lordosis) (Figure 4b), (2) the outward curving
of the spine (or kyphosis) (Figure 4c), and (3) the sideways curving of the spine (or scoliosis)
(Figure 4d). Other than the spinal cord deformities, CPF induced pericardial edemata,
which resembles an enlarged pericardium or distended thin-walled cavities surrounding
the heart (Figure 4e). In other cases, pericardial edema was often associated with the
pooling of blood in the caudal ventral region of the trunk (Figure 4f).

Morphologically discernible yolk alterations were identified starting from 48 hpf.
Those deformities included yolk edemata (Figure 4g), which may develop into cavities
within the yolk itself or concentrate in the periphery underneath the yolk sac. When
healthy embryos began to deplete their nutrient resources, some larvae showed reduced
yolk resorption (Figure 4h). Moreover, less frequent morphological alterations, including
fin erosion (Figure 4i,j), deformation of the notochord (Figure 4k) with variable degrees
of severity, and craniofacial malformations, including the lengthening of the lower jaw
(Figure 4l), were encountered in a few larvae.
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Figure 4. Morphological malformations observed in larval zebrafish exposed to CPF and UDE. (a)
Morphology of normal zebrafish larva. (b) Lordosis. (c) Kyphosis. (d) Scoliosis. (e) Pericardial
edemata. (f) Blood pooling at tail artery and pericardial edemata; (g) yolk edema and pericardial
edemata. (h) Reduced yolk resorption. (i,j) Fin erosion. (k) Notochord deformation at caudal region.
(l) Structural deformation of jaw. Black arrows indicate eroded fins.

2.4. The Effects of UDE on the Brain-Derived Neurotrophic Factor Expression in
‘Larvae’ Telencephalon

In the control and UDE groups, the immunofluorescence positivity of the brain-derived
neurotrophic factor (bdnf) was detected in the cytoplasm and nerve cell nuclei (Figure 5).
In the CPF, preventive, and curative groups, the immunofluorescence positivity of bdnf
was also reported in intercellular areas of neurons (Figure 5).
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Figure 5. Bdnf immunolabeling in the telencephalon of the control, UDE I, UDE II, CPF I, CPF II,
curative, and preventive groups. Scale bar: 20 µm.

Bdnf immunolabeling in the in UDE I and UDE II groups was slightly higher than
that of the control group, but the differences were still statistically insignificant (p > 0.05).
Moreover, both CPF groups, CPF I and CPF II, and the curative group exhibited stronger
and more diffuse signals of bdnf antigens than the Ctrl and UDE groups, and the difference
was not statistically significant either (p < 0.05). Additionally, the preventive group showed
a bdnf expression level comparable to those of the control and UDE groups (Figure 6).
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2.5. Locomotor Activity

The records of the larval motion trail indicated that CPF exposure resulted in notable
behavioral changes in the emotional trail and swimming distance. Indeed, these neurotoxic
effects included irregular swimming (Figure 7a) and increased locomotor activity in the
four groups exposed to CPF (CPF I, CPF II, preventive, and curative groups) compared to
the control and UDE groups (Figure 7b,c). Moreover, the UDEI and UDE II larvae showed
decreased motility compared to the Ctrl group in terms of swimming distance but not
speed. Larvae exposed to UDE preceding or following CPF exposure and, therefore, those
of the preventive and curative groups, have slightly reduced motility compared to the
larvae in the CPF ‘group’. Still, this difference was not significant (Figure 7c). In both UDE I
and II, and in CPF I and CPF II, there was no statistically significant difference between the
groups that were treated early (4/6-48 or 4/6-72 hpf) and late (3-5 or 2-5 DPF) (Figure 7b,c).
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Figure 7. The locomotor behaviors of 96 hpf zebrafish larvae after exposure to CPF and UDE for
two hours. (a) The records of larval motion trail. (b) The free swimming distance during a 120 min
period (Bonferroni, p < 0.01). (c) The free swimming speed during a 120 min period with visible light
(Bonferroni, p < 0.01). The data are expressed as the mean ± SEM of three replicates (10 larvae per
replicate). The different lowercase letters indicate a statistically significant difference between the
experimental groups at p < 0.01.

3. Discussion

Chlorpyrifos is a broad-spectrum organophosphorus insecticide that exhibits high
toxicity to non-target organisms. Human exposure has raised concerns regarding its toxicity
to the developing nervous system. Indeed, since it is from the same family of chemicals as
the sarin nerve gas agent, CPF functions by attacking the central and peripheral nervous
system, inhibiting the enzyme activity of acetylcholinesterase and butyrylcholinesterase,
the neurotransmitter choline ester catalyzers, leading to the accumulation of acetylcholine
and cholinergic hyperstimulation [3,4,23].

Studies on experimental animal models confirmed that exposure to CPF during critical
stages of brain development can cause persistent neurobehavioral deficits and altered
locomotor activity even at doses that do not elicit acute cholinergic toxicity or a significant
downregulation of cholinergic receptors [24–26]. Moreover, they suggested that develop-
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mental neurotoxicity could be induced by altering neuronal connectivity in the developing
brain [27,28].

During the current study, the chlorpyrifos-treated groups received a final concentration
of 1 mg/L. This concentration was chosen to be high but under the LC50 concentration of
1.520 mg/L, with a 95% confidence limit of 1.26–1.82 mg/L, which was already defined by
a previous study [29]. The chosen concentration of 65.78% LC50 ensured a chlorpyrifos-
induced toxicity phenotype.

In their study, Jiang et al. exposed zebrafish to 0.5% LC50 of chlorpyrifos (7.6 µg/L)
for 35 days [29]. Although the aforementioned dose was smaller than that used in the
current study, Jiang’s team demonstrated a significant bioaccumulation of chlorpyrifos
in the intestinal tract and brain, with a smaller accumulation observed in the gills and
muscles. CPF bioaccumulation in different tissues has been recorded in other fish species.
Indeed, a study on largemouth bass (Micropterus salmoides) juveniles exposed to 4 µg/L
of CPF (1/5 of 96 h LC50) was conducted, and the CPF bioaccumulation in muscle tissues
was recorded. The differential accumulation patterns of chlorpyrifos in zebrafish tissues
could be explained by the induced oxidative stress and the inhibition of some detoxifying
enzymes, namely carboxylesterase and cytochrome P450s, with their activity exacerbating
the pesticide metabolism process [30]. Moreover, zebrafish larvae are likely to have a higher
bioaccumulation of pesticides compared to adults primarily due to their less developed
detoxification systems and higher surface area-to-volume ratio. Due to the evidence of
the high bioavailability of chlorpyrifos, even at low exposure concentrations, the authors
decided not to assess its bioaccumulation in zebrafish larvae in the current study, avoiding
the need to sacrifice a significant number of larvae in each group for this assessment.

Urtica dioica has a longstanding history as an herbal remedy and a valuable addi-
tion to the diet. Indeed, previous research indicates that nettle possesses antioxidant
and anti-inflammatory properties and has great potential for maintaining and enhanc-
ing cognitive performance and neuronal protection against damage from focal cerebral
ischemia/reperfusion [7–10,12,13].

Those potential effects are conferred to Urtica dioica by its content on natural com-
pounds of great interest for neuronal development and protection, including those revealed
by the current study. Other than Urtica dioica, isoledene was encountered in the oleo-gum
resin of Ceylon ironwood (Mesua ferrea) [31] and in the essential oils of anise (Pimpinella
anisum L.), fennel (Foeniculum vulgaris M.) [32], and false daisy (Eclipta prostrata L.) [33]. As
reported in another study, isoledene can elevate the levels of caspases-3/7, −8, and −9
and ROS [31]. Bornyl acetate, however, was previously identified in Pinus family essential
oils [34], rosemary essential oil [35], and Ferula ovina (Boiss.) F. aerial ‘parts’ essential
oil [36]. It could alleviate demyelinating diseases via its anti-inflammatory effect, inhibiting
mitogen-activated protein kinases and nuclear factor-kappa B pathways and reducing the
mobilization of CD4+ T, Th1, and Th17 cells [37,38]. Heptadecanoic acid has the same effect,
as it is known for its potential to inhibit inflammation by inhibiting the NF-κB pathway [39].

Oxo-octadecadienoic acid, a natural agonist with antioxidant and anti-inflammatory
effects [40,41], can activate PPARα in the brain, and it is a promising target in treating
neurodegenerative disorders and neuroprotection [42,43].

Esculin is another natural compound identified in UDE in the current study. It is a well-
studied coumarin component known for its various pharmacological properties, including
the induction of immunomodulatory, antioxidant, and anti-inflammatory effects [44], via
the MAPK pathway [45]. Additionally, esculin is known for its capacity to ameliorate
behavior and recognition memory in experimental diabetic nephropathy [45]. Furthermore,
in an in vitro study using the human neuroblastoma SH-SY5Y cell line, Zhao et al. found
that esculin inhibited the release of cytochrome c and apoptosis-inducing factor, suggesting
its use in the therapeutic strategy for the treatment of progressive neurodegenerative
diseases [46].

P-Coumaric acid is another interesting natural compound that has been identified
in UDE. Its antioxidant and anti-inflammatory properties have already been recorded
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in many studies. Its protective effect on neuroinflammation, cognitive impairment, and
neuronal apoptosis was attributed to its anti-apoptotic, antioxidant, AChE inhibitory, and
anti-inflammatory activities and increased CREB phosphorylation [47,48].

The current investigation assessed the potential beneficial effect of Urtica dioica ethano-
lic extract against chlorpyrifos-induced toxicity by evaluating the hatching and survival
rates, teratogenic effects, and Bdnf expression in ‘larvae’ telencephalon as well as the
behavior of zebrafish larvae.

Hatching was recorded daily in the different groups from 48 to 72 hpf, which is the
physiological hatching period [49]. In the control condition, the hatching rate was around
90.3%, which is comparable to that reported in previous zebrafish studies [50,51]. The
UDE did not exhibit a significant effect on hatching, whereas exposure to CPF resulted in
altered hatching. This observation is in contradiction with the findings of Yu et al., who
demonstrated that CPF altered embryonic incubation and that the 1 mg/L CPF group
showed a hatching rate of 80% at 48 hpf compared to <15% in the control group [52]. Still,
the current study’s findings are in accordance with the findings of Jin et al., who found
that CPF reduced hatchability in a dose-dependent manner [53]. Moreover, even when
combined with the UDE, CPF significantly delayed hatching.

The delayed hatching that was observed may stem from the embryos’ inability to
break out the chorion in some eggs. This hypothesis finds support in the detrimental
impact of CPF on locomotor activity, which was previously reported in zebrafish and
mammals [54,55]. Another hypothesis could be the capacity of CPF to trigger the inhibition
of the enzyme responsible for breaking down the chorion: Hatching Enzyme 1. Thus, the
intact chorion resists the larvae’s first spontaneous movements and keeps them restricted.

The toxic effect of CPF detected in the hatching scoring was less evident in the survival
rate. The CPF effect reported in the survival rate was compared to that recorded in a
previous study with a 1 mg/L exposition concentration [52].

The teratogenic scoring of zebrafish larvae consists of assessing the morphology of
the different anatomical structures of larvae. The CPF group exhibited a notable rise in the
recurrence of morphological deformity compared to the control group, thus affirming the
well-established teratogenic effects of CPF [30,53]. In the preventive group, the incidence
of deformation was lower than that of the CPF group, reflecting a valid preventive effect of
Urtica doica extract. Although the incidence of those deformities in the curative group was
lower than that observed in the CPF group, the difference was not statistically significant,
thereby abolishing the curative potential of the UDE. This observation may be attributed to
the potential of the UDE to target the mechanisms associated with teratogenicity develop-
ment compared to its lesser or negligent capacity to reverse established conditions.

Among the deformities registered during the experiment, spinal cord deformities,
pericardial edema, and discernible yolk alterations were identified starting from 48 hpf.
Those deformities were consistent with those typically associated with CPF exposure,
which were documented in previous studies at even lower exposition concentrations (400,
600, and 800 µg L−1) compared to that used in the current study [56], as well as in the case
of combined pesticide exposure experiments [57]. Late and early CPF exposure did not
affect the incidence of deformity. Furthermore, no group-specific deformities were reported.
This observation could be explained by the capacity of CPF, which was administered
starting from 72 hpf, to induce broad metabolic disruptions which, in turn, interrupted the
physiological increase in metabolite concentrations reported in zebrafish larvae between 48
and 72 hpf [58,59].

The edema formation in embryos reported in the larvae exposed to CPF could be
explained by osmoregulation failure associated with gill damage. Indeed, many studies
have substantiated the highly toxic effect of CPF on gill cells across various species [60–62].

During the first 96 h of development, the yolk sac plays an important role as the main
source of nutrients. In normal conditions, yolk sac resorption is evident at approximately
120 hpf [63]. In the current study, some cases of reduced yolk resorption were recorded
while healthy embryos began to deplete their nutrient resources, which was interpreted
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as a symptom of embryonic malabsorption syndrome. To the authors’ knowledge, this
observation is unique since it was not reported before in studies using CPF on zebrafish or
another organism model.

Yolk sac and pericardial edema, defined as ‘blue sac syndrome’, was among the re-
current developmental toxicity pathology induced by CPF exposition. This pathology
has been demonstrated to be caused by many organophosphates [64–66] and other tox-
icants [67] in zebrafish embryos. The wide range of chemicals that induce yolk sac and
pericardial edema highlight that both deformities are sensitive toxicological outcomes for
embryonic evaluation.

Moreover, spinal cord deformities; craniofacial malformations, including the lengthen-
ing of the lower jaw; as well as fin erosion observed in the CPF-exposed groups may be
attributed to CPF interference with the ossification process [68] or the downregulations of
the pkt7 gene [69].

The evaluation of the expression pattern of BDNF conducted on zebrafish larvae’s
telencephalon highlighted the stronger and more diffuse signals for bdnf antigens in the
CPF-exposed and curative groups compared to the Ctrl and UDE groups, although these
differences were not statistically significant. These findings are in accordance with the
results of Özdemir et al., who proved that in adult zebrafish exposed to chlorpyrifos or other
common pesticides, namely cypermethrin, deltamethrin, and imidacloprid, an intensive
upregulation of bdnf was induced in the tissues exposed to pesticides compared to the
control group [70]. The higher bdnf expression in the CPF-exposed groups reflects its effect
on scavenging the toxic effects of CPF. Indeed, bdnf is known as a promoter of dendritic
genesis, ensuring nerve cell survival, it plays key roles in growth, differentiation, and
synaptic plasticity [71,72], and it reduces neuronal apoptosis [73]. Bdnf immunolabeling in
curative and preventive groups was slightly lower than that of the CPF group (p < 0.05). A
CPF-UDE physiological antagonism could explain these findings. Indeed, unlike CPF, UDE
is known for its potential to increase BDNF, among the other neurotrophin levels in rats [74]
and mice [75]. Moreover, the bdnf fluorescence intensity was comparable between the
control and the preventive groups, suggesting that UDE has a protective effect against CPF
neurotoxicity. Indeed, Urtica dioica extract’s strong antioxidant capacity and potential to
reduce myelin degradation and improve brain histopathology are well documented [76,77].

Many studies defining CPF as an acetylcholine esterase inhibitor that interferes with or-
ganism neurobehavioral development have been published during the past decade [4,5,78,79].
CPF exposure was reported to affect behavior in rodents [80,81] and different fish species,
namely zebrafish [82], mosquito fish [83], common carp [84], and spotted snakehead [85].
These results are stackable to the current study’s findings on zebrafish larvae. Indeed, the
96 hpf larval motion trail record indicated that CPF exposure resulted in notable behavioral
changes in terms of the emotional trail and swimming distance. The decreased motility
of UDE larvae compared to the Ctrl group was contradictory with the finding of DI Izun-
wanne et al., who reported in a recent study that a repeated administration of Urtica dioica
enhanced locomotory behavior in mice [86].

4. Materials and Methods
4.1. Plant Collection and Extraction

Urtica dioica L. aerial parts specimens were collected from Bir Ali commune (Sfax
Governorate) in eastern Tunisia in February 2022. The specimens were washed with
distilled water, dried at room temperature for one week, and ground into powder. Twenty
grams of the powdered specimens was poured with 70% ethanol and left at 37 ◦C for three
days (maceration technique). The extract was filtered using Whatman filter paper, and then
the filtrate was placed in a rotary evaporator (EYELA N1000, Tokyo, Japan) at 40 ◦C to
eliminate ethanol.
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4.2. Direct-Infusion High-Resolution Mass Spectrometry Analysis

The identification of UDE compounds was conducted using the direct-infusion high-
resolution mass spectrometer (DI-HRMS) technique. The target analytes were determined
in positive mode in the full mass scan function (m/z 100 to 900) using a Thermo Scientific™
system (Bremen, Germany) with a heated electrospray ionization source. The obtained
results were processed using the Xcalibur 2.2 software. The samples were carried out
by direct introduction at a flow rate of 10 µL·min−1. The exact theoretical mass (M) was
determined from the formula in which one proton is added for positive mode [M-H+] and
one proton is subtracted [M-H−] for negative mode. Moreover, the tentative assignment
according to the literature, the elementary formula, the exact mass for two modes of
ionization, and Ring and Double Bond (RDB) were determined for each compound.

4.3. Embryos Maintenance and Treatments

Wild-type 4–6 hpf embryos were examined under a stereo microscope, and unfer-
tilized and dead embryos were removed. Embryos were distributed in 5 Petri dishes,
with 20 embryos each, containing 15 mL of E3 medium or designated treatment solution.
The embryos were maintained under standard laboratory conditions at a temperature of
27 ± 0.5 ◦C with a photoperiod of 14:10 (light/dark). The experiment was performed in
triplicate, with each experimental group being assigned as follows (Figure 8):

(1) The control group with no treatment.
(2) The UDE I group, which was treated with UDE freshly prepared in E3 medium at a

final concentration of 25 mg/L, starting at 4–6 hpf until 48 hpf was reached.
(3) The UDE II group, which was treated with UDE freshly prepared in E3 medium at a

final concentration of 25 mg/L, starting at 72 hpf until the end of the experiment was
reached.

(4) The CPF I group, which was treated with chlorpyrifos (campagnie, Sfax, Tunisia) from
4–6 hpf to 72 hpf, at a final concentration of 1 mg/L dissolved in E3 medium. This
concentration was chosen based on LC50 = 1.520 mg/L, with a 95% confidence limit
of 1.26–1.82 mg/L [29], which is moderately toxic to zebrafish larvae.

(5) The CPF II group, which was treated with chlorpyrifos (campagnie, Sfax, Tunisia)
from 48 hpf to 120 hpf at a final concentration of 1 mg/L dissolved in E3 medium.

(6) The UDE+CPF preventive group in which UDE was maintained from 4–6 hpf to 48 hpf
and CPF was administered from 48 hpf to 120 hpf.

(7) The CPF+UDE curative group in which CPF was maintained from 4–6 hpf to 72 hpf
and UDE was administered at 72 hpf and maintained until 120 hpf.
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The treatment solution and E3 medium were renewed daily to maintain the test
concentrations of CPF and/or UDE. At 120 hpf, the embryos were euthanized using
tricaine mesylate.

4.4. Teratology Assessment

Each day, viable embryos/larvae were counted in order to calculate the hatching and
survival rates. Larvae were assessed for apparent morphological anomalies under a Leica
M205C stereomicroscope (Leica, Milan, Italy). Zebrafish larvae were scored with respect
to the recurrent teratogenic endpoints, namely the curvature of the body axis; structural
malformation of the jaw, notochord, or fin; and edema in the heart, pericardial, and yolk
sac regions. Stereomicrographs were taken using a Leica IC80 HD digital camera (Leica,
Milan, Italy).

4.5. Tissue Processing and Immunofluorescence

After fixation on 4% PFA, larvae from the different groups were processed for paraffin
wax embedding. They were then sectioned using Leica RM2135 microtome (Leica, Milan,
Italy) at a thickness of 7 µm and thaw-mounted onto gelatin-coated microscope slides.
Slides were dried for 24 h and then processed for immunofluorescence.

The immunofluorescence technique was used to evaluate the expression of BDNF in
the larvae telencephalon sections as previously described [14]. In brief, sections were rinsed
in Tris-HCl buffer (0.05 M, pH 7.5) containing bovine serum albumin and Triton-X 100.
Nonspecific binding was blocked by covering slides with 25% fetal calf serum, after which
sections were incubated overnight with the primary antibodies rabbit polyclonal anti-brain-
derived neurotrophic factor (Cat. # AB1534SP, Merck Millipore, Burlington, MA, USA)
(Table 2). The specificity of the anti-brain-derived neurotrophic factor (Cat. # AB1534SP,
Merck Millipore, Burlington, MA, USA) was proven in previous studies [87,88]. After an
appropriate rinse, incubation with the secondary antibodies for 90 min was performed
(Table 2). Negative controls were carried out, barring the primary antibody, and immuno-
labeling was wholly abolished. Finally, specimen immunolabeling was evaluated using a
confocal laser scanning microscope (Zeiss LSM 700, Carl Zeiss Micro Imaging GmbH, Jena,
Germany) with a META module.

Table 2. Antibodies used for immunohistochemical study.

Antibody Dilution

Primary antibodies Anti-brain-derived neurotrophic factor (Cat. # AB1534SP, Merck Millipore,
Burlington, MA, USA) [1:100]

Secondary antibodies Goat anti-rabbit IgG (H + L) cross-adsorbed secondary antibody, Alexa Fluor™
594 (Thermo Fisher Scientific, Chino, CA, USA, Cat. # A-11012) [1:100]

4.6. BDNF Fluorescence Intensity at Telencephalon

To determine the expression of BDNF in the telencephalon, we calculated the corrected
total fluorescence of the area of interest by employing the Freehand ROI tool of the Zen
2011 program (Zeiss blu edition, Carl Zeiss MicroImaging GmbH, Jena, Germany). The
corrected total cell fluorescence was calculated by subtracting the background fluorescence
from a minimum of 3 sections of 7 µm in thickness from at least three larvae per group.

4.7. Larval Behavior

By the end of the experiment, at 120 hpf, larvae were placed in individual wells of
a 4-well transparent spot plate with 1 mL of E3 medium. After 10 min of acclimation in
the dark, we recorded behavioral changes of zebrafish larvae using the DanioVisionTM
observation system (Noldus, Wageningen, The Netherlands, Model: 17.0.1630) for 120 min.
A behavioral assay was conducted in a temperature-controlled room at 26 ± 1 ◦C, and the
light intensity was adjusted to 2412 lux.
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Each zebrafish larva’s accumulated behavioral data activity was analyzed for three
endpoints. The total distance traveled and the velocity were calculated using Ethovision®XT
(Noldus, VA, USA).

4.8. Statistical Analysis

Statistical analyses were conducted and graphs were created using IBM SPSS Statistics
for Windows version 22, (IBM Corp, Armonk, NY, USA) and GraphPad Prism version 8.0.1
for Windows (GraphPad Software, San Diego, CA USA). After confirming data normality
using the Shapiro–Wilk test and homogeneity of variance by Levene’s tests, differences
between the groups were analyzed using ANOVA followed by Bonferroni correction.
When homogeneity of variance is violated, nonparametric Kruskal–Wallis test was used
to compare treatment and control groups as an alternative to the parametric analysis of
variance (ANOVA). Significance between groups was accepted when p ≤ 0.05.

5. Conclusions

Chlorpyrifos induced toxic effects on zebrafish larvae, including altered hatching,
increased teratogenicity, and disrupted behavior. Moreover, the UDE exhibited promising
protective properties against CPF-induced toxicity, as evidenced by its ability to counteract
the teratogenic effects and preserve locomotor activity, which could be assigned to its
natural antioxidant and anti-inflammatory compounds. Still, the UDE’s protective effect
was modest for the hatching process. A potential antagonistic interaction between CPF
and UDE for the Bdnf expression level was recorded. Overall, our findings underscore
the potential of UDE as a protective agent against CPF-induced toxicity, even though
further mechanistic studies are needed to elucidate its therapeutic mechanisms. This
research contributes to the understanding of CPF-induced toxicity and offers insights into
the potential of natural compounds as therapeutic agents to counteract the adverse effects
of contaminants.
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