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Abstract
Structure-based virtual screening can be a valuable approach
to computationally select hit candidates based on their
predicted interaction with a protein of interest. The recent ex-
plosion in the size of chemical libraries increases the chances
of hitting high-quality compounds during virtual screening ex-
ercises but also poses new challenges as the number of
chemically accessible molecules grows faster than the
computing power necessary to screen them. We review here
two novel approaches rapidly gaining in popularity to address
this problem: machine learning-accelerated and synthon-
based library screening. We summarize the results from
seminal proof-of-concept studies, highlight the latest de-
velopments, and discuss limitations and future directions.

Addresses
1 Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for
Translational Research in Inflammation, F-59000, Lille, France
2 Structural Genomics Consortium, University of Toronto, 101 College
Street, MaRS South Tower, Suite 700, Toronto, Ontario M5G 1L7,
Canada
3 Department of Pharmacology and Toxicology, University of Toronto, 1
King’s College Circle, Toronto, Ontario M5S 1A8, Canada

Corresponding author: Schapira, Matthieu (matthieu.schapira@utor-
onto.ca)

(Schapira M.)
Current Opinion in Structural Biology 2024, 86:102812

This review comes from a themed issue on New Concepts in Drug
Discovery (2024)

Edited by Andrea Cavalli and Alessio Ciulli

For complete overview of the section, please refer the article collection -
New Concepts in Drug Discovery (2024)

Available online 10 April 2024

https://doi.org/10.1016/j.sbi.2024.102812

0959-440X/© 2024 The Author(s). Published by Elsevier Ltd. This is an
open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

Introduction
Structure-based virtual screening is a common tech-
nique where drug-like molecules are docked to the
structure of a protein target to predict which com-
pounds out of a large chemical library bind to the target
and should therefore be tested experimentally [1].
www.sciencedirect.com
Performances vary with the target, the computational
tools, and the scientist, but in favorable cases, they can
be significantly better than random and have slowly but
steadily improved over the years. While the emergence
of deep learning is expected to have a positive and

potentially profound impact in the field, the two main
engines of progress until now have arguably been (1) the
rapid increase in computing power and (2) the recent
explosion in the accessible chemical space [2]. Indeed,
new chemotypes found only in ultra-large chemical li-
braries sometimes lead to more potent ligands that
better emerge from the noise inherent to virtual
screening [3]. The number of compounds available from
the three leading commercial sources (Enamine REAL,
WuXi GalaXi, and Otava CHEMriya) has grown from
about 25 million to 50 billion in the past ten years, and

even larger libraries are reported in pharmaceutical
companies [4]. As the growth rate of chemical libraries
surpasses that of computing power (Figure 1), more
efficient virtual screening methods and tools are
emerging to explore the ever-expanding universe of
drug-like molecules. In particular, machine learning
(ML)-accelerated virtual screening and synthon-based
library screening (SBLS) are the centers of increasing
attention in the field, which we review here.
Machine learning-accelerated virtual
screening
Mechanisms to use ML as a tool to accelerate the virtual
screening of ultra-large chemical libraries are actively
explored [5]. A strategy that is rapidly gaining popularity
is to apply conventionalegenerally physics-base-

decomputational techniques to screen a small subset of
the library and then use the results to train ML models
that can quickly screen billions of molecules. The pro-
cess can be repeated in multiple active-learning cycles.
During each cycle, the hits predicted by ML are eval-
uated using physics-based methods to improve the ML
model [6,7] (Figure 2).

In a seminal work, Gentile et al. introduced in 2020 the
open-source Deep Docking approach, where they
screened over 1 billion molecules against twelve targets

[8]. The strategy included 11 cycles where, at each
cycle, 1 million compounds predicted by a deep neural
network were docked and scored with OpenEye’s FRED
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Figure 1

The growth of chemical libraries outpaces the growth of computing
power. The aggregated number of commercial compounds available from
Enamine REAL, WuXi GalaXi, and Otava CHEMriya libraries is divided by
the average number of transistors per processor. The number of com-
pounds were obtained from the vendors’ websites and the Enamine
Webinar (URL: https://www.youtube.com/watch?v=Vn5Z2nFhXL4). The
number of transistors per processor was adapted from (URL: https://
github.com/karlrupp/microprocessor-trend-data).

Figure 2

Machine learning-accelerated virtual screening. Throughout multiple
active learning cycles, docking scores are slowly calculated with con-
ventional methods for small subsets of a large library and rapidly predicted
with gradually improved ML models for the rest of the library.
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[9]. The neural network was iteratively re-trained on
the augmented docking/scoring data to improve the hit
rate in the next accelerated ML screen of the full library.
Despite an overall 100-fold reduction in the number of
compounds docked, hit enrichment rates of 6 to 660-
fold in the top 100,000 molecules and 240 to 6000-fold
Current Opinion in Structural Biology 2024, 86:102812
in the top ten were observed. It is important to note
that these enrichment rates were calculated based on
virtual hits, i.e. compounds predicted by FRED to be
active. The enrichment rate in bioactive molecules
would depend on the accuracy of docking scores
generated by FRED.

Another implementation of the same strategy published

the following year used Glide or DOCK3.7 [10] to
screen 0.1% of the library and Schrödinger’s AutoQSAR/
DeepChem ML engine for score prediction [11]. The
study successfully recovered 80% of experimentally
confirmed hits while saving 14-fold in computing costs.
Interestingly, the authors investigated various strategies
for selecting ML training sets and found that re-training
the ML models on compounds predicted with low
confidence to have good scores enabled a good balance
between exploration and exploitation and yielded the
best performance. The same dataset was used by

another group to compare the performance of random
forest with neural network architectures using MolPAL
[12]. Although differences were not always significant, a
message-passing neural network [13] consistently
outperformed the other methods.

In a related contemporaneous work, a Lean Docking
strategy was developed [14]. This approach included a
single (passive) ML-training step instead of multiple
active learning cycles, trained on docking scores gener-
ated by one of five different docking tools to screen

fifteen targets. The training data set was generated
using Molecular Operating Environment from Chemical
Computing Group, Montreal (CCG’s MOE), Schrö-
dinger’s Glide [15], OpenEye’s FRED [9], CCDC’s
Gold [16], and AutoDock-Vina [17]. Instead of a ML
classifier, the authors applied a regression model,
resulting in nearly 6000 predicted docking scores per
second and per CPU. This led to a 75% reduction in the
number of compounds docked without any significant
loss in virtual screening performance. However, the re-
sults varied significantly depending on the docking/
scoring software used.

While ML-accelerating engines typically use a string or
two-dimensional representation of compounds, Geom-
etry Enhanced Molecular screen (GEM-screen) in-
corporates the docked pose of the compounds in the
training set [18]. Although the performances did not
appear superior to some of the other work reviewed
above, this effort exemplifies yet another possible vector
of optimization for ML-accelerated virtual screening.

More recently reported, PyRMD2Dock [19] is an open-

source implementation of the approach. It uses PyRMD
[20], a random matrix determinant algorithm previously
designed for ligand-based virtual screening, as the ML
acceleration engine coupled with the docking software
AutoDock-GPU [21], with encouraging results.
www.sciencedirect.com
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Figure 3

Virtual screening of ultra-large libraries Bedart et al. 3
HASTEN is another open-source tool that uses Chem-
prop, a directed-message-passing neural network, to
recover 90% of top-scoring hits while docking only 1% of
the library [22,23].

Given the fast progress in the field of deep learning and
the massive expansion of chemical libraries, ML-
accelerated virtual screening is bound to become an

increasingly popular approach in computational hit
finding, and commercial tools such as Molsoft’s Giga-
Screen (https://www.molsoft.com/GigaScreen.html),
OpenEye’s Gigadock Warp (https://docs.eyesopen.com/
floe/modules/large-scale-floes/docs/source/explanations/
gigadock_warp_explanation.html) or Schrodinger’s
Active Learning Glide (https://newsite.schrodinger.
com/platform/products/active-learning-applications/)
were released in the past few months. To guide and
democratize the use of ML-accelerated methods, Tran-
Nguyen et al. are now providing a set of protocols,

scripts, and datasets, which can be helpful for both ex-
perts and nonexperts [24].

Although this strategy is becoming a leading approach to
address the explosion of the accessible chemistry space,
it still presents practical challenges due to the storage
and management of billions of compounds, which will
only increase in the near future. One viable solution that
has gained momentum in recent years is SBLS.
Synthon-based library screening. Synthons are capped, docked, and
scored. The top predicted synthons are then used to enumerate a smaller,
focused library for virtual screening.
Synthon-based approaches
SBLS aims to identify new hits by virtual screening
without assembling, storing, and screening the full
enumeration of the screened library [25]. Here, a library
is represented as the sum of its building blocks (or
synthons). The concept is related to fragment-based
drug discovery (FBDD), where fragments are linked

within the boundaries of a pre-determined library for
rapid chemical accessibility.

In a SBLS screen, fully enumerated hit candidates are
progressively built through multiple synthon selection
stages (Figure 3). In the case of a single-step synthetic
route, if two synthons A and B with reactive groups x and
y react to form an enumerated compound A-B (A-x þ B-
y -> A-B), a first step is generally to identify and remove
reactive groups from synthons that may mislead the
docking/scoring process. For instance, in A-x, the reac-

tive group is either removed (A-x -> A), replaced with a
methyl group (A-x -> A-m), or replaced with the
smallest compatible B (A-x -> A-b). The same operation
is repeated for all synthons, followed by a virtual screen
of the modified synthon library. In this way, the chemical
diversity of the library is explored additively (A1, ., An,
B1,., Bn) instead of combinatorially (A1B1, A1B2, A2B1,
A2B2, ., AnBn), enabling a dramatic decrease in
computational cost, especially for large libraries or
multi-step chemical reactions including 3 or more
www.sciencedirect.com
synthons. After selecting the best synthons based on
their docking score and/or other criteria, such as the
orientation of their attachment point in the docked

pose, they are combined with all other compatible
synthons to create a focused, enumerated library that
can be subjected to another round of virtual screening.
This ensures that only compounds containing one of the
best synthons are considered, considerably reducing the
combinatorial chemical space to be explored.

The origins of SBLS can be traced back to the 1990s,
with the CombiDOCK strategy to efficiently dock a
large combinatorial library into a target receptor.
CombiDOCK was initially tested on a single chemical
Current Opinion in Structural Biology 2024, 86:102812
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reaction using a 10 � 10 � 10 combinatorial library, with
results deemed encouraging at the time [26]. The
concept evolved further with the introduction of
PRO_SELECT in 2002 [27] and de novo methods based
on FlexX in 2006 [28,29]. These developments ulti-
mately led to the creation of the Basis Products method
in 2009 [25], which laid the foundations for SBLS al-
gorithms currently in use. Using a known 2-reagent

chemical reaction in the form of AþB/AB, capping
reactants are selected by identifying the smallest a and b
and Basis Products are formed by capping all synthons
(A1b, A2b, ., Anb; aB1, aB2, ., aBn). This provides a
representative subset of the entire library, which is
screened virtually to identify the best reactants (Ai, Aj,
Bi, and Bj). These are finally combined with all synthons
(A1Bi,., AnBi; AiB1,., AiBn) to identify hits for further
computational or experimental evaluation.

In 2021, the basis products concept was improved and

successfully applied with V-SYNTHES (Virtual
SYNThon Hierarchical Enumeration Screening) [30],
used to efficiently screen computationally 11 billion
compounds from Enamine REAL spanning multiple
chemical reactions. Reactants are typically capped with
a methyl or phenyl group and screened virtually with
Molsoft’s ICM (but any other virtual screening software
can be used instead). The cap of the best-scoring
compounds is replaced with all chemically compatible
building blocks, and the resulting library is screened
again to select candidate hits for further experimental

testing. In a proof-of-concept study aimed at identifying
new cannabinoid antagonists that selectively target the
CB2 receptor, a significantly improved hit rate was
observed compared to conventional screening methods.
V-SYNTHES achieved a hit rate of 33%, while a stan-
dard virtual screen required 100 times more computa-
tional resources to achieve a hit rate of only 15%.

Developed simultaneously, Chemical Space Docking
follows a nearly identical strategy [31]. Reactive groups
in synthons are replaced with a dummy atom to generate
fragments docked with FlexX [32] into a binding site

with pharmacophoric constraints. The best fragments
are selected based on various criteria, such as chemical
diversity, ligand efficiency, torsion energy, and/or physi-
cochemical properties, and expanded using other
compatible synthons from a list of chemical reactions. In
a proof-of-concept study aimed at discovering novel
ROCK1 kinase inhibitors, this SBLS method once again
demonstrated an impressive hit rate of 39% after
selecting 69 out of one billion compounds.

SpaceDock, a variation on the theme, was recently

applied to discover novel ligands for the dopamine D3
receptor. Here, reagents are directly docked (with no
preliminary capping) and linked inside the binding
pocket [33]. Shape-Aware Synthon Search (SASS) is
Current Opinion in Structural Biology 2024, 86:102812
another variation where shape similarity to a query
molecule instead of docking to a binding pocket is used
to select synthons of interest [34]. Commercial solu-
tions such as Cresset’s Ignite� (https://www.cresset-
group.com/discovery/specific/virtual-screening/) are
also becoming available.

Following these recent and encouraging results, open-

source software is being developed to facilitate
synthon-based virtual library screening. For example,
SATELLiTES (Synthon-based Approach for the
Targeted Enumeration of Ligand Libraries and Expe-
ditious Screening) [35] uses a chemical reaction and
libraries of compatible synthons as input. Users have the
option to select their own capping group, such as the
smallest reactant, a specific reagent from the dataset, or
a dummy reagent that best mimics pharmacophoric
expectations. Once the best capped synthon candidates
have been selected with a user’s preferred virtual

screening tool, SATELLiTES generates a focused li-
brary for further screening.
Concluding remarks and outlook
Clearly, recent successes in ML-accelerated or synthon-
driven screening of ultra large chemical libraries pro-
pelled these two rapidly growing trends to efficiently
explore a chemical space that has grown beyond the
reach of standard virtual screening techniques. Suc-
cessful application of these methods in the prospective
discovery of novel ligands underscores their real-world
potential [30,31,33,36]. But important challenges

remain to be addressed before either approach or their
combination is firmly established as the gold standard
for virtual screening. First and foremost, both ap-
proaches rely on one or multiple docking/scoring steps
and are bound to fail if docking poses are inaccurate or
scoring functions are insufficiently robust. Continued
efforts to improve docking poses and, especially, scoring
functions are therefore critical. A promising area of
investigation here is to train neural networks on quan-
tum chemistry data to dramatically increase prediction
accuracy while maintaining high throughput [37].

Synthon-based approaches also rely on the assumption
that building blocks adopt the same binding pose in
isolation and in the context of an enumerated molecule,
which may not always be the case and can depend on the
selection of appropriate capping groups to represent
reactive sites. An elegant solution is the synthon-based
Thompson sampling approach reported by Klarich
et al., which learns through iterative cycles the best
molecules to enumerate and score [38]. The authors
found that over 50% of the top 100 scoring compounds
were retrieved while docking/scoring less than 1% of the

full library. A more pragmatic challenge facing ML-
accelerated screening of fully enumerated libraries is
the ever-increasing internet resources necessary to
www.sciencedirect.com
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Virtual screening of ultra-large libraries Bedart et al. 5
download billions and soon trillions of molecules and the
storage capacity required to manage 10 to 50 times more
3D conformers generated locally or publicly available
[39], though the latter is not necessary if 3D conformers
are generated on the fly (for instance, with Auto3D
[40]) for compounds actually docked. Limiting
computational screening campaigns to drug-like mole-
cules does not alleviate this challenge; for instance, the

Enamine Real Database contains over six billion com-
pounds satisfying Lipinski and Weber rules [41,42].
Altogether, after decades of slow and incremental
progress, the field is suddenly benefiting from an ex-
plosion in the size and diversity of the accessible
chemical space and from rapid developments in ma-
chine learning. Benchmarking exercises such as CACHE
may set the stage for a future breakthrough, as was
experienced with AlphaFold for protein structure pre-
diction. Interestingly, we note that one of the two best-
performing virtual screening pipelines in the first

CACHE challenge [43] used deep docking as a primary
screening step, and fragment-based strategies were
employed by three of the seven top-performing work-
flows (https://cache-challenge.org/). Another successful
avenue was the use of ML-driven generative design
techniques such as REINVENT [44] to generate
customized molecules for a specific binding site. While
this approach does not directly explore the commercial
chemical space, it is becoming increasingly relevant as
the chances of finding a close commercial analog of a
computationally invented molecule increase with the

rapid growth of on-demand libraries. Only one thing is
certain: it will be captivating to see where the field is
going in the upcoming months and years.
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