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Abstract
While the double helical structure has long been its iconic representation,
DNA is structurally dynamic and can adopt alternative secondary configura-
tions. Specifically, guanine-rich DNA sequences can fold in guanine quadru-
plexes (G4) structures. These G4 play pivotal roles as regulators of gene
expression and genomic stability, and influence protein homeostasis. Despite
their significance, the association of G4 with neurodegenerative diseases such
as Alzheimer’s disease (AD) has been underappreciated. Recent findings have
identified DNA sequences predicted to form G4 in sarkosyl-insoluble aggre-
gates from AD brains, questioning the involvement of G4-structured DNA
(G4 DNA) in the pathology. Using immunofluorescence coupled to confocal
microscopy analysis we investigated the impact of tau pathology, a hallmark
of tauopathies including AD, on the distribution of G4 DNA in murine neu-
rons and its relevance to AD brains. In healthy neurons, G4 DNA is detected
in nuclei with a notable presence in nucleoli. However, in a transgenic mouse
model of tau pathology (THY-Tau22), early stages of the disease exhibit an
impairment in the nuclear distribution of G4 DNA. In addition, G4 DNA
accumulates in the cytoplasm of neurons exhibiting oligomerized tau and oxi-
dative DNA damage. This altered distribution persists in the later stage of the
pathology when larger tau aggregates are present. Still cytoplasmic deposition
of G4 DNA does not appear to be a critical factor in the tau aggregation pro-
cess. Similar patterns are observed in neurons from the AD cortex. Further-
more, the disturbance in G4 DNA distribution is associated with various
changes in the size of neuronal nuclei and nucleoli, indicative of responses to
stress and the activation of pro-survival mechanisms. Our results shed light on
a significant impact of tau pathology on the dynamics of G4 DNA and on
nuclear and nucleolar mechanobiology in neurons. These findings reveal new
dimensions in the etiopathogenesis of tauopathies.
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1 | INTRODUCTION

The onset of tau protein aggregates in specific regions of
the brain is a hallmark of tauopathies, the largest family
of neurodegenerative diseases including Alzheimer’s dis-
ease (AD). The progression of tau pathology in vulnera-
ble neurons is associated with post-translational changes
of tau monomers such as phosphorylation, and its pro-
gressive aggregation evolving to the formation of soluble
tau oligomers, insoluble aggregates, paired helical fila-
ments (PHF) and neurofibrillary tangles [1].

In vitro, the presence of nucleating agent is necessary
to promote the polymerization of the intrinsically
disordered tau monomers. In particular association with
polyanions such as nucleic acids can promote the self-
assembly of tau [2–4]. However, in vivo, involvement of
nucleic acids in the tau aggregation process is still
unclear. While the participation of RNA has been inten-
sively studied [5–9], connections between DNA and the
tau aggregation process has been only marginally investi-
gated. Still, in AD hippocampi, DNA fragments have
been recently identified in sarkosyl-insoluble aggregates
including tau protein [10]. Interestingly DNA sequestered
in the aggregates is significantly enriched in sequences
predicted to form secondary guanine quadruplexes
(G4) structures, questioning the involvement of
G4-structured DNA (G4 DNA) in the pathology [10].
G4 are guanine-rich nucleic acid sequences which can
fold and adopt various stable spatial conformations
affecting DNA and RNA structuring and functions
[11–13]. Notably, G4 play prevalent roles as regulators
for gene expression and genomic stability [14–18]. In
addition, G4 have been associated to protein folding and
aggregation, and to neurodegenerative diseases including
AD but their contribution in the progression of these
pathologies is still largely underestimated [19–30].

In this study, we explored the impact of early and late
stages of tau pathology on the distribution of G4 DNA
in neurons from both transgenic mouse model of tau
pathology THY-Tau22 (Tau22) [31] and human AD
brains.

Our results reveal that early and late stages of tau
pathology trigger strong disturbances in the dynamics of
G4 DNA associated to multiple alterations in the mor-
phology of the nuclear and nucleolar compartments,
reflecting responses to stress likely to support neuronal
survival.

2 | METHODS

2.1 | Animals

THY-Tau22 mouse (Tau22), and its nontransgenic litter-
mates (WT) have been described in [31]. The Tau22
mouse was generated with a construct containing human
tau46 mutated at G272V and P301S positions and

expressed under the control of Thy1.2 promoter. Tau
pathology begins at 3 months of age in the subiculum
and CA1 subfield, two brain regions affected early in
human AD, spreading from there to the hippocampal
dentate gyrus and cortex in older animals [32]. At
6 months of age, Tau22 mice start developing spatial
memory impairment and anxiety [33]. All Tau22 mice
used in the present study were heterozygous. Nontrans-
genic WT littermate mice were used as controls in all
experiments. Both the THY-Tau22 and wild type litter-
mate mice were generated from the same breeds. All mice
were on C57Bl6/J background. Data from both males
and females were analyzed as a single group. All animals
were kept in standard animal cages (12 h/12 h light/dark
cycle, at 22�C), with ad libitum access to food and water.

2.2 | Tissue collection

Adult human brain samples (C: n = 5; AD: n = 5) were
obtained from the Lille Neurobank (Lille, France)
(Table 1). Human brains from the Lille Neurobank were
given to the French Research Ministry by the Lille Uni-
versity Hospital (CHRU-Lille) on August 14, 2008 under
the reference DC-2000–642.

2.3 | Immunofluorescence (IF)

Murine sagittal or human coronal (5 μM) brain slices
were deparaffinized and unmasked using proteinase K at
20 μg/mL in PBS 40 min at 37�C. After permeabilization
for 10 min in PBS 0,2% Triton, slices were incubated with
DNAse-free RNAse (50 μg/mL in PBS, 90 min at 37�C)
(Canvax EZ002). When specified, brains sections were
incubated with DNAse (Roche 10,104,159,001; 2 mg/mL
in 10 mM Tris–HCl pH 7,5, 2,5 mM MgCl2, 0,1 mM
CaCl2; 3 h at 37�C), or a mixture or RNAse/DNAse. The
slices were submerged for 1 h in 1% goat serum (Vector
Laboratories #S-1000) and the primary antibodies were
incubated overnight at 4�C in the presence of PBS-0.2%
Triton. Primary antibodies were revealed via secondary
antibodies coupled to Alexa 488, 568 or 647 (Life Tech-
nologies) or anti human IgG (Fab specific) FITC conju-
gate (Sigma Aldrich F5512) for BG4. The sections
were counterstained with 40,6-diamidino-2-phenylindole
(DAPI) and mounted with fluorescence mounting
medium (Agilent Dako S3023). The following antibodies
were used: BG4 (anti-DNA/RNA G quadruplex; Abso-
lute Antibody Ab00174-10.6), AT8 (PSer202/Thr205tau;
ThermoFisher Scientific MN1020) (phospho-dependent
antibody which is present from the early to late stages of
tau pathology), TOC1 (anti-prefibrillar soluble tau oligo-
mers; a generous gift from Dr. Nicholas Kanaan) [34],
AT100 (recognizes tau phosphorylated at epitope Ser212/
Thr214, and aggregated in sarkosyl-insoluble PHF;
ThermoFisher Scientific MN1060) [35], nucleolin
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(ThermoFisher Scientific A300-711-A), 8-OHdG
(8-oxo-G)(anti-8-hydroxy-20-deoxyguanosine and
8-hydroxyguanosine; ThermoFisher Scientific BS-
1278R). DAPI were used as a chromatin counterstain.
Nuclear (based on DAPI) and nucleolar (based on
nucleolin detection) labeling of cells were quantified
using the FIDJI macro application of ImageJ (confocal
microscopy platform, PBSL, UAR2014/US41, Lille).
Quantification corresponds to the z stack of serial confo-
cal sections covering the entire thickness of the brain sec-
tion. The quantification shows the mean of nuclear
fluorescence values per individual. Fluorescence from
human brain sections (C n = 5; AD n = 5) and mouse
brain sections (Tau22 n = 26, WT n = 13; KOTau
n = 14, WT n = 16) was acquired using an LSM 710 and
an LSM 980 confocal laser-scanning microscopes (Carl
Zeiss). The confocal microscope was equipped with a
488-nm Argon laser, 561-nm diode-pumped solid-state
laser, and a 405-nm ultraviolet laser. The images were
acquired using ZEN software (Carl Zeiss). The images
were acquired using an 20�/0,8 and an oil 63�/1,4 Plan-
APOCHROMAT objective. All recordings were per-
formed using the appropriate sampling frequency (16 bits,
optimal sampling, and a line average of 4). 3D recon-
struction was performed using Bitplane Imaris software
(Oxford Instruments). To achieve optimal z-sampling,
acquisitions were carried out using Z-steps of 0.2 μm.
Imaris 3D surfaces is use to precisely visualize and mea-
sure shapes of various objects and identify highlight the
marked surfaces in the images.

2.4 | Statistics for IF analysis

The Shapiro–Wilk test of normality (GraphPad Prism 7)
was used to test if the data were normally distributed.
Two-tailed, unpaired Student’s t-test (parametric) or
Mann Whitney U test (nonparametric) (GraphPad Prism
7) were used for statistical analysis of IF and statistical

analysis of the nuclear and nucleolar area. Each
biological replicate corresponds to one mouse brain. The
number of biological replicates is indicated in the legends.
The experimenters were not blinded. Data are presented
as mean ± SEM, *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001.

3 | RESULTS

3.1 | G4 DNA colocalizes with nucleoli and
heterochromatin in CA1 neurons from wild
type mice

We first analyzed by IF the presence of G4 DNA struc-
tures in hippocampal CA1 neurons in sagittal sections
from 6-months-old (6 m) WT control mice using the BG4
antibody [36, 37]. As the BG4 antibody recognizes G4
sequences both in DNA and RNA, brain sections were
pre-incubated with DNAse-free RNAse (RNAse) prior
to BG4, to specifically investigate the presence of G4
DNA in neurons (Figures 1A,B and S1A). BG4 labeling
appeared as an heterogeneous distribution restricted to
nuclei. BG4 IF was mostly detected as dense circular foci,
coinciding with a dark hole in the DAPI staining and
near DAPI spots reminiscent of perinucleolar heterochro-
matin, suggesting that it corresponds to a nucleolar loca-
tion (Figure 1A, closed arrowhead; Figures 1B and S1A).
To verify this hypothesis, double labeling using the BG4
antibody and antibody directed against the nucleolar pro-
tein nucleolin was performed (Figure 1C). The clear
codistribution of BG4 and nucleolin labelings showed
that G4 DNA sequences are highly present in neuronal
nucleoli in hippocampal neurons (Figure 1C,D). In addi-
tion, BG4 IF was present on but mainly with a patchy
distribution around DAPI spots, which correspond to
highly packed heterochromatin foci (Figure 1A, empty
arrowhead; Figures 1B and S1A). Thus, it indicates that
G4 DNA sequences are enriched at the periphery of

TABLE 1 Braak scores, region, age, gender, and post mortem interval of the brains.

Braak score Tissue Age Sex PMI (hours)

C#1 I Frontal cortex 69 M 21

C#2 0 Frontal cortex 74 M 48

C#3 I Frontal cortex 90 F 16

C#4 0 Frontal cortex 62 M 60

C#5 0 Frontal cortex 64 F 30

AD#1 VI Frontal cortex 76 F 22

AD#2 VI Frontal cortex 67 M 36

AD#3 VI Temporal cortex 73 F 5.5

AD#4 VI Occipital cortex 86 F 8

AD#5 VI Temporal cortex 61 M 23

Note: Anonymized data.
Abbreviation: PMI, postmortem interval.
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heterochromatin structures. A lattice distribution was
also observed throughout the nucleus partly codistributed
with DAPI signal (Figures 1A,B and S1A).

Most of the BG4 signal was abolished by pretreat-
ment with DNAse indicating that nuclear G4 are mainly
secondary DNA structures in hippocampal neurons
(Figure S1B). Concomitant RNAse and DNAse pretreat-
ments prevented BG4 labeling confirming the specificity
of BG4 for nucleic acid structures (Figure S1B).

In the rest of the study, brain sections were systemati-
cally preincubated with RNAse prior to incubation with
BG4, to visualize G4 DNA specifically.

3.2 | Early stages of tau pathology trigger
aberrant cytoplasmic accumulation of G4 DNA
in a subpopulation of CA1 neurons from
6-months-old Tau22 mice

We first investigated the impact of early stages of tau
pathology on neuronal G4 DNA distribution in the
transgenic mouse model THY-Tau22 (Tau22) at the

onset of cognitive deficits [33]. G4 DNA location was
analyzed in hippocampal CA1 neurons from 6 m Tau22
transgenic and WT littermate mice, using the BG4 anti-
body without (Figure 2A,B) or with nucleolin antibody
(Figure S2A). The majority of CA1 neurons from 6 m
Tau22 mice, exhibited only nuclear localization of BG4
labeling (cyto BG4� neurons), with preponderance at the
nucleolus as for WT neurons (Figures 2A and S2A). Sur-
prisingly, BG4 labeling was also detected in the cyto-
plasm of a subpopulation of neurons (cyto BG4+
neurons) (Figures 2A,B and S2A, arrowheads). Notewor-
thy, a redistribution of the nuclear BG4 labeling is clearly
visible in some of the cyto BG4+ neurons (Figure 2A,
zoom; 2B). Nucleolar BG4 and nucleolin labelings
even disappeared in some of the cyto BG4+ neurons
(Figure S2A, empty arrowheads).

DAPI fluorescence was detected in the cytoplasm of
cyto BG4+ neurons (Figure 2C) showing the existence
of DNA in the cytoplasm. The overexposure of the
DAPI fluorescent signal clearly revealed a cytoplasmic
staining specifically codistributed with BG4 labeling
(Figure 2D).

(A) (B)

(C) (D)

F I GURE 1 G4 DNA structures are concentrated within the nucleoli and around heterochromatin foci in neuronal nuclei. (A) Representative
images of sagittal sections from 6 m WT mice (n = 5). The sections were labeled with the BG4 antibody. IF signals were analyzed by confocal laser-
scanning microscopy (z projection). Nuclei were detected with DAPI staining. The scale bars represent 20 μm. Closed arrowheads show dense BG4
positive spots near heterochromatin foci. Empty arrowheads show BG4 labeling around heterochromatin foci. (B) 3D images reconstruction of sagital
sections from 6 m WT mice (n = 5). IF signals were analyzed by confocal laser-scanning microscopy. Nuclei were detected with DAPI staining (gray).
The sections were labeled with the BG4 antibody (green). Imaris 3D Surface module were used to indicate heterogeneous distribution of BG4 labeling
in nuclei. The scale bar represents 5 μm. (C) Representative images of sagittal sections from 6 m WT mice (n = 5). The sections were labeled with the
BG4 and nucleolin antibodies. IF signals were analyzed by confocal laser-scanning microscopy (z projection). Nuclei were detected with DAPI
staining. The scale bars represent 20 μm. (D) Right panel: The indicated white arrow is drawn across nucleus and nucleolus in a confocal section of
CA1 neurons from 6 m WT mice. Left panel: Quantification of the fluorescence signals for BG4, nucleolin and DAPI along the indicated arrow scan.
The cell cytoplasm (cyto) and nucleus are delimitated by dashed lines.
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(A)

(C) (D)

(E) (F)

(B)

p
p p

p
p p

F I GURE 2 G4 DNA redistribution and morphological changes in a subpopulation of neurons in 6 m Tau22 mouse brains. (A) Representative
images of sagittal sections from 6 m WT and Tau22 mice (WT: n = 5; Tau22: n = 9). The sections were labeled with the BG4 antibody. IF signals
were analyzed by confocal laser-scanning microscopy (z projection). Nuclei were detected with DAPI staining. The scale bars represent 20 μm.
Arrowheads and frames show neurons with cytoplasmic G4 DNA accumulation. Dashed lines delimitate the nucleus. (B) 3D images reconstruction of
sagital sections from 6 m Tau22 mice (n = 9). IF signals were analyzed by confocal laser-scanning microscopy. Nuclei were detected with DAPI
staining (gray). The sections were labeled with the BG4 antibody (green). Imaris 3D Surface module were used to indicate heterogeneous distribution
of BG4 labeling in neuron. The scale bar represents 3 μm. (C) Right panel: the indicated arrow is drawn across neuron in a confocal section of CA1
from 6 m Tau22 mice. Left panel: quantification of the fluorescence signals for BG4 and DAPI along the indicated arrow scan. The cell cytoplasm
(cyto) and nucleus are delimitated by dashed lines. (D) Left panel: DAPI staining in a confocal section of neurons from 6 m Tau22 mice. Dashed lines
delimitate the cytoplasm and nucleus. Right panel: DAPI fluorescence signal has been overexposed to reveal cytoplasmic DAPI staining in a
subpopulation of neurons. (E) The intensity of the nuclear BG4 IF signal was separately quantified within neurons (n = 124) from WT mice (n = 5)
and within cyto BG4� (n = 144) and cyto BG4+ (n = 46) neurons from the same Tau22 mice (n = 9). Graph shows the mean of nuclear BG4
fluorescence per category. Each biological replicate corresponds to one mouse. Data are presented as mean ± SEM (* p < 0.05; *** p < 0.001; Two-
tailed, unpaired Student’s t-test). (F) The intensity of the nucleolar BG4 IF signal was separately quantified within neurons (n = 167) from WT mice
(n = 5) and within cyto BG4� (n = 199) and cyto BG4+ (n = 18) neurons from the same Tau22 mice (n = 9). Note that nucleoli were not detected in
cyto BG4+ neurons in three of the nine mice. Graph shows the mean of nuclear BG4 fluorescence per category. Each biological replicate corresponds
to one mouse. Data are presented as mean ± SEM (ns = nonsignificant; Two-tailed, unpaired Student’s t-test).
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Supplementary pretreatment of the brain sections
with DNAse fully prevented the cytoplasmic BG4 label-
ing, demonstrating the absence of nonspecific BG4 bind-
ing into the cytoplasm (Figure S2B).

Taken together, these data reveal the presence of G4
DNA in the cytoplasm of a subpopulation of CA1 neu-
rons from 6 m Tau22 mice.

Quantification showed an increase in the mean G4
DNA level into the nuclei of 6 m Tau22 compared with
WT neurons, with a stronger effect observed in cyto
BG4+ compared with cyto BG4� neurons (Figure 2E),
in contrast, there was no statistically different nucleolar
G4 DNA contents in cyto BG4� and cyto BG4+ neu-
rons from 6 m Tau22 compared with WT littermate neu-
rons (Figure 2F).

Altogether these results show that the nuclear level
of G4 DNA starts to increase in the nucleus before G4
DNA appears in the cytoplasm of cyto BG4+ CA1
neurons. This suggests that cyto BG4� neurons reflect
an earlier phase of the disease than cyto BG4+
neurons, corresponding to a precocious stage of tau
pathology.

3.3 | Tau hyperphosphorylation, tau
oligomerization, and oxidative DNA damage
precede cytoplasmic G4 DNA accrual in CA1
neurons

In 6 m Tau22 mice the onset of cognitive deficits coin-
cides with increased tau phosphorylation and an enrich-
ment with soluble oligomeric forms of tau in
hippocampal CA1 neurons [33,38,39]. We next analyzed
the relationship between the presence of phosphorylated
forms of tau (P-tau) or tau oligomers and the distribution
of G4 DNA. We performed double labeling using AT8
or TOC1 antibodies which recognize phosphorylated
Ser202/Thr205 tau and soluble tau oligomers, respec-
tively [40], and the BG4 antibody (Figure 3A,D). Strik-
ingly, the accumulation of P-tau or tau oligomers was
detected in all cyto BG4+ neurons (Figure 3A,D, closed
arrowheads; Figure 3B,E). In contrast, only part of neu-
rons positive for P-tau or tau oligomers showed cytoplas-
mic BG4 labeling (Figure 3A,D, empty arrowheads;
Figure 3C,F). Thus, accumulation of G4 DNA in the
cytoplasm is not mandatory to tau hyperphosphorylation
and oligomerization.

Altogether these results suggest that the abnormal
presence of G4 DNA in the cytoplasm of neurons is a
downstream event of early tau hyperphosphorylation and
oligomerization.

We previously described that CA1 neurons from 6 m
Tau22 mice undergo a transient increase in oxidative
stress [39]. Because of the lower redox potential of gua-
nine, G4 are highly susceptible to oxidative damage

[41, 42]. We therefore investigated the interplay between
guanine oxidation and G4 DNA in CA1 neurons from
Tau22 and WT littermate mice by IF using an antibody
against 8-hydroxy-20-deoxyguanosine (8-oxo-G), an oxi-
dized form of guanosine and typical marker of oxidative
DNA damage, and the BG4 antibody. Oxidative DNA
damage was closely associated to the presence of G4
DNA in the cytoplasm of cyto BG4+ neurons in 6 m
Tau22 mice (Figure 4A, closed arrowheads; Figure 4B).
However, oxidative DNA damage was also present in the
cytoplasm of some cyto BG4� neurons (Figure 4A,
empty arrowheads; Figure 4C).

Thus, it suggests that cytoplasmic G4 DNA accumu-
lation in neurons is a downstream event of guanine oxi-
dation and consequently of oxidative stress.

3.4 | G4 DNA redistribution coincides with
morphological alterations of the nuclear and
nucleolar compartments

As various cellular stresses including oxidative stress can
alter the nuclear and nucleolar morphology, we analyzed
the size of nuclei and nucleoli in CA1 neurons from 6 m
Tau22 and WT littermate mice.

Based on the area of the DAPI staining, we observed
a statistically significant reduction in the mean nuclear
size specifically in cyto BG4+ neurons from 6 m Tau22
compared with cyto BG4� and WT littermate neurons
(Figure 4D). The shrinkage of the nuclei is therefore asso-
ciated with the presence of G4 DNA in the cytoplasm.

In addition, as our previous results showed that oxi-
dative stress is an upstream event in the cytoplasmic
localization of G4 DNA, we separately analyzed nuclear
size in neurons without and with oxidative DNA damage
prior to the appearance of G4 DNA in the cytoplasm
(cyto 8oxoG� BG4� and cyto 8oxoG+ BG4� neurons
respectively) (Figure 4E). The presence of oxidized DNA
in the cytoplasm in the absence of G4 DNA (cyto 8oxoG
+ BG4� neurons), is not associated with a reduction in
the nuclear size showing that oxidative DNA damage
alone does not cause nuclear shrinkage.

Surprisingly, based on the area of the nucleolin label-
ing [43], we observed a statistically significant increase in
the mean nucleolus size in cyto BG4- neurons from 6 m
Tau22 compared with WT littermate neurons (Figure 4F).
The mean nucleolus size in cyto BG4+ neurons was no
longer different from that in WTs, although there was con-
siderable variability between mice (Figure 4F).

These data suggest that, in CA1 neurons from 6 m
Tau22 mice, nucleolar hypertrophy occurs transiently,
prior to cytoplasmic G4 DNA accumulation associated
to nuclear shrinkage. Altogether, it shows that the
nuclear and nucleolar morphology is impaired in a non-
synchronous way at early stages of tau pathology.
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3.5 | Late tau pathology is associated with
persistence of cytoplasmic G4 DNA deposition,
reduction of nuclear and nucleolar G4 DNA
load, and nucleolar compaction in CA1 neurons
from 12-months-old Tau22 mice

Tau pathology peaks when Tau22 mice are 12-months
old (12 m). We next investigated by IF the impact of late
tau pathology on the distribution of G4 DNA and on
the nuclear and nucleolar morphology in CA1 neurons
from 12 m Tau22 transgenic mice and WT littermates,

using the BG4 antibody without or with nucleolin
antibody.

The distribution of G4 DNA in neurons from 12 m
WT mice was similar to that in neurons from 6 m mice
(Figures 5A and S3A). This indicates that the cytoplas-
mic localization previously observed in neurons from 6 m
Tau22 mice does not reflect accelerated aging. Cytoplas-
mic accumulation of G4 DNA persisted in neurons of
12 m Tau22 mice as tau pathology worsens (Figure 5A,
arrowheads; Figure S3A). In addition the number of neu-
rons with cytoplasmic G4 DNA doubled in 12 m mice

(A) (B)

(C)(D)

(E) (F)

F I GURE 3 Cytoplasmic G4 DNA is associated with phosphorylated and oligomerized tau in a subpopulation of neurons from 6 m Tau22
mouse brains. (A) Representative images of sagittal sections from 6 m Tau22 mice (WT: n = 5; Tau22: n = 9). The sections were labeled with the
BG4 and anti-P-tau (AT8) antibodies. IF signals were analyzed by confocal laser-scanning microscopy (z projection). Nuclei were detected with
DAPI staining. The scale bars represent 20 μm. Closed arrowheads show cyto BG4+ neuron. Empty arrowheads show cyto BG4� neuron. (B) Right
panel: The indicated arrow is drawn across cyto BG4+ neuron in a confocal section of CA1 from 6 m Tau22 mice. Left panel: Quantification of the
fluorescence signals for BG4, P-tau, and DAPI along the indicated arrow scan. The cell cytoplasm (cyto) and nucleus are delimitated by dashed lines.
Graph shows the colocalization of G4 DNA with P-tau into the cytoplasm. (C) Right panel: The indicated arrow is drawn across cyto BG4� neuron
in a confocal section of CA1 from 6 m Tau22 mice. Left panel: Quantification of the fluorescence signals for BG4, P-tau, and DAPI along the
indicated arrow scan. The cell cytoplasm (cyto) and nucleus are delimitated by dashed lines. Graph shows the absence of G4 DNA in the cytoplasm
of neuron with P-tau. (D) Representative images of sagittal sections from 6 m Tau22 mice (WT: n = 5; Tau22: n = 9). The sections were labeled with
the BG4 and anti-tau oligomers (TOC1) antibodies. IF signals were analyzed by confocal laser-scanning microscopy (z projection). Nuclei were
detected with DAPI staining. The scale bars represent 20 μm. Closed arrowheads show cyto BG4+ neuron. Empty arrowheads show cyto BG4�
neuron. (E) Right panel: The indicated arrow is drawn across cyto BG4+ neuron in a confocal section of CA1 from 6 m Tau22 mice. Left panel:
Quantification of the fluorescence signals for BG4, tau oligomers and DAPI along the indicated arrow scan. The cell cytoplasm (cyto) is delimitated
by dashed lines. Graph shows the colocalization of G4 DNA with tau oligomers into the cytoplasm. (F) Right panel: The indicated arrow is drawn
across cyto BG4� neuron in a confocal section of CA1 from 6 m Tau22 mice. Left panel: Quantification of the fluorescence signals for BG4, tau
oligomers and DAPI along the indicated arrow scan. The cell cytoplasm (cyto) and nucleus are delimitated by dashed lines. Graph shows the absence
of G4 DNA in the cytoplasm of neuron with tau oligomers.
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compared with 6 m mice (cyto BG4+/total neurons:
6 m = 7.93%; 12 m = 16,74%) (Figure 5B).

Late tau pathology had no effect on the nuclear G4
DNA level (Figure S3B) despite a reduction in the
nuclear size in cyto BG4+ neurons compared with cyto
BG4� and WT neurons (Figure S3C). In contrast, quan-
tification revealed a strong decrease of the nucleolar G4
DNA load (Figure 5C) associated to a reduction in the

nucleolus size (Figure 5D) in cyto BG4+ neurons from
12 m Tau22 compared with cyto BG4� and WT
neurons.

Altogether our results highlight reduction of the
nucleolar G4 DNA load associated with nuclear and
nucleolar shrinkage, selectively in neurons containing
cytoplasmic G4 DNA deposition at late stage of tau
pathology.

(A)

(B)

(D) (E) (F)

(C)

p
p

p
p

p
p

p p

F I GURE 4 Legend on next page.
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Late tau pathology is characterized by the predomi-
nance of hyperphosphorylated and aggregated forms of
tau in CA1 neurons of Tau22 mice [39]. We next ana-
lyzed by IF the connection between the presence of phos-
phorylated and aggregated forms of tau and the G4
DNA distribution using the AT100 antibody, which rec-
ognizes tau phosphorylated at epitope Ser212/Thr214
and aggregated in sarkosyl-insoluble PHF [35], and the
BG4 antibody respectively. The accumulation of phos-
phorylated tau aggregates was detected in all the cyto
BG4+ neurons (Figure 5E, closed arrowheads; Figure 5F
(a)) showing the persistent association between cytoplas-
mic G4 DNA and pathogenic forms of tau at late stage
of tau pathology. Phosphorylated tau aggregates was also
present in the cytoplasm of some of the cyto BG4� neu-
rons (Figure 5E, open arrowheads; Figure 5F(b)) con-
firming that the presence of G4 DNA in the cytoplasm is
not critical to the tau aggregation process.

As we previously described [39], oxidative DNA dam-
age was no more increased in CA1 neurons from 12 m
Tau22 compared with WT littermate mice (data not
shown).

3.6 | Tau deletion has no effect on G4 DNA
distribution in CA1 neurons

In addition, we tested the effect of the absence of tau on
the distribution of G4 DNA in CA1 neurons from tau
deficient (KOTau) and WT littermate mice. Tau deletion
induced neither cytoplasmic location of G4 DNA nor
change of nuclear G4 DNA level in 12 m CA1 KOTau
compared with WT neurons (Figure S4A,B). These data
suggest that alterations in the distribution of G4 DNA
observed in Tau22 neurons are not the result of a loss of
tau function but are rather linked to a gain in toxic func-
tion induced by tau pathology, although we cannot rule

out the possibility of compensatory mechanisms being set
up in KOTau neurons.

3.7 | Impaired G4 DNA dynamics is
associated to pathogenic forms of tau and
oxidative DNA damage in neurons from AD
brains

We next investigated the relevance of the association
between pathogenic forms of tau, oxidative DNA damage
and alteration of the G4 DNA distribution in postmortem
AD (Braak 6) compared with aged-matched nondemented
(control) cerebral cortex. Coronal sections of cortex were
labeled with AT8 (P-tau), TOC1 (tau oligomers), AT100
(aggregated P-tau), or anti-8-oxo-G (oxidative DNA dam-
age) antibodies, and with the BG4 antibody. In control
brains, G4 DNA was distributed on and around DAPI
focis corresponding to heterochromatin, and in non-
DAPI-labeled cavities indicating nucleoli (Figure S5), sim-
ilarly to what we observed in murine neurons. It is worth
noting that cytoplasmic presence of G4 DNA was weakly
detected in some cortical cells from certain control brains
(Figure S5, stars) possibly reflecting an effect of aging.

Cytoplasmic accumulation of G4 DNA was found in
subpopulations of neurons containing hyperphosphorylated,
oligomerized and/or aggregated forms of tau in cortex from
human AD brains (Figure 6A–C). Similarly, G4 DNA was
associated to oxidative DNA damage in the cytoplasm of
AD cortical neurons (Figure 6D). Phosphorylated, oligo-
merized or aggregated forms of tau, and oxidized DNA
were not detected in the cytoplasm of control brains (data
not shown) as previously described [39, 44].

Thus, these results demonstrate the connection
between pathogenic forms of tau and oxidative DNA
damage, and a severe redistribution of G4 DNA in corti-
cal neurons from AD brains.

F I GURE 4 Cytoplasmic G4 DNA and oxidative DNA damage are present in a subpopulation of neurons from 6 m Tau22 mouse brains.
(A) Representative images of sagittal sections from 6 m Tau22 mice (WT: n = 5; Tau22: n = 9). The sections were labeled with the BG4 and anti-
8-oxo-G antibodies. IF signals were analyzed by confocal laser-scanning microscopy (z projection). Nuclei were detected with DAPI staining. The
scale bars represent 20 μm. Closed arrowheads show cyto BG4+ neuron. Empty arrowheads show cyto BG4� neuron. (B) Right panel: the indicated
arrow is drawn across cyto BG4+ neuron in a confocal section of CA1 from 6 m Tau22 mice. Left panel: quantification of the fluorescence signals for
BG4, 8-oxo-G, and DAPI along the indicated arrow scan. The cell cytoplasm (cyto) and nucleus are delimitated by dashed lines. Graph shows the
colocalization of G4 DNA with P-tau into the cytoplasm. (C) Right panel: the indicated arrow is drawn across cyto BG4� neuron in a confocal
section of CA1 from 6 m Tau22 mice. Left panel: Quantification of the fluorescence signals for BG4, 8-oxo-G, and DAPI along the indicated arrow
scan. The cell cytoplasm (cyto) and nucleus are delimitated by dashed lines. Graph shows the absence of cytoplasmic G4 DNA in neuron with P-tau.
(D) The nuclear area was separately quantified within neurons (n = 124) from WT mice (n = 5) and within cyto BG4� (n = 144) and cyto BG4+
(n = 46) neurons from the same Tau22 mice (n = 9). Graph shows the mean of nuclear area per category. Each biological replicate corresponds to
one mouse. Data are presented as mean ± SEM (ns = nonsignificant; * p < 0.05; Two-tailed, unpaired Student’s t-test). (E) The nuclear area was
separately quantified within neurons (n = 91) from WT mice (n = 5) and within cyto 8oxoG� BG4� (n = 139), cyto 8oxoG+ BG4� (n = 19), and
cyto 8oxoG+ BG4+ (n = 25) neurons from the same Tau22 mice (n = 5–8). Graph shows the mean of nuclear area per category. Each biological
replicate corresponds to one mouse. Data are presented as mean ± SEM (ns = nonsignificant; * p < 0.05, ** p < 0.01, Mann–Whitney test). (F) The
nucleolar area was separately quantified within neurons (n = 167) from WT mice (n = 5) and within cyto BG4� (n = 199) and cyto BG4+ (n = 18)
neurons from the same Tau22 mice (n = 9). Note that nucleoli were not detected in cyto BG4+ neurons in three of the nine mice. Graph shows the
mean of nucleolar area per category. Each biological replicate corresponds to one mouse. Data are presented as mean ± SEM (* p < 0.05, Mann–
Whitney test; ns = nonsignificant, Two-tailed, unpaired Student’s t-test).
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4 | CONCLUSIONS

These results link early and late stages of tau pathology
to major changes in the cellular distribution of G4 DNA
associated to various morphological alterations of nuclei
and nucleoli in neurons (Figure 7A).

4.1 | G4 DNA distribution in healthy neurons

Although highly studied in cellular models, G4 (DNA
and RNA) had only recently been visualized in vivo in
hippocampal neurons from mouse brains [45]. Here, we
report a nuclear distribution of G4 DNA in healthy

(A)

(C)

(E) (F)

(D)

(B)
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p

p p

p

p

p

F I GURE 5 Legend on next page.
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neurons, with a high density in nucleoli likely reflecting
an enrichment of G4 structures in ribosomal DNA
(rDNA), although nonribosomal DNA is also pre-
sent [46]. This is in agreement with the abundance of
rDNA sequences prone to form G4 into nucleoli that has
been predicted by whole genome analysis [47–49].

In addition, we describe patchy enrichment of G4
DNA around heterochromatin focis. The presence of
G4 structures at the heterochromatin level was previously
documented in murine hippocampal neurons [45] and
more generally in several somatic cell types [50, 51].
Here, the specific enrichment of G4 DNA at the periph-
ery of heterochromatin focis questions its role. In particu-
lar, it would be interesting to investigate if this special
location, reminiscent of a wire mesh, reflects a role in
chromatin compaction.

Nevertheless, as our study is based on the use of the
BG4 antibody it should be stressed that, despite being
the reference antibody for G4 detection, controversy
about its specificity has recently been reported. Ray
et al. [52] have shown that BG4 can also recognize non-
G4 motifs including cytosine-rich sequences. We cannot
therefore rule out the possibility that part of the BG4 sig-
nal detected in our study corresponds to DNA structures
other than G4. Nevertheless, the use of a fluorescence
probe that specifically recognizes G4 DNA structures in
fixed tissue would be beneficial as an additional method
of detection [53].

4.2 | Impaired G4 DNA dynamics in neurons:
Potential causes and consequences

In AD brains, Shmookler Reis et al. described the pres-
ence of predicted G4-forming DNA sequences, mainly of
nuclear origin, in sarkosyl-insoluble extracts containing
tau aggregates [10]. Here, our results provide the first
visualization of G4 DNA codistributed with soluble

oligomers and larger aggregated forms of tau in the cyto-
plasm of murine and human AD neurons. But the origin
of DNA structured in G4 present in the cytoplasm of
neurons from Tau22 mice and AD brains remains to be
identified.

A key future challenge will be to elucidate molecular
mechanisms underlying the dysregulation of G4 DNA
dynamics in neurons and to highlight its impact for neu-
ronal homeostasis. Numerous mechanisms can lead to
the presence of DNA into the cytoplasm of cells [54]. Our
results suggest that the cytoplasmic location of G4 DNA
is secondary to the presence of oligomers or larger aggre-
gated forms of tau. This implies that the abnormal pres-
ence of G4 DNA in the cytoplasm does not have a causal
role in driving the aggregation process but is rather a
downstream event. Tau protein can undergo liquid–
liquid phase separation (LLPS) to form tau droplets pro-
moting tau aggregation [4,55-59]. Recently, Gao et al.
showed that LLPS can modulate G4 DNA formation
and stability [60]. Therefore it is plausible that LLPS pro-
cess linked to tau aggregation may favor G4 structuring
of guanine-rich DNA sequences. Conversely, as G4 struc-
turing can possibly accelerate protein folding, notably
promoting LLPS [25,26], it cannot be ruled out that once
present in the cytoplasm, G4 DNA may exacerbate the
tau aggregation process. The relationship between tau
aggregation, LLPS and G4 DNA in neurons warrants
further investigation.

In this and previous studies we report that in 6 m
Tau22 mice, when tau oligomers are predominant, CA1
neurons are facing stress including oxidative stress [39].
Here, our results suggest that the prevalence of cytoplas-
mic G4 DNA is a downstream event of oxidative stress in
neurons. Interestingly, Byrd et al. reported that oxidative
stress can promote G4 DNA location in the cytoplasm of
cell lines [61]. Thus, oxidative stress could participate in
cytoplasmic location of G4 DNA in neurons. Oxidative
DNA damage can lead to DNA breaks and the

F I GURE 5 Altered distribution of G4 DNA persists in CA1 neurons from 12 m Tau22 mice. (A) Representative images of sagittal sections from
12 m WT (n = 8) and Tau22 (n = 17) mice. The sections were labeled with the BG4 and nucleolin antibodies. IF signals were analyzed by confocal
laser-scanning microscopy (z projection). Nuclei were detected with DAPI staining. The scale bars represent 20 μm. Closed arrowheads show cyto
BG4+ neurons. (B) The percentage of cyto BG4+ neurons was separately quantified within neurons (n = 388) from 6 m Tau22 mice (n = 9) and
within neurons (n = 403) from 12 m Tau22 mice (n = 8). Graph shows the mean percentage of cyto BG4+ neurons among the total number of
neurons per category. Each biological replicate corresponds to one mouse. Data are presented as mean ± SEM (* p < 0.05; Two-tailed, unpaired
Student’s t-test). (C) The intensity of the nucleolar BG4 IF signal was separately quantified within neurons (n = 105) from WT mice (n = 8) and
within cyto BG4� (n = 166) and cyto BG4+ (n = 46) neurons from the same 12 m Tau22 mice (n = 8). Graph shows the mean of nuclear BG4
fluorescence per category. Each biological replicate corresponds to one mouse. Data are presented as mean ± SEM (ns = nonsignificant; * p < 0.05;
*** p < 0.001; Two-tailed, unpaired Student’s t-test). (D) The nucleolar area was separately quantified within neurons (n = 105) from WT mice
(n = 8) and within cyto BG4� (n = 166) and cyto BG4+ (n = 46) neurons from the same 12 m Tau22 mice (n = 8). Graph shows the mean of
nucleolar area per category. Each biological replicate corresponds to one mouse. Data are presented as mean ± SEM (ns = nonsignificant; ***
p < 0.001; **** p < 0.0001; Two-tailed, unpaired Student’s t-test). (E) Representative images of sagittal sections from 12 m Tau22 mice (WT: n = 8;
Tau22: n = 8). The sections were labeled with the BG4 and anti-aggregated P-tau (AT100) antibodies. IF signals were analyzed by confocal laser-
scanning microscopy (z projection). Nuclei were detected with DAPI staining. The scale bars represent 20 μm. Closed arrowheads show cyto BG4+
neuron. Empty arrowheads show cyto BG4� neuron. (F). Right panel: The indicated arrow is drawn across cyto BG4+ (a) and cyto BG4�
(b) neurons in a confocal section of CA1 from 12 m Tau22 mice. Left panel: Quantification of the fluorescence signals for BG4, aggregated P-tau and
DAPI along the indicated arrow scan. The cell cytoplasm (cyto) and nucleus are delimitated by dashed lines. Graph shows the codistribution of G4
DNA with aggregated P-tau into the cytoplasm of a cyto BG4+ neuron (a) and the absence of G4 DNA in the cytoplasm of a cyto BG4� neuron
with aggregated P-tau (b).
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production of DNA fragments. Alteration or rupture of
the nuclear and/or mitochondrial envelope observed in
tauopathy’s models and in AD brains [62–70] could favor

the leakage of DNA fragments into the cytoplasm
(Figure 7B). In addition, as guanine oxidation can modu-
late the formation and structuring of G4 [42], it is

(A)

(B)

(C)

(D)

F I GURE 6 Cytoplasmic G4 DNA location
correlates with pathogenic forms of tau and oxidative
DNA damage in cells from human AD cerebral cortex.
(A) Representative images of coronal sections from
human postmortem AD brains (n = 5). The sections
were labeled with the BG4 and anti-P-tau (AT8)
antibodies. IF signals were analyzed by confocal laser-
scanning microscopy (z projection). Nuclei were
detected with DAPI staining. The scale bars represent
20 μm. (B) Representative images of sagittal sections
from AD cortex (n = 5). The sections were labeled
with the BG4 and anti-tau oligomers (TOC1)
antibodies. IF signals were analyzed by confocal laser-
scanning microscopy (z projection). Nuclei were
detected with DAPI staining. The scale bars represent
20 μm. (C) Representative images of sagittal sections
from AD cortex (n = 5). The sections were labeled
with the BG4 and anti-aggregated P-tau (AT100)
antibodies. IF signals were analyzed by confocal laser-
scanning microscopy (z projection). Nuclei were
detected with DAPI staining. The scale bars represent
20 μm. (D) Representative images of sagittal sections
from AD cortex (n = 5). The sections were labeled
with the BG4 and anti-8-oxo-G antibodies. IF signals
were analyzed by confocal laser-scanning microscopy
(z projection). Nuclei were detected with DAPI
staining. The scale bars represent 20 μm.
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tempting to hypothesize that, at early stages of tau
pathology, oxidative stress could also contribute to the
structuration of guanine-rich sequences in G4
(Figure 7B).

In addition to early tau pathology, amyloid plaques
and small vessel disease are known to generate oxidative
stress in AD brain, it would therefore be worthwhile test-
ing their impact on G4 DNA distribution in nearby
neurons.

Importantly, G4 and guanine oxidation have emerged
as potent epigenetic modulators of gene expression [17,
71, 72]. It is likely that various changes in the quantity
and distribution of G4-structured and oxidized DNA
sequences in neuronal nuclei that we observe early during
the progression of tau pathology, have severe conse-
quences on transcription and chromatin organization.

The impact of persistent accumulation of
G4-enriched DNA into the cytoplasm of neurons is a
major question. Interestingly, the presence of endogenous
DNA in the cytoplasm can trigger an innate immunity-
type self-response, similar to that activated by viral infec-
tion [73]. Important roles of innate immunity in the
development of tauopathies including AD are emerging
[74–77]. We and others have recently shown interplay

between activation of the type-1 interferon response and
increased tau pathology in neurons [78, 79]. However the
consequences of increased DNA structuring in G4 on
the activation of innate immunity in neurons is currently
unknown. Interestingly, in cancer and noncancer cells,
G4 binders which stabilize G4 structures can stimulate
innate immunity [80]. Thus, the accumulation of G4
DNA in the cytoplasm of neurons may contribute to the
progression of tau pathology through activation of innate
immunity mechanisms. Still additional studies are needed
to decipher potential connections between tau pathology,
cytoplasmic G4 DNA, and activation of innate immunity
in neurons.

Here, we focused on the impact of tau pathology on
neuronal G4 DNA. Nevertheless, G4 represent only a
fraction of the alternative DNA structures (H-DNA,
Z-DNA, A-DNA, i-motifs, R-loops, Hairpins, Cruci-
form, slipped-strand DNA, etc.) to the double helix
(B-DNA) [81, 82]. Therefore, the impact of tau pathology
on the dynamics of secondary DNA structures other than
G4s should also be considered in future.

Targeting alternative DNA structures such as G4 has
been proposed as promising therapeutic strategies in can-
cer [11, 83, 84] and has recently emerged in the brain

(A)

(B)

F I GURE 7 (A) Schematic
summary of G4 DNA distribution
combined to nuclear and nucleolar
morphology in hippocampal CA1
neurons from 6 to 12 m Tau22,
and WT littermate mice.
(B) Hypothetical pathway leading
to cytoplasmic G4 DNA accrual in
neurons.
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[85, 86]. Given our results and the deleterious conse-
quences that the disruption of G4 DNA dynamics may
have on cell functionality, the relevance of G4 DNA-
targeting therapeutics to restrain the impact of tau
pathology in neurons is worth considering.

4.3 | Impact of tau pathology on the
morphology of nuclei and nucleoli in neurons

Morphological alterations of neuronal nuclei and nucle-
oli have been described in aging and neurodegenerative
diseases including AD [7, 43, 62, 63, 65, 68, 69, 87–99].
In addition pathogenic forms of tau have been associated
to disturbances of cell nuclei [70, 100].

The nucleus and nucleolus are crucial stress sensors in
cells. Numerous stress can affect their shape and size, and
generate a wide range of cell signals [101–103]. Here, we
describe persistent compaction of neuronal nuclei starting
at early stage of tau pathology, and closely associated to
the presence of G4 DNA in the cytoplasm. But the poten-
tial interplay between cytoplasmic location of G4 DNA
and nuclear shrinkage remains to be evaluated in
neurons.

Deformations of the nucleus can favor nuclear enve-
lope rupture leading to uncontrolled leak of nuclear com-
ponents [102, 103]. Notably, nuclear shrinkage might
participate to the alteration or rupture of the nuclear
envelope observed in tauopathy’s models and in AD
brains, and favor the leak of DNA fragments into the
cytoplasm of neurons [62–70] (Figure 7B). On the other
hand the accumulation of G4 DNA in the cytoplasm
may participate to stress induction and contribute to
nuclear shrinkage in neurons, creating a vicious circle
that promotes alteration of G4 DNA dynamics and
nuclear morphology (Figure 7B).

In addition, we noticed opposite changes in the
nucleolar morphology of neurons depending on the
stage of tau pathology. We have associated nucleolar
enlargement and then shrinkage to precocious and late
stages of the pathology respectively. Remarkably these
results recapitulate different alterations of the nucleolus
size reported in neurons from AD brains, first hypertro-
phic nucleoli in asymptomatic AD with mild cognitive
impairment and then reduced nucleolus size at late
stages (Braak IV–VI) of the pathology [87–89, 91–
93, 97]. Notably, Mann et al. described smaller nucleoli
in tangle-bearing neurons [87]. Thus, our results suggest
that contrary morphological changes of neuronal nucle-
oli observed in AD brains are connected to specific steps
of tau pathology.

In AD brains, neurons developing tau pathology take
an average of 20 years to die despite increasing dysfunc-
tion [104]. This implies that robust prosurvival mecha-
nisms are in place to prevent cell death during all this
time [39, 42, 44]. Strikingly, changes in the morphology
of nucleolus have been associated with stress response

and cell survival in neurodegenerative disease including
AD [96, 97].

Nucleolar expansion is an energy-consuming mecha-
nism which quickly occurs in response to various stress in
neurons, to mediate compensatory nucleolar activity and
preserve neuronal viability [43, 105]. We previously
reported that CA1 neurons from 6 m Tau22 mice develop
transient pro-survival nuclear and mitochondrial mecha-
nisms in response to stress, and display no overt cytotox-
icity [39]. Therefore nucleolar hypertrophy appears to be
an additional response to stress in neurons, to promote
cell survival at precocious stage of tau pathology.

In addition, nucleolar compaction was also associated
with cell survival and longevity in C. elegans [106]. The
reduction in nucleolus size reflects a shutdown of
the activity of nucleoli in response to sustained deleteri-
ous conditions to preserve cell viability in the long term.
Consequently, nucleolar shrinkage that we observed in
12 m Tau22 mice may contribute to the survival of highly
dysfunctional neurons bearing tau aggregates at late
stage of tau pathology.

Altogether our results suggest that neurons activate
different prosurvival programs to promote neuroprotec-
tion through adaptation of their nucleolar morphology in
response to various stresses along the progression of tau
pathology from precocious to late stages.

4.4 | Conclusion

Although highly studied in the context of cancer, the role
of alternative DNA structures in neurodegenerative dis-
eases is still in its infancy. Our results pave the way for
the implication of secondary G4 DNA structures in tauo-
pathies including AD. In addition this study highlights
complex impacts of tau pathology on the mechanobiol-
ogy of nuclei and nucleoli in neurons.
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