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ABSTRACT
Spatial scan statistics are well-known methods widely used to detect spatial clusters of events. Furthermore, several spatial scan
statistics models have been applied to the spatial analysis of time-to-event data. However, these models do not take account of
potential correlations between the observations of individualswithin the same spatial unit or potential spatial dependence between
spatial units. To overcome this problem, we have developed a scan statistic based on a Coxmodel with shared frailty and that takes
account of the spatial dependence between spatial units. In simulation studies, we found that (i) conventional models of spatial
scan statistics for time-to-event data fail to maintain the type I error in the presence of a correlation between the observations
of individuals within the same spatial unit and (ii) our model performed well in the presence of such correlation and spatial
dependence. We have applied our method to epidemiological data and the detection of spatial clusters of mortality in patients
with end-stage renal disease in northern France.

1 Introduction

In many applications, researchers look for unusual spatial
aggregations (clusters) of data. In the field of public health, epi-
demiologists seek to identify the presence (within a geographical
area) of spatial clusters in which the risk of disease is unusually
high (or low); this makes it possible to (i) formulate hypotheses
to guide etiological research and (ii) implement localized public
health policies. By way of another example, researchers in the
environmental sciences may be interested in determining the
presence of environmental black spots defined by particularly
unusual pollutant concentrations in a specific area—thus leading
to local actions to prevent or solve the problem.

Spatial scan statistics are widely used to detect statistically
significant spatial clusters with a scanning window and without
preselection bias. These methods were introduced by Kulldorff

and Nagarwalla (1995) and Kulldorff (1997) in the cases of
Bernoulli and Poisson models, respectively. Since then, the scan
statistics approach has been extended to many other spatial data
distributions. In a univariate framework, for example, Gaussian
(Kulldorff, Huang, and Konty 2009), ordinal (Jung, Kulldorff,
and Klassen 2007), zero-inflated (Cançado, da Silva, and da Silva
2014; Cançado, Fernandes, and da Silva 2017; de Lima et al. 2015),
and Poisson with overdispersion (de Lima et al. 2015; Zhang,
Zhang, and Lin 2012) models have been developed. Similarly, in
the context of multivariate or functional data, several spatial scan
statistics have been developed (Cucala et al. 2017; Frévent et al.
2021; Frévent et al. 2023; Kulldorff et al. 2007; Neill and Cooper
2010; Smida et al. 2022). The reader is referred to Abolhassani
and Prates (2021) for a comprehensive review of spatial scan
statistics. Thesemethods have beenwidely applied inmany fields,
such as epidemiology (Genin et al. 2020; Green et al. 2006; Khan
et al. 2021; Marciano et al. 2018), environmental science (Shi, Liu,
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and Zhong 2022; Wan et al. 2020), oncology (Leiser et al. 2020),
criminology (Minamisava et al. 2009), and astronomy (De La
Fuente Marcos and De La Fuente Marcos 2008).

In the field of spatial epidemiology, the study of the spatial
distribution of time-to-event data can identify areas in which
the survival time of patients is different from the rest of the
geographical area (i.e., the survival time is longer or shorter).
From an epidemiological point of view, the identification of
these areas of unusual survival time is particularly useful for
identifying local risk factors that condition survival. Moreover,
this information can help public health decision-makers to
develop and implement targeted, specific local policies. In the
context of spatial cluster detection in time-to-event data, Huang,
Kulldorff, and Gregorio (2007) and Bhatt and Tiwari (2014)
developed spatial scan statistics based on an exponential model
and a Weibull model, respectively. More recently, Usman and
Rosychuk (2018) developed a parametricmodel considering a log-
Weibull distribution. Although these methods are widely used in
practice to detect spatial clusters of time-to-event data (Gregorio
et al. 2007; Henry, Niu, and Boscoe 2009; Wan et al. 2012), they
are totally parametric. The first semiparametric method (using a
Cox model) was developed by Cook, Gold, and Li (2007).

Unlike other spatial scan statistics models, the above-mentioned
exponential, Weibull, log-Weibull, and Cox models consider data
measured at the individual level. However, in health data studies,
the patient’s exact geographic location is rarely known (e.g.,
for reasons of anonymity), and patients are located through an
administrative spatial unit (e.g., municipalities). In this con-
text, the above-mentioned methods are based on the strong
assumption of independence between observations—a classical
assumption in the field of spatial scan statistics. This assumption
is associated with two major drawbacks. First, the methods
do not take account of the potential correlation between the
observations of individuals within the same spatial unit, namely
the intraspatial unit correlation. The latter can be induced by
characteristics of the spatial units that have not been measured
in the study (e.g., healthcare supply) but that affect the patients’
survival (Austin 2017). Second, the methods do not take account
of potential spatial dependence between spatial units. However,
one can logically expect geographically close units to be more
strongly related than distant ones (Li 2009). Furthermore, it
has been shown that ignoring spatial dependence when using
spatial scan statistics leads to a significant increase in the type I
error (Loh and Zhu 2007). Since then, several researchers have
developed methods that take spatial dependence into account
(Ahmed, Cucala, and Genin 2021; Lee, Sun, and Chang 2020;
Lin 2014; Loh and Zhu 2007). However, none of these methods
were designed for time-to-event data and the adjustment for
intraspatial unit correlations.

In the analysis of time-to-event data, various models have been
developed to take account of unobserved factors common to
groups of individuals; for example, members of the same family
share genetic factors and patients in the same hospital often
receive much the same care. One way of taking this intragroup
homogeneity into account involves introducing a random effect
common to all individuals in a group, namely shared frailty
(Clayton 1978; Hougaard 2000; Liang et al. 1995). The shared
frailties are assumed to be independent between groups (Liang

et al. 1995). However, when the groups correspond to spatial
units, this assumption is unrealistic because close spatial units
tend to be related (Arlinghaus 1995). To this end, Li and Ryan
(2002) extended shared frailty models to the case of spatially
correlated frailty, which take account of not only intraspatial unit
correlation but also possible spatial dependence between spatial
units. However, although this approach has been widely applied
(Aswi et al. 2020; Banerjee, Wall, and Carlin 2003; Ojiambo and
Kang 2013), it has never been investigated in the field of spatial
scan statistics.

Here, we present a new spatial scan statistic for time-to-event data
based on a semiparametric Cox model with spatially correlated
shared frailties. Section 2 describes the methodological aspects of
the scan statistic model. Section 3 presents both the design and
the results of simulation studies evaluating (i) the performance
of conventional methods on datasets with intraspatial unit corre-
lation and (ii) the performance of our approach on datasets with
both intraspatial unit correlation and spatial dependence between
spatial units. Section 4 describes the application of our method
to epidemiological data and the detection of spatial clusters of
mortality in patients with end-stage renal disease in northern
France. Lastly, we discuss results in Section 5.

2 Methodology

2.1 General Principle

Let us consider𝐾 nonoverlapping spatial locations 𝑠1, … , 𝑠𝑘, … , 𝑠𝐾
of an observation domain 𝑆 ⊂ ℝ2 and let 𝑖(𝑘)1 , … , 𝑖

(𝑘)
𝑛 , … , 𝑖

(𝑘)
𝑁𝑘
be 𝑁𝑘

individuals at spatial location 𝑠𝑘 . The total number of individuals
in 𝑆 is defined as 𝑁 =

∑𝐾

𝑘=1 𝑁𝑘 . Here, we are interested in
the time-to-event data measured on individuals: 𝑇

𝑖
(𝑘)
𝑛

and 𝛿
𝑖
(𝑘)
𝑛

are, respectively, the observation time of the 𝑖𝑛th individual in
spatial location 𝑠𝑘 and the censoring indicator, which is equal
to 0 if the individual 𝑖(𝑘)𝑛 is censored and 1 otherwise. In the
following, we only considered the cases of right censoring (i.e.,
the event of interest could not have occurred before the beginning
of the study). Censoring was assumed to be uninformative,
and the event times were assumed to be independent of the
censoring times.

We sought to test for the presence of spatial clusters in which
individuals have shorter (or longer) survival times than other
individuals in the rest of 𝑆. In this context, spatial scan statistics
are designed to detect spatial clusters and to test their statistical
significance by testing a null hypothesis0 (the absence of a clus-
ter) against a composite alternative hypothesis 1 (the presence
of at least one cluster 𝑤 ⊂ 𝑆 presenting abnormal time-to-event
values). According to Cressie (1977), a spatial scan statistic is the
maximum of a concentration index over a set of potential clusters
 . In the following and without loss of generality, we focused
on variable-size circular clusters. Hence, in line with Kulldorff
(1997), the set of potential circular clusters  can be defined
as  = {𝑤𝑘,𝑙∕1 ≤ |𝑤𝑘,𝑙| ≤ 𝑁

2
, 1 ≤ 𝑘, 𝑙 ≤ 𝐾}, where 𝑤𝑘,𝑙 is the disk

centered on 𝑠𝑘 that passes through 𝑠𝑙 and |𝑤𝑘,𝑙| is the number
of individuals in 𝑤𝑘,𝑙: a cluster comprises at most 50% of the
study population (i.e., 𝑁∕2) (Kulldorff and Nagarwalla 1995). It
should be noted that other cluster shapes have been described
in the literature, such as elliptical clusters (Kulldorff et al. 2006),
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rectangular clusters (Chen and Glaz 2009), or arbitrarily shaped
clusters (Tango and Takahashi 2005; Yin andMu 2018; Zhou, Shu,
and Su 2015).

2.2 The Model

We assume that the instantaneous hazard rate at time 𝑡 for the
individual 𝑖(𝑘)𝑛 is

𝜆
𝑖
(𝑘)
𝑛
(𝑡|𝒁

𝑖
(𝑘)
𝑛
, 𝜑𝑘) = 𝜆0(𝑡) exp

[
𝜷⊤𝒁

𝑖
(𝑘)
𝑛

+ 𝜑𝑘

]
,

where 𝒁
𝑖
(𝑘)
𝑛

= (𝑍
𝑖
(𝑘)
𝑛 ,1

, … , 𝑍
𝑖
(𝑘)
𝑛 ,𝑝

)⊤ is a vector of 𝑝 covariates associ-

atedwith the individual 𝑖(𝑘)𝑛 , and𝜑𝑘 is the shared frailty associated
with the spatial location 𝑠𝑘 . The presence of a spatial cluster in the
data results in an effect on the survival times in the spatial units
involved. Hence, the effect of this cluster has been incorporated
within the shared frailty: for each potential cluster 𝑤, 𝜑𝑘 can be
decomposed into 𝛼𝑤 (a cluster fixed effect) and 𝑋𝑘 (effect specific
to the spatial location 𝑠𝑘). Thus, the shared frailties 𝜑𝑘 associated
with the potential cluster 𝑤 can be rewritten as 𝜑(𝑤)

𝑘
= 𝛼𝑤𝟙𝑠𝑘∈𝑤 +

𝑋𝑘 , where 𝔼[𝑋𝑘] = 0. In this context, the test hypotheses can be
rewritten as0 ∶ ∀𝑤 ∈  , 𝛼𝑤 = 0 (the absence of a cluster), and
the alternative hypothesis associated with the potential cluster
𝑤 is 

(𝑤)
1 ∶ 𝛼𝑤 ≠ 0 (the presence of a cluster 𝑤, in which the

individuals present atypical survival times).

Moreover, the spatial nature of the data requires one to take
account of a possible spatial dependence between the spatial
locations 𝑠𝑘, and thus between the 𝑋𝑘 . This makes it possible to
distinguish the effect of the cluster from the spatial correlation of
unobserved factors on the scale of the spatial unit. Thus, we con-
sidered the conditional autoregressive (CAR)model developed by
Leroux, Lei, and Breslow (2000) for the distribution of the 𝑋𝑘:

𝑋𝑘|𝑋−𝑘 ∼ 

⎛⎜⎜⎜⎜⎜⎝
𝜌

𝐾∑
𝑙=1

𝑣𝑘,𝑙𝑋𝑙

𝜌

𝐾∑
𝑙=1

𝑣𝑘,𝑙 + 1 − 𝜌

,
𝜎2
𝑋

𝜌

𝐾∑
𝑙=1

𝑣𝑘,𝑙 + 1 − 𝜌

⎞⎟⎟⎟⎟⎟⎠
,

where 𝑋−𝑘 = {𝑋1, … , 𝑋𝑘−1, 𝑋𝑘+1, … , 𝑋𝐾}, 𝑣𝑘,𝑙 = 1 if 𝑠𝑘 and 𝑠𝑙 are
adjacent (i.e., they share a common boundary) and 0 if not,
and 𝜌 ∈ [0, 1] is the spatial dependence parameter. It should
be noted that in the absence of a spatial dependence, the 𝑋𝑘

are independent and identically distributed (i.i.d.) according
to a normal distribution  (0, 𝜎2

𝑋). Conversely, if 𝜌 = 1 (i.e.,
complete spatial dependence between the spatial units), the 𝑋𝑘 is
distributed according to an intrinsic CAR (ICAR) model (Besag,
York, and Mollié 1991).

The method comprises two steps. The first step (Section 2.2.1)
consists of estimating the shared frailties 𝜑𝑘 and their spatial
dependence parameter 𝜌. In a second step (Section 2.2.2), a
scan procedure is developed and applied to the estimated shared
frailties in order to identify clusters of spatial units in which the
𝜑𝑘 are significantly higher (corresponding to a higher risk) or sig-
nificantly lower (corresponding to a lower risk) than elsewhere.
Lastly, the procedure for determining the statistical significance
of the identified spatial clusters is described in Section 2.2.3.

2.2.1 Estimation of the 𝝋𝒌 and 𝝆

This first step consists of estimating the 𝜑𝑘 and 𝜌 in a Bayesian
framework by using the integrated nested Laplace approximation
(INLA) (see Rue, Martino, and Chopin 2009 for details).

The 𝜑𝑘 are considered under both the 0 and 1 hypotheses.
However, it should be noted that (i) neither 𝑋𝑘 nor 𝜌 depends on
the clustering assumptions since they depend only on the spatial
structure of the data and (ii) only a single vector of 𝜑𝑘 needs to
be estimated in order to best fit the observed data. Therefore,
the 𝜑𝑘 must be estimated under the true hypothesis among 0

and the set of alternative hypotheses(𝑤)
1 , that is, the hypothesis

under which the observations have been generated. In line with
the approach developed by Ahmed, Cucala, and Genin (2021),
we need to determine the “best model” among the candidate
hypotheses (0 and 

(𝑤)
1 ). To this end, for each potential cluster

𝑤 ∈  , we considered the Bayes factor BF(𝑤), defined as the
marginal likelihood ratio between the model under (𝑤)

1 ((𝑤)
1 )

and the model under0 (0):

BF(𝑤) =
ℙ
[{

𝑇
𝑖
(𝑘)
𝑛
, 𝛿

𝑖
(𝑘)
𝑛
, 𝒁

𝑖
(𝑘)
𝑛
, 𝟙

𝑖
(𝑘)
𝑛 ∈𝑤

}|||(𝑤)
1

]
ℙ
[{

𝑇
𝑖
(𝑘)
𝑛
, 𝛿

𝑖
(𝑘)
𝑛
, 𝒁

𝑖
(𝑘)
𝑛

}|||0

] .

It should be noted that if adjustment of cluster detection on
covariates is required, adjustment is performed at this stage:
We consider the approach proposed by Jung (2009) and Ahmed
and Genin (2020), which consists of estimating the coefficients
associated with the covariates in 0 and then setting in each
model(𝑤)

1 the coefficients associated with the covariates to the
values estimated in0.

Next, considering all the models under (𝑤)
1 we used the above

criterion to select the “best model” 
(𝑤∗)
1 , that is, the one

associated with the potential cluster 𝑤 maximizing BF(𝑤). Lastly,
to decidewhether the estimates should be kept under0 or under


(𝑤∗)
1 , we followed the rule of thumb developed by Jeffreys (1961):

if BF(𝑤∗) ≥ 30, then we keep the estimates (using the posterior
mean) under (𝑤∗)

1 ; otherwise, we keep the estimates (using the
posterior mean) under 0. This threshold of 30 corresponds to
“very strong” evidence for (𝑤∗)

1 . Note that if the selected model
is(𝑤∗)

1 , the chosen estimate of 𝜑𝑘 is 𝜑∗
𝑘
= �̂�𝑤∗𝟙𝑠𝑘∈𝑤∗ + �̂�𝑘 and if

the selected model is0, 𝜑∗
𝑘
= �̂�𝑘 .

2.2.2 Scan Procedure

Here, we present a scan procedure on the 𝜑∗
𝑘
that identifies spatial

clusters of spatial units in which the 𝜑∗
𝑘
are significantly higher

(corresponding to a higher risk) or significantly lower (corre-
sponding to a lower risk) than elsewhere. Thus, the hypotheses
0 and 

(𝑤)
1 are redefined in terms of the distribution of the 𝜑∗

𝑘
,

as follows:

0 ∶ 𝝋
∗ ∼  (𝛼𝟙, 𝜎2(0)𝐴−1) and


(𝑤)
1 ∶ 𝝋∗ ∼  (𝛼𝑤𝟙𝑤 + 𝛼𝑤𝖼𝟙𝑤𝖼 , 𝜎2(𝑤)𝐴−1), 𝛼𝑤 ≠ 𝛼𝑤𝖼
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where 𝝋∗ = (𝜑∗
1 , … , 𝜑∗

𝐾)
⊤, 𝟙 is the column vector composed only

of 1, 𝟙𝑤 , and 𝟙𝑤𝖼 are the column indicator vectors of 𝑤 and 𝑤𝖼,
respectively, and 𝐴 = 𝜌∗𝑅 + (1 − 𝜌∗)I𝐾 in which 𝑅 is the square
matrix composed of the elements

𝑅𝑘,𝑙 =
⎧⎪⎨⎪⎩

𝐾∑
𝑗=1

𝑣𝑘,𝑗 if 𝑘 = 𝑙

−𝑣𝑘,𝑙 otherwise
.

Note that these assumptions are equivalent to considering the
same variance–covariance structure under 0 and 

(𝑤)
1 , as with

the CAR model considered above (see the proof in Supporting
Information A). Since 𝑤 ∩ 𝑤𝖼 = ∅, one assumes under 

(𝑤)
1

that the frailty means in 𝑤 and 𝑤𝖼 are different (𝛼𝑤 and 𝛼𝑤𝖼 ,
respectively).

The unknown parameters 𝛼, 𝜎2(0), 𝛼𝑤 , 𝛼𝑤𝖼 , and 𝜎2(𝑤) are esti-
mated by their maximum likelihood estimators (for proofs, see
Supporting Information B):

�̂� =
𝟙⊤𝐴𝝋∗

𝟙⊤𝐴𝟙
,

𝜎2(0) = 1

𝐾
[𝝋∗⊤𝐴𝝋∗ − 2�̂�𝟙⊤𝐴𝝋∗ + �̂�2𝟙⊤𝐴𝟙],

�̂�𝑤𝖼 =
[
𝟙⊤𝑤𝖼𝐴𝟙𝑤𝖼 −

𝟙⊤𝑤𝐴𝟙𝑤𝖼𝟙⊤𝑤𝐴𝟙𝑤𝖼

𝟙⊤𝑤𝐴𝟙𝑤

]−1[
𝟙⊤𝑤𝖼𝐴𝝋

∗ −
𝟙⊤𝑤𝐴𝝋

∗𝟙⊤𝑤𝐴𝟙𝑤𝖼

𝟙⊤𝑤𝐴𝟙𝑤

]
,

�̂�𝑤 =
𝟙⊤𝑤𝐴𝝋

∗ − �̂�𝑤𝖼𝟙⊤𝑤𝐴𝟙𝑤𝖼

𝟙⊤𝑤𝐴𝟙𝑤
and

𝜎2(𝑤) = 1

𝐾
[𝝋∗ − �̂�𝑤𝟙𝑤 − �̂�𝑤𝖼𝟙𝑤𝖼 ]⊤𝐴[𝝋∗ − �̂�𝑤𝟙𝑤 − �̂�𝑤𝖼𝟙𝑤𝖼 ].

The log-likelihood function under0 is then expressed as follows:

𝓁0
(�̂�, 𝜎2(0)) = −𝐾

2
ln [2𝜋] − 1

2
ln |𝐴−1| − 𝐾

2
ln [𝜎2(0)] − 𝐾

2
,

while the log-likelihood function associated with 
(𝑤)
1 can be

expressed as

𝓁1
(�̂�𝑤, �̂�𝑤𝖼 , 𝜎2(𝑤)) = −𝐾

2
ln [2𝜋] − 1

2
ln |𝐴−1| − 𝐾

2
ln [𝜎2(𝑤)] − 𝐾

2
.

Thus, the log-likelihood ratio associatedwith the potential cluster
𝑤 is

𝐿𝐿𝑅(𝑤) = 𝓁1
(�̂�𝑤, �̂�𝑤𝖼 , 𝜎2(𝑤)) − 𝓁0

(�̂�, 𝜎2(0))

= 𝐾

2

[
ln

𝜎2(0)

𝜎2(𝑤)

]
.

Lastly, the spatial scan statistic can be defined as

Λ = max
𝑤∈

𝐿𝐿𝑅(𝑤).

The most likely cluster (MLC) is then defined as

MLC = argmax
𝑤∈

𝐿𝐿𝑅(𝑤).

2.2.3 Statistical Significance

Once the MLC has been detected, its statistical significance must
be evaluated. However, the distribution of Λ does not have a
closed formunder0. In the literature, this distribution is usually
approximated with a Monte-Carlo procedure (Dwass 1957). Two
main methods can be distinguished, depending on the presence
(or not) of a distributional hypothesis for the data. The first
method consists of generating datasets under 0, which thus
requires a distributional hypothesis (Kulldorff 1997). The second
method (random labeling) consists of randomly permuting the
observations among the spatial locations (Kulldorff, Huang,
and Konty 2009). In the present case, random labeling is not
applicable because the permutation of the observations would
change the spatial dependence. Therefore, we used the first
method to approximate the distribution of Λ under 0: since we
had assumed a distribution for 𝜑𝑘, we can generate 𝑀 datasets
under 0 via �̂� and 𝜎2(0), which correspond, respectively, to
the estimators of the mean and variance of the 𝜑𝑘 under 0.
For each generated dataset 𝑚 (1 ≤ 𝑚 ≤ 𝑀), one computes the
associated spatial scan statistic Λ(𝑚), giving an approximation of
the distribution ofΛ under0. Lastly, the p-value associated with
the MLC is estimated as

�̂� =
1 +

𝑀∑
𝑚=1

𝟙Λ(𝑚)≥Λ

𝑀 + 1
.

3 Simulation Studies

Huang, Kulldorff, and Gregorio (2007) and Cook, Gold, and Li
(2007) developed spatial scan statistics for time-to-event data
indexed in space. However, they supposed that the observa-
tions are independent, which is a strong and not very realistic
hypothesis because the observations of individuals located in the
same spatial unit can be correlated. Thus, in a first simulation
study (Section 3.1), we investigated the impact of the presence of
intraspatial unit correlation on the type I error of the methods
developed by Huang, Kulldorff, and Gregorio (2007) and Cook,
Gold, and Li (2007).

In Section 3.2, we conducted two simulation studies. The first
one (Section 3.2.2) evaluated our method’s ability to correctly
estimate both the spatial dependence parameter and the cluster
effect. The second one (Section 3.2.3) evaluated the performance
of our approach in the context of cluster detection, with spatial
dependence and also compared it with the particular i.i.d. (𝜌 = 0)
and ICAR (𝜌 = 1) versions.

Section 3.3 evaluates the performance of the approach in the pres-
ence of covariates. Lastly, Section 3.4 investigates the performance
of our approach in the presence of different levels of censoring of
time-to-event data.

3.1 The Impact of Intraspatial Unit Correlation
on the Type I Error in Standard Methods

In this simulation study, we evaluated the type I errors of conven-
tional spatial scan statistics for cluster detection in survival data
(namely the exponential model developed by Huang, Kulldorff,
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andGregorio 2007; themethod based on a log-rank test developed
by Cook, Gold, and Li 2007) in the presence of intraspatial
unit correlation.

3.1.1 Design of the Simulation Study

We considered 1690 individuals distributed in 169 spatial units;
the latter corresponded to administrative subdivisions in north-
ern France and were located by their centroid. We defined a
spatial cluster𝑤 (characterized by 𝛼) composed of 135 individuals
located in 14 contiguous spatial units (the green area in Figure C.1
in Supporting Information C.1).

We considered the following simulation model for the individual
𝑖
(𝑘)
𝑛 in the spatial unit 𝑠𝑘:

𝜆
𝑖
(𝑘)
𝑛
(𝑡|𝜑𝑘) = 𝜆0(𝑡) exp [𝜑𝑘],

with 𝜆0(𝑡) =
1

2
which results in an exponential model. The event

times were simulated by inverse transform sampling: for each
individual 𝑖(𝑘)𝑛 , we generated a uniformly distributed random
number 𝑢

𝑖
(𝑘)
𝑛
on [0,1], which then allowed us to generate a survival

time 𝑇
𝑖
(𝑘)
𝑛
by 𝑇

𝑖
(𝑘)
𝑛

= inf
𝑡>0

1 − 𝑆
𝑖
(𝑘)
𝑛
(𝑡) > 𝑢

𝑖
(𝑘)
𝑛
. Note that this results in

𝑇
𝑖
(𝑘)
𝑛

= −2 ln [1 − 𝑢
𝑖
(𝑘)
𝑛
] exp [−𝜑𝑘].

The 𝜑𝑘 were defined as the vector 𝝋 = (𝜑1, … , 𝜑𝐾)
⊤, such that

𝝋 ∼  (𝛼𝟙𝑤, 𝜎
2[𝜌𝑅 + (1 − 𝜌)𝐼𝐾]

−1),

where 𝟙𝑤 is the column indicator vector of 𝑤.

Here, we focused our analysis on the type I errors (𝛼 = 0) in the
exponentialmodel (Huang, Kulldorff, andGregorio 2007) and the
log-rank test method (Cook, Gold, and Li 2007) in the presence
of a nonspatially correlated (𝜌 = 0) shared frailty for the frailty
variance 𝜎2, which ranged from 0.001 to 0.101 in increments of
0.010.

For each value of 𝜎2, 100 datasets were simulated. The statistical
significance of the MLC was evaluated in the same way as in the
original publications, that is, by using 999 permutations of the
data. The type I error was set to 0.05.

3.1.2 Results

Figure 1 shows the type I error as a function of 𝜎2. One can
note that the type I error increases with 𝜎2, showing that the
nominal level is not maintained. This can be explained by the fact
that under hypothesis 0 (the absence of a cluster), the increase
in 𝜎2 leads directly to an increase in the variance of 𝑋𝑘 . Since
the two standard models do not incorporate a shared frailty, the
identification of false-positive spatial clusters is essentially due to
the intraspatial unit correlation (i.e., the variance of 𝑋𝑘).

3.2 Evaluation of the Method’s Performance

Here, two simulation studies were conducted. The first
(Section 3.2.2) assessed the ability of our method to accurately
estimate both the spatial dependence parameter and the cluster

effect. The second (Section 3.2.3) evaluated the performance of
our method in the context of cluster detection and compared
it with two particular versions of the model in the presence
of spatial dependence: one assuming no spatial dependence
(the i.i.d. frailty model) and one assuming complete spatial
dependence (the ICAR frailty model).

3.2.1 Design of the Simulation Studies

The designs of these simulation studies are very similar to those
presented in Section 3.1. However, given that we wanted to
investigate the impact of spatial dependence on cluster detection,
we set 𝜎2 to 1 and considered several values for the parame-
ters controlling the spatial dependence 𝜌 ∈ {0, 0.2, 0.4, 0.6, 0.8}

and the cluster effect 𝛼 ∈ {0, 0.5, 1, 1.5, 2}. Note that 𝛼 = 0 was
considered in order to evaluate the maintenance of the type
I error.

For each value of the spatial dependence parameter 𝜌 and
each value of 𝛼, 100 datasets were simulated. The statistical
significance of the MLC was evaluated through 999 generations
of the data under 0 (see Section 2.2.3 for more details), and the
type I error was set to 0.05.

The performances were measured through four criteria: the
power, the true positive rate, the false positive rate, and the posi-
tive predictive value. The power was estimated as the proportion
of simulations leading to the rejection of 0, depending on the
type I error. Using the simulated datasets leading to the rejection
of 0, the true positive rate was defined as the mean proportion
of individuals correctly detected among the individuals in 𝑤,
the false positive rate was defined as the mean proportion of
individuals in 𝑤𝖼 that were included in the detected cluster, and
the positive predictive value corresponded to themeanproportion
of individuals in 𝑤 within the detected cluster.

Since the estimations of the 𝜑𝑘 and 𝜌 were performed in a
Bayesian framework, we considered the following Leroux CAR
prior for 𝑋𝑘: 𝑿 ∼  (𝟎, 𝜎2[𝜌𝑅 + (1 − 𝜌)𝐼𝐾]

−1), with a 𝜷(1, 1) prior
for the spatial dependence parameter 𝜌 and a Γ(10−3, 10−3) prior
for the precision 1∕𝜎2. For 𝛼𝑤 , we chose a noninformative prior
 (0, 103).

Lastly, for the baseline hazard 𝜆0, the observation times were
divided into 𝑛𝑇 time intervals. Here, 𝑛𝑇 was set to the number of
unique times divided by 20. Next, 𝜆0 was assumed to be constant
in each time interval, and for each interval 𝐼 we assumed that
𝜆0 = exp(𝑐𝐼). We chose a Gaussian prior on the 𝑐𝐼 increments
with a precision 𝜏 such that 𝜏 ∼ Γ(10−3, 10−3): Δ𝑐𝐼 = 𝑐𝐼 − 𝑐𝐼−1 ∼

 (0, 𝜏−1).

3.2.2 Evaluation of the Estimates of 𝝆 and 𝜶𝒘

Section 2.2.1 presents the estimation of the 𝜑𝑘 . Briefly, it consisted
in choosing either the estimates under the best hypothesis (𝑤)

1 :


(𝑤∗)
1 (in this case, the estimates are 𝜑∗

𝑘
= �̂�𝑤∗𝟙𝑠𝑘∈𝑤∗ + �̂�𝑘) or the

estimates under 0 (𝜑∗
𝑘
= �̂�𝑘). The present section focuses on

the bias of the estimates obtained for the spatial dependence
parameter (𝜌∗) and for the cluster effect (�̂�𝑤∗ ). Note that for
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FIGURE 1 Type I error in the exponential method (Huang, Kulldorff, and Gregorio 2007) and the log-rank test method (Cook, Gold, and Li 2007)
as a function of the degree of intraspatial unit correlation (characterized by the simulated values of the shared frailty variance 𝜎2).

the cluster effect, we only considered simulations that did not
retain0 (otherwise, an estimate �̂�𝑤∗ was unavailable). Thus, the
estimates obtained were compared with the true values of the
spatial dependence parameter and the cluster effect.

Figure 2 shows the selected 𝜌∗ as a function of the parameters 𝜌
and 𝛼, and the estimations �̂�𝑤∗ with the INLA method when one
selects1 according to the Bayes factor criterion.

Our approach estimates the cluster effectwellwhen the simulated
values of 𝛼 are 1, 1.5 and 2. Although the cluster effect might
appear to be poorly estimated for 𝛼 values of 0 and 0.5, this was
because our approach rarely selected 1 for these values and so
few estimates were made.

The parameter 𝜌 was well estimated generally but was slightly
overestimated for 𝜌 = 0 and slightly underestimated for 𝜌 = 0.8.

3.2.3 The Impact of Spatial Dependence on Cluster
Detection

We next evaluated the performance of our new method in
the context of cluster detection. Two particular versions of the
method were also considered, in order to investigate the impact
of taking account of potential intraspatial unit correlation but
not spatial dependence between spatial units (the i.i.d. model
with 𝜌 = 0) or taking account of spatial dependence between
spatial units without adjusting its intensity (i.e., by considering
it to be complete: the ICAR model, 𝜌 = 1). Note that the ICAR
model with 𝜌 = 1 leads to a noninvertible matrix 𝐴, and so it
was not possible to generate data under 0 to estimate the p-
value associated with the most likely cluster (see Section 2.2.3 for
more details). To overcome this problem, the value of the spatial

dependence was set to 0.999 (instead of 1) in the scan procedure
(Section 2.2.2) for the ICAR model.

Figure 3 shows the type I error, the power curves, true positive
rates, false positive rates, and positive predictive values obtained
with our method and with its two special cases (i.i.d. and ICAR).

For the Leroux CAR model, the performances were relatively
stable as a function of 𝜌, although the type I error was slightly
above the 5% threshold. This was not the case for 𝜌 = 0 because
then 𝜌∗ slightly overestimates 𝜌 (Figure 2), which makes the
method quite conservative). It should be noted that the true
positive rates, the false positive rates, and the positive predictive
values appear to be less stable when 𝛼 = 0.5. This was because
these indicators are only computed for simulations that lead to
the rejection of0, which were not numerous when 𝛼 = 0.5.

The i.i.d. model failed to maintain a reasonable type I error as 𝜌
increased. Moreover, the power as a function of 𝜌 was less stable
than that of the CAR model.

The ICAR model tended to absorb the cluster effect into the
spatial dependence parameter 𝜌. This was particularly the case
when the true value of 𝜌 was low. Thus, the type I errors remain
reasonable but the power tended to decrease as 𝜌 decreased.

The false positive rates were very low for the three approaches.
However, the true positive rates and the positive predictive values
were lower for the i.i.d. and the ICAR models than for the
CAR model.

We also investigated the performance of our method with
other thresholds for the Bayes factor (i.e., 3, 10, and 100,
which correspond, respectively, to “substantial,” “strong,” and
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FIGURE 2 Simulation study: the selected values of 𝜌∗ according to the parameters 𝜌 and 𝛼 (panel a) and �̂�𝑤∗ obtained with the INLA method
when we selected1 according to the Bayes factor criterion (panel b). The horizontal lines in panels a and b correspond, respectively, to the true values
of the parameters 𝜌 and 𝛼, and the black points represent the mean estimates obtained.

“decisive” levels of evidence for (𝑤∗)
1 ; Jeffreys 1961). The results

are presented in Figure C.3 in Supporting Information C.2.

3.3 Adjustment on Covariates

The purpose of this simulation study is to ensure that our
approach correctly adjusts cluster detection on covariates. To this
end, we considered a design similar to that of Section 3.2 but
added a covariate 𝑍

𝑖
(𝑘)
𝑛
such that

𝜆
𝑖
(𝑘)
𝑛
(𝑡|𝜑𝑘) = 𝜆0(𝑡) exp [𝜑𝑘 + 𝛽𝑍

𝑖
(𝑘)
𝑛
].

Two different scenarios were then considered. In the first case,
we considered a distribution on the 𝑍

𝑖
(𝑘)
𝑛

that does not depend
on the simulated cluster. The second one consists of simulating
a “true cluster” as previously (the green area in Figure C.1 in
Supporting Information C.1), whose intensity does not depend on
the covariate, and similarly to Ahmed and Genin (2020), a “fake
cluster” whose intensity depends on the effect of the covariate. In
this case, the covariate is a confounding factor for the association
between the survival of individuals and the “true cluster.”

To be more precise, for Scenario 1, 𝑍
𝑖
(𝑘)
𝑛

∼
𝑖.𝑖.𝑑.

 (2, 1), whereas

for Scenario 2, 𝑍
𝑖
(𝑘)
𝑛

∼
𝑖.𝑖.𝑑.

 (2, 1) if 𝑖(𝑘)𝑛 ∈ 𝑓 and 𝑍
𝑖
(𝑘)
𝑛

∼
𝑖.𝑖.𝑑.

 (1, 1)

otherwise, where 𝑓, namely the “fake cluster” is the red area
in Figure C.1 in Supporting Information C.1 composed of 149
individuals in 14 spatial units. 𝑓 is thus only characterized by
the effect of the covariate. Two values of 𝛽 were considered: 𝛽 =
0.5, 1.5.

For each scenario, each value of 𝛽, each value of the spatial
dependence parameter 𝜌, and each value of 𝛼, 100 datasets
were simulated. The statistical significance of the MLC was
evaluated through 999 generations of the data under 0 (see
Section 2.2.3 for more details) and the type I error was set
to 0.05.

The performances were measured through the same four criteria
as in Section 3.2: the power, the true positive rate, the false positive
rate, and the positive predictive value. We also computed the true
positive rates and the positive predictive values for 𝑓 for Scenario
2, defined as the mean proportion of individuals detected among
the individuals in 𝑓 and the mean proportion of individuals in 𝑓
within the detected cluster, respectively, to ensure that 𝑓 is not
detected as a cluster.

The prior distributions were the same as in Section 3.2 and for 𝛽,
we chose the noninformative prior (0, 103).

3.3.1 Evaluation of the Estimate of 𝜷

As explained in Section 2.2.1, 𝛽 is estimated under the null
hypothesis 0. Then its estimation is used under all hypotheses
0 and 

(𝑤∗)
1 . This section presents the bias of the esti-

mates obtained for 𝛽: 𝛽. Figure 4 shows the estimations 𝛽

obtained with the INLA method. It indicates that whatever
the scenario considered, the value of the spatial dependence
parameter 𝜌 or the cluster effect 𝛼, the parameter 𝛽 is well
estimated.
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FIGURE 3 Simulation study: Comparison of the type I error, power curves, true positive rates, false positive rates, and positive predictive values
for the CAR, ICAR, and i.i.d. models. 𝛼 is the parameter that controls the cluster intensity and 𝜌 controls the spatial dependence.

3.3.2 The Impact of Covariates on Cluster Detection

We evaluated the impact of the presence of a covariate on the
performance of our approach in the context of cluster detection.
Figure 5 shows the power curves, true positive rates, false positive
rates, and positive predictive values obtained with our method
in the presence of a covariate and compares them with the
performances obtained in the absence of a covariate (the red

curves). The type I errors are also presented in Figure C.5 in
Supporting Information C.3. No impact of the covariate on the
performances is visible in these figures.

In particular, in the case of a confounding factor (Scenario 2), the
power and the type I error remain the same as in its absence. This
indicates that the presence of a “fake cluster” does not lead to the
detection of a statistically significant cluster corresponding to it.

8 of 17 Biometrical Journal, 2024
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FIGURE 4 Simulation study: the estimations of 𝛽 (𝛽) according to the parameters 𝜌 and 𝛼 obtained with the INLAmethod. Panel (a) corresponds
to 𝛽 = 0.5, and Panel (b) corresponds to 𝛽 = 1.5. The horizontal lines correspond to the true value of 𝛽, and the black points represent themean estimates
obtained.

Figure 5 also shows that the true positive rates and the positive
predictive values for the “fake cluster,” as well as the false positive
rates for the “true cluster,” are extremely low, while the true
positive rates and the positive predictive values for the “true
cluster” are elevated. These results show that the cluster detected
corresponds to the “true cluster” and that the adjustment has
been correctly performed.

3.4 The Influence of Censoring

Here, we describe the simulation study that was designed to
evaluate the performance of our approach in the presence of
different levels of data censoring.

3.4.1 Design of the Simulation Study

Due to computational time constraints, the simulation’s design
differed slightly from those of the previous studies: we consid-
ered 940 individuals distributed in the 94 French départements
(counties) located by their centroid. The simulated cluster
contains 73 individuals in the eight départements of the Île-
de-France region (the green area in Figure C.2 in Supporting
Information C.1).

The data were generated in the same way as in Section 3.2, except
that different proportions of the observations were censored (10%,
20%, 30%, and 40%). Administrative censoring was considered
according to Montez-Rath et al. (2017) method. Briefly, the end
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FIGURE 5 Simulation study: Comparison of the power curves, true positive rates, false positive rates, and positive predictive values in the presence
and the absence of a covariate. 𝛼 is the parameter that controls the cluster intensity, 𝜌 controls the spatial dependence, and 𝛽 controls the covariate effect
on the survival. The true positive rates and the positive predictive values for a fake cluster only characterized by a confounder (Scenario 2) are also
presented.
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of the study was determined so that the intended proportion of
censoring was achieved.

For each value of the spatial dependence parameter 𝜌, each value
of 𝛼, and each censoring percentage, 100 datasets were simulated.
The statistical significance of the MLC was evaluated through
999 generations of the data under 0 (see Section 2.2.3 for more
details), and the type I error was set to 0.05.

The performances were measured through the same four criteria
as in Section 3.2: the power, the true positive rate, the false positive
rate, and the positive predictive value.

Note that in this simulation study, the prior distributionswere the
same as in Section 3.2.

3.4.2 Results

The results of the simulation study are shown in Figure 6.
First, we found that the power of our method increases as
the proportion of censoring increases. This was also the case
for the type I error (see Figure C.6 in Supporting Informa-
tion C.4). Although the type I error remained stable and
close to the nominal value (whatever the values of 𝜌) when
10% of the observations were censored, it tended to move
away from the nominal value as the censoring percentage
increased.

The false positive rates remained very low regardless of the
censoring rate. However, the true positive rates and positive
predictive values decreased as the censoring rate increased.
Lastly, the impact of censoring on the performance indicators
decreased when the cluster’s intensity 𝛼 increased.

4 Application to Epidemiological Data

4.1 End-Stage Renal Disease Mortality and
Related Confounding Factors

We considered data provided by the French renal epidemiology
and information network (REIN) registry on end-stage renal
disease (ESRD) in northern France between 2004 and 2020.
The methodology of the REIN registry has been described
elsewhere (Couchoud et al. 2005). Here, we focused on the
analysis of mortality, measured by the survival time after the
initiation of dialysis in ESRD patients aged 70 and over. This
patient population is characterized by (i) a high mortality
rate, thus leading to a high number of observed deaths, and
(ii) a low frequency of kidney transplantation, thus minimiz-
ing the effect of this known competing risk of death among
ESRD patients (Ayav et al. 2016; Hallan et al. 2012). The
data covered 6071 individuals but the exact time to survival
after the initiation of dialysis was not known in 17% of cases.
These censored observations are either patients still alive at the
end of the study (15.7%), patients lost to follow-up (0.7%), or
patients having received a kidney transplant (in which case,
the censoring time corresponds to the date of transplanta-
tion; 0.6%). The geographical region studied (the Nord-Pas-de-
Calais region of northern France) is divided into 80 cantons

(a French administrative subdivision), and each individual’s
stated place of residence was linked to the corresponding
canton.

We also considered 18 variables measured at the individual level,
and that are known to be confounders of survival in patients
with ESRD (Couchoud et al. 2015; Fu et al. 2021). Thus, spatial
cluster detection was adjusted by introducing the following
confounders into each model as covariates: age (in years), sex,
body mass index (in kg/m2), the type of nephropathy (poly-
cystic, primitive glomerulonephritis, hypertension, or vascular,
diabetic, pyelonephritis, other), the number of cardiovascular
comorbidities (none, one, two, or more), mobility (independent
walking, need for help from a third party, total disability), the
blood hemoglobin level (in g/dL), the serum albumin level (in
g/dL), the dialysis method (hemodialysis or peritoneal dialy-
sis), the glomerular filtration rate (below 7, between 7 and 10
or over 10 mL/min/1.73 m2), the period of treatment initia-
tion (2004–2009, 2010–2015, or 2016–2020), whether or not the
treatment was initiated urgently, and the presence or absence
of diabetes, chronic respiratory disease, respiratory assistance,
cirrhosis, severe behavioral disorder, or active malignant cancer.
Details of these confounding factors are available in Supporting
Information D.

4.2 Spatial Cluster Detection

In order to detect spatial clusters of atypical (shorter or longer)
survival times among patients with ESRD, five models were con-
sidered: the exponential model (Model 1) developed by Huang,
Kulldorff, and Gregorio (2007), the log-rank method developed
by Cook, Gold, and Li (2007) (Model 2), and versions of the Cox-
model-based method presented here for considering three types
of shared frailty: i.i.d. (𝜌 = 0) (Model 3), CAR (𝜌 ∈]0, 1[) (Model
4), and ICAR (𝜌 = 1) (Model 5).

Eachmodel was used to detect spatial clusters of atypical survival
times among the patients with ESRD when compared with
patients in the rest of the region studied. To adjust survival
times for the confounders in Model 1, we used an exponential
regressionmethod as proposed byHuang,Kulldorff, andGregorio
(2007). Regarding Model 2, we adopted the approach developed
by Jung (2009) and Ahmed and Genin (2020), which consists
of estimating the coefficients associated with the confounders in
the model under 0 and then setting their value to this estimate
in the scan statistic developed by Cook, Gold, and Li (2007).
RegardingModels 3–5 (the shared frailtymodels),we also adopted
this approach by setting (under each alternative hypothesis(𝑤)

1 )
the coefficients associated with the confounding factors to the
values estimated in the model under0 in the 𝜑𝑘 estimation step
(Section 2.2.1).

In order to provide an indicator of the cluster-associated risk that
is independent of the model considered, we estimated the hazard
ratio (HR) associated with each cluster in a conventional Cox
model adjusted for the confounding factors.

The MLC was considered, as were secondary clusters that had
a high Λ value and did not cover the MLC (Kulldorff 1997).
The statistical significance of the detected spatial clusters was
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FIGURE 6 Simulation study: Comparison of the power curves, true positive rates, false positive rates, and positive predictive values according to
the percentage of censored observations. 𝛼 is the parameter that controls the cluster intensity, and 𝜌 controls the spatial dependence.

evaluated by performing 999MonteCarlo simulations,with a type
I error of 0.05.

4.3 Results

The spatial clusters detected by each of the five models (expo-
nential, log-rank, i.i.d., CAR, and ICAR frailty) are presented in
Figure 7. Detailed information on the spatial clusters is presented
in Table 1.

Both the exponential model (Model 1, panel a in Figure 7) and the
method based on the log-rank test (Model 2, panel b in Figure 7)
identified the same two statistically significant spatial clusters.
The MLC (located in the northeast of the region, shown in green)
had similar levels of statistical significance in the two models
(�̂� = 0.004 and �̂� = 0.005, respectively) and had longer survival

times than in the rest of the geographical area studied (HR =
0.84 for both models). The first secondary cluster (located in
the western part of the region, shown in red) also had similar
levels of statistical significance in the two models (�̂� = 0.025 and
�̂� = 0.043, respectively) andwas characterized by shorter survival
times (HR = 1.13 for both methods).

The i.i.d. frailty model (Model 3, panel c) identified the same
statistically significant MLC as the exponential model and
the method based on the log-rank test (�̂� = 0.006). The CAR
model (Model 4, panel d) and ICAR model (Model 5, panel
e) both detected the same MLC, which contained three more
spatial units than the MLC detected by the other models.
This MLC was characterized by longer survival times (HR
= 0.86). The MLC was statistically significant for the CAR
model but not for the ICAR model (�̂� = 0.011 and �̂� = 0.178,
respectively). The first secondary cluster detected by the three
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FIGURE 7 Spatial clusters detected by the method developed by Huang, Kulldorff, and Gregorio (2007) (Model 1 (exponential), panel a), the
method developed by Cook, Gold, and Li (2007) (Model 2 (log-rank), panel b), and those highlighted by the shared frailty models (Model 3 (i.i.d.), panel
c; Model 4 (CAR), panel d; Model 5 (ICAR), panel e) after adjustment for confounding factors. Spatial clusters in green indicate longer survival times
for patients with ESRD, compared with the rest of the region studied. Conversely, spatial clusters in red indicate shorter survival times for patients with
ESRD.

frailty models is the same as that detected by the exponential
model and the method based on the log-rank test. However,
it was not statistically significant for any of the shared frailty
models (�̂� = 0.138 for the i.i.d. frailty model, �̂� = 0.083 for
the CAR frailty model, and �̂� = 0.949 for the ICAR frailty
model).

The small differences between the conventional spatial scan
statistics methods (Cook, Gold, and Li 2007; Huang, Kulldorff,
and Gregorio 2007) and the three shared frailty models developed
here can be explained by the low variance of the shared frailties
(see Figure D.1 in Supporting Information D for the posterior
distribution of 𝜎2 with each model).
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TABLE 1 Description of the statistically significant spatial clusters detected by the method developed by Huang, Kulldorff, and Gregorio (2007)
(Model 1 (exponential)), the method of Cook, Gold, and Li (2007) (Model 2 (log-rank)) and those detected by the shared frailty models (Model 3 (i.i.d.),
Model 4 (CAR) and Model 5 (ICAR)), after adjustment for confounding factors.

Model Cluster p value
Number of
spatial units

Number of
individuals

Number of
events

Hazard
ratioa

Model 1 MLC 0.004 10 1091 890 0.84
(Exponential) Secondary cluster 1 0.025 43 2632 2163 1.13
Model 2 MLC 0.005 10 1091 890 0.84
(Log-rank) Secondary cluster 1 0.043 43 2632 2163 1.13
Model 3 MLC 0.006 10 1091 890 0.84
(i.i.d. frailty) Secondary cluster 1 0.138 43 2632 2163 1.13
Model 4 MLC 0.011 13 1346 1094 0.86
(CAR frailty) Secondary cluster 1 0.083 43 2632 2163 1.13
Model 5 MLC 0.178 13 1346 1094 0.86
ICAR frailty Secondary cluster 1 0.949 43 2632 2163 1.13

aThe hazard ratio was computed using a Cox model with adjustment for confounders.

5 Discussion

Here, we developed a new spatial scan statistic for survival
data indexed in space. It allows one to (i) take account of both
potential intraspatial unit correlation and spatial dependence
between spatial units and (ii) adjust the cluster detection for
confounding factors. This method is based on a Cox model that
includes spatially structured shared frailty distributed according
to a Leroux CAR model.

In a simulation study, we showed that in the presence of
intraspatial unit correlation, the existing methods (Cook, Gold,
and Li 2007; Huang, Kulldorff, and Gregorio 2007) are confronted
by a huge increase in the type I error. Thereafter, the performance
of theCARmodelwas evaluated in the context of cluster detection
and compared with two particular versions of it: the i.i.d. frailty
model and the ICAR frailty model. The CAR model presented
the best performances in the presence of spatial dependence,
which thus demonstrated good-quality adjustment. We have also
investigated the goodness of fit of our method on covariates
through the bias of the estimator obtained for the effect of the
covariate, and the performances for the detection of the simulated
cluster. This simulation study showed that the proposed approach
allows to fit correctly on covariates (including confounders)
according to these criteria. In the last simulation study, we
showed that the performance of the CAR model is adequate as
long as the percentage of censored observations does not exceed
20%.

These approaches were then applied to epidemiological data, that
is, the detection of clusters of abnormally low or high survival
times in elderly patients with ESRD in northern France during
the period 2004–2020. The conventional approaches (Cook, Gold,
and Li 2007; Huang, Kulldorff, and Gregorio 2007) detected two
statistically significant clusters: one in the northeast of the region
(corresponding to longer survival times, that is, a lower risk than
elsewhere) and the other containing the whole western part of
the region (corresponding to lower survival times, i.e. a higher
risk). The i.i.d. shared frailty model only detected the cluster

in the northeast of the region as being statistically significant.
Assuming a complete spatial dependence, the ICAR model
also identified an MLC in the northeast of the region but this
was not statistically significant. When we considered the CAR
frailty model that allowed flexibility of the spatial dependence,
a statistically significant cluster was detected in the northeast of
the region. The cluster’s p-value was slightly higher than that
provided by the i.i.d. shared frailtymodel; this can be explained by
the fact that the CARmodel takes account of spatial dependence.
These results are consistent with those of the simulation study.

In both the simulation study and the application to epidemiolog-
ical data, circular potential clusters were considered. However,
other cluster shapes (e.g., elliptical clusters; Kulldorff et al. 2006)
could be considered, since the shape of the scanning window has
an impact on the power of cluster detection. It should be noted
that other scanning window shapes can be easily implemented in
ourmethod because this only changes the set of potential clusters
 .

In the population of elderly patients with ESRD, only a low
percentage had received a kidney transplant. However, this
percentage is higher in the general population (Couchoud et al.
2015). It is well known that kidney transplantation is a competing
risk for death in patientswith ESRD, and failure to take account of
this risk in the analysismight bias the estimate of survival (Hallan
et al. 2012). In this context, the method developed here should
be modified to account for competing risks by considering (for
instance) the model developed by Fine and Gray (1999).

Here, the spatial dependence parameter 𝜌 was assumed to be
constant over the whole study area. This assumption may be too
simplistic because this coefficient can vary spatially (Crawford
2009). However, the integration of a varying spatial dependence
coefficient would be challenging because it is necessary to
clearly distinguish between the effect of spatial dependence
and the effects of spatial clusters in the data. Adapting the
method developed here to this context could be the subject of
future research.
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In our model, we included covariates as fixed effects. However,
it is possible to consider them as random effects that may have a
spatial dependence. One way of taking these spatially structured
effects into account involves the use of CAR models for the prior
distributions of the coefficients associated with the covariates.

Moreover, it should be noted that the methodology proposed in
this article considers a Bayesian approach in order to estimate the
spatial frailties and then a frequentist approach for the realization
of the scanning process. This method is rather singular since it
does not allow to use the richness of the posterior distributions
in the scanning process. However, the development of a fully
Bayesian spatial scan statistics method (Cançado, Fernandes,
and da Silva 2017; Neill, Moore, and Cooper 2005; Neill and
Cooper 2010) in the context of survival data, allowing to take
into account the uncertainties, both on the frailty estimates and
on spatial dependence estimate, requires complex mathematical
developments that could be the subject of future work.

Lastly, our spatial scan statistics can be extended to deal with
recurrent events. For example, one might be interested in the
time until an asthma attack in patients treated for asthma, and a
patient might experience several asthma attacks during the study
period. One possible approach is to consider shared frailty at the
individual level,making it possible to take account of unobserved,
subject-specific factors (KleinbaumandKlein 2012).However, the
time to an asthma attack might also exhibit an intraspatial unit
correlation, due (for instance) to environmental factors. In this
context, one approachwould be to consider a nested frailty model
(Rondeau 2010), that is, a model with both shared frailties at the
level of spatial units with a potential spatial dependence, and
shared frailties at the level of individuals, in order to take account
of unobserved factors that are specific to spatial units (e.g., air
quality) and those that are specific to individuals (e.g., tobacco
consumption).
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