Article Dans Une Revue Computers & Industrial Engineering Année : 2024

Optimal design and evaluation of adaptive EWMA monitoring schemes for Inverse Maxwell distribution

A. Saghir
  • Fonction : Auteur
X. L. Hu
  • Fonction : Auteur
Z. Song
  • Fonction : Auteur

Résumé

Monitoring schemes have been successfully implemented when the underlying data follows a non-normal distribution like the Inverse Maxwell (IM) distribution. The article proposes a new adaptive exponentially weighted moving average (AEWMA) scheme, namely the AIMEWMA, to monitor the IM distributed process. The design parameters of the AIMEWMA scheme are determined via a Markov chain model and its performance is analyzed by its run length (RL) characteristics. The overall model ability is examined using some popular performance tools. The results show that, for most of shifts, the AIMEWMA scheme is more efficient than other available competitors. Moreover, some guidelines regarding the selection of the most effective scheme in practice have been discussed. The applicability of the new scheme is also presented on a real data set.
Fichier non déposé

Dates et versions

hal-04708136 , version 1 (24-09-2024)

Identifiants

Citer

A. Saghir, X. L. Hu, Kim-Phuc Tran, Z. Song. Optimal design and evaluation of adaptive EWMA monitoring schemes for Inverse Maxwell distribution. Computers & Industrial Engineering, 2024, Computers & Industrial Engineering, 181, ⟨10.1016/j.cie.2023.109290⟩. ⟨hal-04708136⟩

Collections

UNIV-LILLE
9 Consultations
0 Téléchargements

Altmetric

Partager

More