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BACKGROUND & AIMS: Fatty liver disease (FLD) is a growing
epidemic that is expected to be the leading cause of end-stage
liver disease within the next decade. Both environmental and
genetic factors contribute to the susceptibility of FLD. Several
genetic variants contributing to FLD have been identified in
exome-wide association studies. However, there is still a
missing hereditability indicating that other genetic variants are
yet to be discovered.METHODS: To find genes involved in FLD,
we first examined the association of missense and nonsense
variants with alanine aminotransferase at an exome-wide level
in 425,671 participants from the UK Biobank. We then vali-
dated genetic variants with liver fat content in 8930 partici-
pants in whom liver fat measurement was available, and
replicated 2 genetic variants in 3 independent cohorts
comprising 2621 individuals with available liver biopsy.
RESULTS: We identified 190 genetic variants independently
associated with alanine aminotransferase after correcting for
multiple testing with Bonferroni method. The majority of these
variants were not previously associated with this trait. Among
those associated, there was a striking enrichment of genetic
variants influencing lipid metabolism. We identified the vari-
ants rs2792751 in GPAM/GPAT1, the gene encoding glycerol-3-
phosphate acyltransferase, mitochondrial, and rs429358 in
APOE, the gene encoding apolipoprotein E, as robustly associ-
ated with liver fat content and liver disease after adjusting for
multiple testing. Both genes affect lipid metabolism in the liver.
CONCLUSIONS: We identified 2 novel genetic variants in GPAM
and APOE that are robustly associated with steatosis and liver
damage. These findings may help to better elucidate the genetic
susceptibility to FLD onset and progression.
Keywords: Nonalcoholic Fatty Liver Disease; NAFLD; Trans-
aminase; Metabolic Associated Fatty Liver Disease; MAFLD.

atty liver disease (FLD) is a growing epidemic and it
Fis estimated to become the leading cause of end-
stage liver disease within the next 10 years.1 Although
environmental factors are known to play a role, heritability
accounts for a large fraction of inter-individual variability in
hepatic fat content and FLD susceptibility.2

Previous exome-wide, genome-wide, and candidate gene
association studies have identified genetic variants in
PNPLA3, TM6SF2, GCKR, MBOAT7 as genetic determinants of
FLD.3–7 A successful strategy in some of these studies was to
restrict the analysis to the coding sequence of the genome.
By examining only nonsense and missense variations, the
number of variants tested is markedly reduced, thereby
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Fatty liver disease (FLD) is becoming the leading cause of
end-stage liver disease. Although several genetic variants
contributing to FLD have been identified, there is still a
missing hereditability.

NEW FINDINGS

We identified 190 genetic variants independently
associated with ALT at an exome-wide level, and further
identified GPAM rs2792751 and APOE rs429358 to be
robustly associated with liver fat content and liver
disease in the UK Biobank and validation cohorts. Our
data demonstrate a tight relationship between liver
damage and lipid biology.

LIMITATIONS

Smaller sample size of participants with PDFF data
compared to those with ALT in the UK Biobank may
hinder the detection of more genetic variants associated
with FLD.

IMPACT

Our results may help to better elucidate the genetic
susceptibility to FLD and the molecular mechanisms
underlying the disease onset and progression.
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maximizing the odds to find novel genetic determinants of
traits. Indeed, an exome-wide study starting from examining
alanine aminotransferase (ALT), commonly associated with
liver fat, and aspartate aminotransferase, more closely
related to liver damage, led to the discovery of a gene that
contributes to protection against FLD, namely HSD17B13.8

Consistently, a genome-wide association study (GWAS) of
cirrhosis has also identified a protective variant in MARC1
associated with lower ALT and liver fat.9 However, there is
still a missing hereditability indicating that other genetic
variants remain to be discovered.2

The hallmark of FLD is the accumulation of neutral fat in
hepatocytes, which is associated with a spectrum of liver
damage ranging from uncomplicated steatosis to inflam-
mation, ballooning, and fibrosis. Strikingly, among the
currently known common genetic determinants of FLD, the
vast majority are in genes involved in hepatic lipid
handling.10 PNPLA3 is involved in lipid droplet remodel-
ing.3,10 TM6SF2 in hepatic lipid export,4,11 and GCKR5 and
MBOAT76,12,13 increase triglyceride synthesis through ca-
nonical and noncanonical pathways of de novo lipogenesis,
respectively. There is also evidence that rare variants
contributing to severe FLD are involved in hepatic lipid
export.14 Mendelian randomization studies also provided
evidence that quantitative and qualitative alterations in liver
fat content are per se deleterious causing inflammation and
fibrosis, although the underlying mechanisms are still not
known.10,15

In this study, we aimed to identify new genetic de-
terminants of FLD. We started by examining the association
between all common missense and nonsense variations and
ALT in 425,671 participants of the UK Biobank cohort. We
then validated our results by examining 8930 individuals
from this study for whom liver fat content measurement
was available, and in 3 independent European cohorts
comprising a total of 2621 individuals, for whom histologic
evaluation of liver damage was available.

Material and Methods
UK Biobank

The UK Biobank is a large-scale national cohort study of
approximately 500,000 participants aged between 40 and 69
years who visited 22 assessment centers throughout the UK
between 2006 and 2010, with comprehensive baseline
assessment and collection of genetic data. The UK Biobank
received ethical approval from the National Research Ethics
Service Committee North West Multi-Centre Haydock (refer-
ence 16/NW/0274).16 Data used in this study were obtained
under application number 37142.

Here, we used the European subset of UK Biobank in-
dividuals by adding participants who self-reported as being
“Irish” or “any other White background” (after removal of
outliers based on first 6 genetic principal components) to the
subset of White British ancestry. Next, we excluded individuals
with more than 10 putative third-degree relatives, with a
mismatch between their self-reported and genetically inferred
sex, having putative sex chromosome aneuploidy, who had
withdrawn consent, and were identified by the UK Biobank as
outliers based on heterozygosity and missingness.16–18

Definition of Chronic Liver Disease in the UK
Biobank

We used the International Classification of Diseases, 10th
edition (ICD-10) codes from hospitalization (data field 41270)
and underlying primary and secondary cause of death (data
fields 40001 and 40002) to define chronic liver disease (K70.0,
K70.1, K70.2, K70.3, K70.4, K70.9, K72.1, K72.9, K73.0, K73.1,
K73.2, K73.8, K73.9, K74.0, K74.1, K74.2, K74.6, K76.0, K76.6,
K76.7, K76.8, K76.9, I85.0, I85.9) and cirrhosis (K70.3, K70.4,
K72.1, K72.9, K74.1, K74.2, K74.6, K76.6, K76.7, I85.0, I85.9).
We then excluded individuals with chronic viral hepatitis
diagnosis (ICD-10 codes B18.0, B18.1, B18.2, B18.8, B18.9,
B19.0, B19.9) from the analyses (Supplementary Table 1).

Liver Fat Content Measurement in the UK
Biobank

We used derived magnetic resonance imaging (MRI) liver fat,
as measured by proton density fat fraction (PDFF) (data field
22436), to quantify liver fat content in participants from the UK
Biobank. The details on liver MRI protocols and analyses can be
found elsewhere.19,20 Briefly, individuals were scanned with a
Siemens MAGNETOM Aera 1.5-T MRI scanner using a 6-minute
dual-echo Dixon Vibe protocol, providing a water and fat sepa-
rated volumetric dataset covering neck to knees. A single multi-
echo slice was further acquired to analyze the liver PDFF.

Genotyping and Imputation
UK Biobank. UK Biobank participants were genotyped

using 2 highly similar (>95% overlap) genotyping arrays: UK
BiLEVE (approximately 50,000 individuals) or UK Biobank
Axiom arrays (Affymetrix, approximately 450,000 individuals).
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Following single nucleotide polymorphism (SNP) and sample
quality controls, directly genotyped data were then imputed
centrally by the UK Biobank based on the 1000 Genomes Phase
3, UK 10K haplotype, and Haplotype Reference Consortium
reference panels.21 From approximately 97 million variants, we
further excluded variants with a minor allele frequency (MAF)
<0.01, imputation INFO score <0.8, and Hardy–Weinberg
equilibrium P < 10-10, which resulted in a set of 9,356,431
variants.

Next, variant annotation was performed with snpEff22 and
Variant Effect Predictor,23 and mutations resulting in a pre-
mature stop codon (stop gained), loss of a start (start loss) or
stop codon (stop loss), disruption of canonical splice di-
nucleotides (splice acceptor and splice donor variants), inser-
tion or deletion of a frameshift (frameshift variant), insertion or
deletion causes a frameshift (inframe insertion and deletion),
and codons producing a different amino acid (missense) were
considered for association analyses (final set of 33,926
variants).

French cohort. A total of 1331 individuals from the
biological Atlas of Severe Obesity (ABOS, ClinicalTrials.gov,
Number NCT01129297) were included in the analyses. Briefly,
all individuals were severely obese adults who fulfilled the
criteria for weight loss surgery. More than 90% of this cohort
were of European ancestry. Individuals were excluded if they
had high current alcohol intake (daily alcohol consumption
�20 g/d for women and �30 g/d for men); a history of
excessive drinking for a period longer than 2 years at any time
in the past 20 years; a long-term consumption of hepatotoxic
drugs, positive screening for chronic liver diseases, including
positive testing for hepatitis B surface antigen and hepatitis C
virus antibodies; evidence of genetic hemochromatosis, or were
aged younger than 18 years. Biopsies were managed at Lille
University Hospital Biobank (CRB/CIC1403, brief registration
number: BB0033–00030). Genotyping was performed by using
KASPar chemistry according to manufacturer instructions by
Genoscreen (https://www.genoscreen.fr/en/). All participants
gave written informed consent to participate in the study.

Italian cohort. A total of 466 individuals from the
Gastrointestinal and Liver Unit of the Palermo University Hos-
pital, Palermo, Italy, were included in the study.24 Briefly, in-
dividuals with high alcohol intake (men, >30 g/d; women, >20
g/d), viral and autoimmune hepatitis, or other causes of liver
disease were excluded. The diagnosis of nonalcoholic steato-
hepatitis was based on the presence of steatosis with lobular
necroinflammation and ballooning or fibrosis. The study was
approved by the Ethics Committees of Palermo University
Hospital (Palermo). All participants gave written informed
consent to participate to the study. Participants were geno-
typed for the variants rs2792751 GPAM and rs429358 APOE by
TaqMan SNP Genotyping Assays (ThermoFisher Scientific,
Waltham, MA). All genotypes were performed in duplicate with
100% concordance rate.

Finnish cohort. In this study, 512 individuals from the
Northern Savo Hospital District, Kuopio, Finland,25 and 312
from the Hospital District of Helsinki and Uusimaa, Finland,26

were included. Briefly, individuals with high alcohol intake
(men, >30 g/d; women, >20 g/d), viral and autoimmune
hepatitis, or other causes of liver disease were excluded. The
diagnosis of nonalcoholic steatohepatitis was based on the
presence of steatosis with lobular necroinflammation and
ballooning or fibrosis. The study was approved by the Ethics
Committees of the Northern Savo Hospital District in Kuopio
(Finland) and the ethics committee of the Hospital District of
Helsinki and Uusimaa (Finland). All participants gave written
informed consent to participate to the study. Participants were
genotyped for the rs2792751 GPAM and the rs429358 APOE by
TaqMan SNP Genotyping Assays (ThermoFisher Scientific,
Waltham, MA). All genotypes were performed in duplicate with
100% concordance rate.
Genetic Association Analysis
UK Biobank. The association between imputed variant

dosages, and ALT and PDFF was performed using a linear
mixed-effects model implemented in BOLT-LMM, version
2.3.4.27,28 Similarly, the association analyses for categorical
traits (ie, chronic liver disease and cirrhosis) were performed
by a logistic mixed-effects model implemented in SAIGE to
correct for the relatedness among participants, population
stratification, and the imbalanced case to control ratio.29 For
other continuous traits (ie, glucose, cholesterol, high-density
lipoprotein cholesterol, low-density lipoprotein cholesterol,
and triglycerides), a linear regression analysis was performed.
All continuous traits were rank-based inverse normal trans-
formed before the analysis. Furthermore, all analyses were
carried out under an additive genetic model and adjusted for
age, sex, body mass index (BMI), the first 10 principal compo-
nents of ancestry, and genotyping array.

For sensitivity analyses, genome-wide association analysis
of European individuals was performed in BOLT-LMM using the
full set of imputed common variants (9,356,431), adjusted for
the same above-mentioned covariates. Similarly, PLINK 2 was
used for the corresponding analysis in a subset of unrelated
white British individuals.21

For both SAIGE and BOLT-LMM, a subset of high-quality
and directly genotyped variants was used to estimate genetic
relationship matrix. Variants on long-range linkage disequilib-
rium (LD) and major histocompatibility complex regions or
those with missingness >0.01, MAF <0.01, or Hardy–Weinberg
equilibrium P < 10-15 were excluded. Finally, LD pruning with a
windows size of 500,000 base pairs and pairwise r2 < 0.1
resulted in a set of 146,883 markers.30

To identify independent signals from association analysis,
we performed LD clumping procedure (PLINK parameters:
–clump-p1 1.47e-6 –clump-r2 0.2 –clump-kb 1000, after
excluding individuals with third-degree or closer relatives
based on the pairwise kinship coefficients provided by UK
Biobank),21,30 so those variants with P < 1.47 � 10�6, r2 > 0.2,
and within 1 Mb of the index variant were clumped together. To
further examine the statistically independence of variants
identified by LD clumping, we performed approximate step-
wise model selection in conditional and joint multiple-SNP
analysis implemented in Genome-wide Complex Trait Analysis
(GCTA),31 with an LD window of 1 Mb and using 50,000
randomly selected unrelated European individuals from the UK
Biobank as reference sample for LD structure.

We examined the association of statistically independent
variants with liver related traits using previously reported as-
sociations (P < 1.47 � 10�6) in 3 comprehensive and curated
genome-wide association summary statistics databases: GWAS
Catalog,32 PhenoScanner,33,34 and openGWAS.35

http://ClinicalTrials.gov
https://www.genoscreen.fr/en/
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Replication cohorts. The association between the
GPAM rs2792751 and the APOE rs429358 variants and liver
disease within 3 cohorts (ie, French, Italian, and Finnish) was
evaluated under an additive genetic model by ordinal logistic
regression analysis (severity of liver steatosis, inflammation,
ballooning, and fibrosis) adjusted for age, sex, BMI, recruitment
center (for the Finnish cohort), and number of PNPLA3 I148M
mutant alleles. The liver histologic grading for FLD was
assessed by a local pathologist and by using Kleiner score.36 An
inverse-variance meta-analysis of 3 studies was performed
with fixed and random-effects model (to capture the hetero-
geneity across 3 cohorts) in “meta” package (http://cran.r-
project.org/web/packages/meta/index.html) in R, version
3.6.1.

Gene-Set Enrichment Analysis
The set of genes within exome-wide independently signifi-

cant signals were used to perform gene ontology (biological
processes, http://geneontology.org/), Kyoto Encyclopedia of
Genes and Genomes biological pathways, disease (DisGeNET),
and cell line/tissue (ARCHS4 and GTEx) enrichment analysis
using Enrichr tool.37–42 Nominal and adjusted P values and
combined scores (log P value � z score) were reported.

Assessment of Bias in the Genome-Wide
Analyses

Genomic control (calculated as the ratio between observed
and median c2 statistics, Supplementary Figure 1) showed an
inflation in association analysis results (l ¼ 1.84). We hypoth-
esized that this inflation was due to the selection of genetic
variants that may be more likely to result in functional changes.
Therefore, we repeated the genome-wide analyses by using a
total of 9,356,431 imputed common variants (Supplementary
Figure 2A). Genomic control showed a reduction in the infla-
tion (l ¼ 1.43, Supplementary Figure 2B) that, however, was still
elevated. Because genomic control is not able to differentiate
between confounding bias (eg, population stratification or
cryptic relatedness) and polygenicity, we calculated LD score
regression intercept on this set of total imputed common vari-
ants (n ¼ 9,356,431).43,44 The LD score regression intercept
suggested (1.079; SE ¼ 0.0449) most of the inflation was most
probably due to the polygenicity. To further assess the potential
confounding, we repeated the same analysis in the subset of
unrelated White British individuals from the UK Biobank (linear
regression analysis adjusted for genomic principal components)
and observed a similar finding (LD score regression intercept:
1.050; SE ¼ 0.0356).21 Notably, this was consistent with previ-
ous findings showing the tendency of LD score regression
intercept to increase with sample size and SNP heritability and
we observed similar attenuation ratio between linear mixed-
effect model and principal components adjusted linear regres-
sion analysis (0.07 and 0.064, respectively).28 Moreover, by us-
ing the LD score regression analysis, we estimated the
heritability of ALT in Europeans to be 0.134 (SE ¼ 0.0125).

Linkage Disequilibrium Score Regression
Analysis

We estimated heritability and confounding bias in our
GWAS results with LD score regression analysis (https://
github.com/bulik/ldsc/)43 using the baseline LD model
(version 2.2; https://data.broadinstitute.org/alkesgroup/
LDSCORE/), which contains 97 annotations, including func-
tional annotations and MAF-/LD-dependent architectures.44,45

We excluded variants within the HLA region on chromosome
6 (26–34Mb) and set LDSC parameter chisq-max to an arbi-
trary large number (99999) to keep high-effect associations.
Liver Transcriptomic Analyses
These analyses were conducted in 125 obese individuals

from Milan, Italy, who underwent percutaneous liver biopsy
performed during bariatric surgery at the Fondazione IRCCS Ca’
Granda.46 Briefly, individuals with high alcohol intake (men, >
30 g/d; women 20 g/d), viral and autoimmune hepatitis, or
other causes of liver disease were excluded. Liver biopsy was
performed by needle gauge. Total RNA was isolated using
RNeasy mini-kit (Qiagen, Hulsterweg, Germany). RNA was
sequenced in paired-end Mode (read length 150nt) using the
Illumina HiSeq 4000 (Novogene, Hong Kong, China). Reads
count (ENSEMBL human transcript reference assembly, version
75) was performed using RSEM package.47 Counts were
normalized using DESeq2 package.48 To identify differentially
expressed pathways, pre-ranked gene-set enrichment analysis
was performed on differentially expressed or significantly
correlated genes.49,50
Results
Exome-Wide Association Study on Alanine
Aminotransferase in Europeans from the UK
Biobank

To identify novel genetic predictors associated with FLD,
we first examined the association between 33,926 missense
and nonsense common variants (MAF > 1%) and ALT in
European participants from the UK Biobank cohort after
excluding those with available measurement of liver fat
content by PDFF (Supplementary Table 2). The analyses
were done by using a linear mixed-effects model under an
additive genetic model. Following LD clumping and condi-
tional and joint multiple-SNP analysis, we identified 190
statistically independent variants exceeding Bonferroni
correction threshold (P < 1.47 � 10�6, Figure 1,
Supplementary Figure 1, and Supplementary Table 3).30,31

Genomic control was highly inflated indicating potential
confounding bias (see Methods for more details). However,
LD score regression analyses showed that inflation was
mostly due to polygenicity of the trait rather than popula-
tion stratification or relatedness.
Validation of the Alanine Aminotransferase
Association and Enrichment Analyses

To validate our findings, we examined the association of
the 190 statistically independent variants with liver-related
traits in 3 public GWAS summary statistics databases: GWAS
Catalog,32 PhenoScanner,33,34 and openGWAS.35 We
observed that 36 variants (19%) were associated with
multiple liver-related traits. The majority of the previously

http://cran.r-project.org/web/packages/meta/index.html
http://cran.r-project.org/web/packages/meta/index.html
http://geneontology.org/
https://github.com/bulik/ldsc/
https://github.com/bulik/ldsc/
https://data.broadinstitute.org/alkesgroup/LDSCORE/
https://data.broadinstitute.org/alkesgroup/LDSCORE/


Figure 1.Manhattan plot of exome-wide association study of ALT in 425,671 European participants from the UK Biobank. A
total of 33,926 nonsense and missense variants were used in the analyses. P values were calculated by using a linear mixed-
effects model. Red dashed line represents the exome-wide significance threshold based on Bonferroni correction for multiple
testing. X-axis shows chromosome number.
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reported variants were associated with lipoproteins
(Figure 2 and Supplementary Table 4).

To gain insight into the function of the genetic variants
identified, we performed gene-set enrichment analysis in
multiple genetic, biologic, tissue expression, and gene–
disease association databases (after exclusion of genes in
the major histocompatibility complex region). Interestingly,
gene ontology biological processes showed an enrichment of
processes involved in lipid homeostasis and triglyceride
metabolism (Figure 3 and Supplementary Table 5). Kyoto
Encyclopedias of Genes and Genomes (KEGG) showed an
enrichment of pathways involved in bile secretion and in-
sulin signaling pathways. Moreover, this set of genes was
overrepresented in metabolic liver disease (DisGeNET) and
mostly expressed in liver and hepatocytes (in GTEx and
ARCHS4).
Association of Genetic Variants with Liver Fat
Content in the UK Biobank

To refine the association identified by examining ALT,
we examined the association of the 190 independent genetic
variants in Europeans from the UK Biobank with available
liver fat measurement by MRI-PDFF (n ¼ 8930) by using the
linear mixed-effects model. Among the 190 variants, 8
exceeded the threshold (P ¼ 2.63 � 10�4) after Bonferroni
correction (Supplementary Table 6). Among these, 4 were
already well-known genes associated with FLD, namely
PNPLA3, TM6SF2, MARC1, and MBOAT7(TMC4), and 1 was
an independent genetic variant in TM6SF2 (rs187429064)
that had previously been found to associate with lipopro-
teins and diabetes (Supplementary Table 6). Three novel
genetic variants were identified: rs429358 in APOE (which
encodes apolipoprotein E), rs2792751 in GPAM (glycerol-3-
phosphate acyltransferase, mitochondrial) and rs3128853
in OR12D2 (olfactory receptor family 12 subfamily D
member 2).

Next, we examined the association between these 8 ge-
netic variants and chronic liver disease and cirrhosis. As
expected, genetic variants in PNPLA3,MBOAT7, TM6SF2, and
MARC1 were associated with both traits. Genetic variants in
GPAM (P ¼ .001 and P ¼ .051, respectively, encoding for
p.Val43Ile) and APOE (P ¼ .003 and P ¼ .014, respectively,
encoding for p.Cys112Arg), but not the sequence variant in
OR12D2, were associated with chronic liver disease and
cirrhosis (Supplementary Table 6). GPAM and APOE genetic
variants were also associated with circulating lipoprotein
levels (see Table 1).

Next, we examined the population attributable fraction
(PAF) of the top 6 variants in PNPLA3, TM6SF2, MBOAT7,
MARC1, GPAM, and APOE associated with PDFF for chronic
liver disease and cirrhosis. The total PAF was >20% for
chronic liver disease and >30% for cirrhosis. As expected
the largest PAF was conferred by the PNPLA3 variant.
However, the second largest PAF was conferred by APOE
and MARC1 (Supplementary Table 7).

After excluding carriers of mutations involved in hemo-
chromatosis (n ¼ 13,259), namely 2,835 homozygotes for
C282Y sequence variant (rs1800562) and 10,424 com-
pound heterozygotes C282Y/H63D sequence variants



Figure 2. Chromosomal
ideogram of 190 statistically
independent genetic vari-
ants detected in exome-
wide association study.
Each of the 190 indepen-
dent genetic variants identi-
fied by the exome-wide
genetic association ana-
lyses is shown in its chro-
mosomal location. Genetic
variants previously associ-
ated in publicly available
summary statistics data-
base with liver-related traits
are color-coded as dis-
played in the legend. AST,
aspartate aminotransferase;
GGT, gamma glutamyl-
transferase; NAFLD, nonal-
coholic fatty liver disease.
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(rs1800562/ rs1799945), the association of variants in
PNPLA3, TM6SF2, MBOAT7, MARC1, GPAM, and APOE with
ALT, PDFF, cirrhosis, and chronic liver disease was virtually
identical (data not shown).

Replication of GPAM rs2792751 and APOE
rs429358 Association With Liver Damage in
Independent Liver Biopsy Cohorts

To replicate the genetic association with liver fat con-
tent, we genotyped GPAM rs2792751 and APOE rs429358 in
3 independent cohorts comprising 2621 individuals at risk
for FLD from Europe (466 from Italy, 1331 from France, and
824 from Finland) in whom liver biopsy was available. In
these cohorts, we examined the association with severity of
liver disease by using an ordinal logistic regression analysis
after adjustment for age, sex, BMI, and PNPLA3 rs738409.
The GPAM rs2792751 was associated with higher severity
of liver steatosis in the Italian (P ¼ .017) and French (P ¼
.006) cohorts, but not in the Finnish cohort (Figure 4A).
APOE rs429358 was associated with a lower severity of
liver steatosis in the Finnish cohort (P ¼ .015), was
borderline for the French cohort (P ¼ .052) and was not
significant for the Italian cohort (Figure 4B). No other
consistent associations with liver inflammation, ballooning,
and fibrosis were present for both genetic variants
(Supplementary Table 8). Finally, we performed a meta-
analysis using both fixed- and random-effects models, and
showed that the association with severity of liver steatosis
was present only for GPAM rs2792751 (P ¼ .002 and P ¼
.041 for fixed- and random-effects models, respectively),
while APOE rs429358 conferred protection (P ¼ .002 for
both fixed- and random-effects models) (Figure 4).

Genetic Risk Score in the UK Biobank and
Measurement of Liver Fat Content

Next, we generated an unweighted genetic risk score and
examined liver fat content in the UK Biobank using: all the 6
top variants (GRS1); the top 6 variants except for the vari-
ants in APOE and GPAM (GRS2); and only the GPAM and
APOE variants (GRS3) (Figure 5 and Supplementary
Table 9). GRS1 had the strongest genetic association with
liver fat content (P ¼ 5.72 � 10�84) explaining almost 28%
of this trait variation. As expected, the strength of the as-
sociation and the variation explained was lowest when us-
ing only the APOE and GPAM variants (GRS3).

Liver Transcriptomic Analyses and Functional
Prediction of GPAM rs2792751 and APOE
rs429358

To gain insight into the mechanisms underlying the ge-
netic association of GPAM and APOE with liver disease, we
examined the liver transcriptome from an independent
cohort of 125 obese individuals from Northern Italy from
whom liver biopsy was collected during bariatric surgery46

(Figure 6 and Supplementary Figure 3). Gene enrichment
analyses, comparing GPAM rs2792751 minor allele (T)
carriers with noncarriers, showed an up-regulation of lipid
metabolism, namely oxidative phosphorylation, fatty acid
metabolism, and adipogenesis, and a down-regulation of the
inflammatory response (Figure 6A). The corresponding an-
alyses for APOE rs429358 showed an up-regulation of the
inflammatory response and a reduction in oxidative phos-
phorylation, fatty acid metabolism, and adipogenesis
(Figure 6B).

Next, we examined the hepatic messenger RNA expres-
sion levels of GPAM and APOE stratified by rs2792751 and
rs429358, respectively. No differences in RNA expression of
these genes were found among genotypes (Supplementary
Figure 3). To understand the consequences of the amino
acid substitution at the protein level, we examined a total of
12 prediction tools. In silico predictions showed that the
amino acid substitutions in GPAM and APOE were benign
(Supplementary Table 10).
Discussion
In this study, we identified 2 novel genetic variants in

GPAM and APOE that were robustly associated with liver
damage and steatosis, both in individuals from the general
population-based UK Biobank cohort and in those at risk for
liver disease.

ALT levels are commonly used in clinical practice as a
marker of liver damage and the liver plays a pivotal role in
lipid and lipoprotein metabolism. We started our analyses
by examining the association between ALT and common
nonsense and missense variants in participants of the UK
Biobank cohort. We found 190 genetic variants that inde-
pendently associated with ALT at the exome-wide level. This
number is considerably larger than found in previous
studies that examined variation in the entire genome and
used smaller sample sizes,51 highlighting the advantage of
using an exome-wide approach in large cohorts.

In publicly available databases, only 1 of 5 variants
identified was associated with liver-related traits in GWAS
summary statistics results. Among those already known,
most variants were associated with lipid metabolism and
lipoproteins as, for example, the loss of function sequence
variant in TM6SF2 inducing hepatic lipid retention by
interfering with lipoprotein secretion.4,11 In line with this,
rare variants in the lipoprotein secretion apparatus also are
known to cause FLD progression.14 This demonstrates that
there is a tight relationship between liver damage and li-
poprotein metabolism.

Furthermore, gene-set enrichment analysis showed
that the novel set of genes identified was mostly enriched
in lipid biologic processes. By using a Mendelian
randomization approach with variants associated with
FLD, we showed that quantitative/qualitative alterations
in liver fat content per se are deleterious to the liver.10,15

Results of the present work strongly reinforce the concept
that biology of lipids is tightly related to liver damage. In
our exome-wide analyses, genomic control was highly
inflated, indicating potential confounding bias. However,
LD score regression analyses showed that inflation was
mostly due to polygenicity of the trait, rather than pop-
ulation stratification or relatedness.



Figure 3. Gene-set enrichment analysis of the genes identified by the exome-wide association study. The set of genes within
exome-wide independently significant signals was used to perform gene ontology (biologic processes), Kyoto Encyclopedias
of Genes and Genomes (biologic pathways), disease (DisGeNET), and tissue (ARCHS4) enrichment analysis using Enrichr
tool.37–42 Only the first top 15 terms for each analysis are shown here. Navy blue represents terms statistically significant after
multiple comparison. Cyan represents nominal significant P values.
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To pinpoint the variants with the strongest genetic
impact to liver fat content, we examined the 190 genetic
variants in 8930 participants of the UK Biobank for whom
liver fat measurement was available, and in the overall
cohort against chronic liver disease and cirrhosis. Genetic
variants in GPAM and APOE were consistently associated
with increased liver fat content and remarkably with the
risk of cirrhosis and chronic liver disease. Next, we exam-
ined the PAF of the top 6 variants in PNPLA3, TM6SF2,
MBOAT7, MARC1, GPAM, and APOE associated with PDFF for
chronic liver disease and cirrhosis. The total PAF was >20%
for chronic liver disease and >30% for cirrhosis. As ex-
pected the largest PAF was conferred by the PNPLA3
variant. However, the second largest PAF was conferred by
APOE andMARC1. The reason for this is that these 2 variants
are protective with the major allele representing the risk
allele. Therefore, because PAF is a function of the risk
conferred (odds ratio) and the allele frequency of the risk
allele, despite the odds ratio being lower than other variants
(eg, TM6SF2), the resulting PAF is higher because of the
high frequency of the allele conferring the risk.

We confirmed the association of GPAM rs2792751 and
APOE rs429358 with steatosis severity in a meta-analysis of
3 independent European cohorts of individuals at risk for
liver disease in which liver biopsy was available. The asso-
ciation with liver steatosis severity was not statistically
significant in all the individual replication cohorts for these
2 loci. However, the direction of the association, namely at
risk for GPAM and protective for the APOE was always
conserved, except for the Finnish cohort for GPAM, in which
it was neutral. This suggests that these results may be due
to a lack of power of some individual replication cohorts to
detect the association. We did not observe any association
between GPAM rs2792751 and APOE rs429358 with
severity of liver inflammation, ballooning, and fibrosis,
which again may be due to a lack of power of the study to
detect these associations. Further genetic studies in large
cohorts with liver biopsy available are needed to assess the
effect of these variants on liver inflammation, ballooning,
and fibrosis.

Finally, we generated an unweighted genetic risk score
and examined liver fat content in the UK Biobank using all
(GRS1) or a subset (GRS2 and GRS3) of the 6 top variants.
GRS1 had the strongest genetic association with liver fat
content, explaining almost 28% of this trait variation. When
using only APOE and GPAM (GRS3), the strength of the as-
sociation and the variation explained was lower. Of note, in
GRS3, there was an additive effect on liver fat content of
each of the single alleles of GPAM and APOE, suggesting that
they affect liver fat content through independent pathways.

A recent GWAS examining individuals at risk for FLD
identified a novel genetic variant, the rs62021874, in PYGO1
associated with this disease.7 We did not find any associa-
tion between this variant and ALT, PDFF, chronic liver dis-
ease, and cirrhosis. This could be due to the absence in the
UK Biobank of an interaction between the genetic variant
and adiposity or other risk factors for FLD that may be
required to uncover the association.



Table 1.Characteristics of the UK Biobank Individuals Stratified by GPAM rs2792751 and APOE rs429358

Trait

GPAM rs2792751 APOE rs429358

CC CT TT b/OR P-value TT TC CC b/OR P-value

N 229,741 172,362 32,498 309,463 114,662 10,476

Age, y 57±8 57±8 57±8 -0.002 0.366 57±8 57±8 57±8 -0.014 9.62E-07

Male gender, n (%) 105,541 (46) 79,022 (46) 14,824 (46) 0.997 0.500 141,932 (46) 52,599 (46) 4,856 (46) 1.009 0.157

BMI, kg/m2 27.4±4.8 27.4±4.7 27.3±4.7 -0.009 2.1E-04 27.4±4.8 27.4±4.8 27.1±4.7 -0.024 1.29E-16

ALT, U/La 20.1 (11.8) 20.2 (12.1) 20.4 (12.5) 0.028 2.9E-36 20.3 (12.1) 19.9 (11.5) 19.8 (11.3) -0.033 2.6E-34

PDFF, % 2.3 (3.1) 2.4 (3.1) 2.6 (4.3) 0.083 7.6E-9 2.5 (3.4) 2.2 (2.6) 2.2 (2.3) -0.120 4.8E-11

CLD, n (%) 3,166 (1.38) 2,566 (1.49) 482 (1.48) 1.068 1.3E-3 4534 (1.47) 1,563 (1.36) 117 (1.12) 0.928 2.97E-3

Cirrhosis, n (%) 941 (0.41) 761 (0.44) 144 (0.44) 1.076 0.051 1373 (0.44) 434 (0.38) 39 (0.37) 0.893 0.014

Glucose, mmol/L 5.12±1.21 5.12±1.21 5.12±1.21 -2.59E-06 0.999 5.12±1.22 5.11±1.19 5.1±1.12 0.001 0.703

Cholesterol, mmol/L 5.69±1.14 5.73±1.15 5.75±1.15 0.024 6.1E-23 5.65±1.12 5.84±1.17 5.99±1.2 0.160 <1E-308

HDL cholesterol, mmol/L 1.44±0.38 1.46±0.385 1.47±0.385 0.034 2.1E-54 1.46±0.383 1.43±0.379 1.41±0.376 -0.084 3.66E-217

LDL cholesterol, mmol/L 3.56±0.868 3.58±0.872 3.59±0.871 0.018 5.8E-14 3.51±0.855 3.69±0.889 3.81±0.915 0.190 <1E-308

Triglycerides, mmol/L 1.5 (1.11) 1.49 (1.1) 1.47 (1.09) -0.015 4.7E-11 1.48 (1.09) 1.52 (1.14) 1.56 (1.21) 0.068 1.08E-133

NOTE. Continuous traits are shown as mean and standard deviation or median (interquartile range) as appropriate. Gender is
shown as number and proportion. P-values were calculated by using linear/logistic mixed-effects model (for ALT, PDFF, CLD,
and cirrhosis), or linear or logistic (for sex) regression analysis adjusted for age, sex, BMI, the first 10 principal components of
ancestry, and genotyping array (except for age, sex, and BMI, for which the trait under analysis was excluded from covariates).
Continuous traits were rank-based inverse normal transformed before regression analyses.
ALT, alanine aminotransferase; BMI, body mass index; CLD, chronic liver disease; HDL, high-density lipoprotein; LDL, low-
density lipoprotein; OR, odds ratio; PDFF, proton density fat fraction.
ain a subset of individuals without available PDFF.
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The rs2792751 encodes for a missense (p.Val43Ile)
variation in GPAM. The minor allele of this variant (43Ile)
was associated with higher liver fat content. GPAM encodes
an enzyme that catalyzes the initial step of triglyceride
synthesis by esterification of a fatty acid onto the glycerol
back bone. GPAM is highly expressed in the liver and adi-
pose tissue and it is nutritionally up-regulated by insulin
signaling.52,53 Gpam knockout mice have lower hepatic
Figure 4. Forest plot of association and meta-analysis for (A)
steatosis in 3 replication cohorts: French, Italian, and Finnish.
analysis under an additive genetic model adjusted by age, se
number of PNPLA3 I148M mutant alleles. Pooled effect estimate
random-effects meta-analysis.
triglyceride content,54 whereas liver overexpression of
Gpam in rodents results in higher hepatic triglyceride con-
tent.54,55 Transcriptomic analyses in individuals stratified
by the GPAM rs2792751 minor allele in our study were
consistent with up-regulation of lipid metabolism in the
liver and no differences in GPAM expression were observed
across genotypes. According to this interpretation, the up-
regulation of triglyceride catabolism pathways
GPAM rs2792751 and (B) APOE rs429358 with severity of
The association was tested by an ordinal logistic regression
x, BMI, recruitment center (only for the Finnish cohort), and
s were calculated using inverse-variance–weighted fixed- and



Figure 5. The relationship between PDFF and genetic risk
scores. (A) GRS1: PNPLA3 rs738409, TM6SF2 rs58542926,
MBOAT7 rs641738, MARC1 rs2642438, GPAM rs2792751
and APOE rs429358; (B) GRS2: PNPLA3 rs738409, TM6SF2
rs58542926, MBOAT7 rs641738 and MARC1 rs2642438; (C)
GRS3: GPAM rs2792751 and APOE rs429358. Each genetic
risk score was calculated as the sum of risk alleles. Data are
shown as mean PDFF and SEM for the risk scores indicated.
P values were calculated by a linear regression model
adjusted for adjusted for age, sex, BMI, the first 10 principal
components of ancestry, and genotyping array.
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(peroxisome, fatty acid metabolism, and oxidative phos-
phorylation) observed in the transcriptomic analysis may
possibly represent a protective feedback mechanism to
counteract excess lipid accumulation. Moreover, in silico
analyses were in line with the amino acid substitution being
benign. We therefore speculate that the amino acid substi-
tution induced by rs2792751 leads to an increase in the
hepatic triglyceride content with a compensatory increase in
the triglyceride utilization to counteract the excess in lipid
accumulation. Alternatively, the genetic variant may be in
linkage with other noncoding variants that may affect
expression levels of neighboring genes.

The rs429358 encodes for a missense p.Cys112Arg in
APOE, which defines the APOE4 allele. Our results show
that this variant is associated with lower liver fat content
and it protects against FLD. Transcriptomic analyses found
a down-regulation of the triglyceride metabolism in the
liver that may be adaptive to the reduction of hepatic
triglycerides content in carriers of the variant. Carriers of
the minor allele also had higher circulating triglycerides
and low-density lipoprotein cholesterol. APOE has a major
role in lipid fluxes between tissues during fasting and
refeeding.56 It promotes the clearance of circulating tri-
glycerides and the transfer of lipids into the muscle and
adipose tissue after the action of lipoprotein lipase.57 It
could be speculated that APOE rs429358 impedes the
clearance of circulating lipoproteins and possibly the re-
uptake of lipids in the liver, or by influencing the efflux of
cholesterol in hepatocytes.57 In silico analyses indicated
that this amino acid substitution was benign and there
were no differences in APOE expression levels between
genotypes. Of note, this genetic variant is well known to be
associated with higher risk of Alzheimer’s disease57 and
dyslipidemia.58 A link between liver and neurologic dis-
eases is unknown. However, we previously identified
MBOAT7 as a locus involved in FLD.6 Rare nonsense mu-
tations in homozygosity of this gene result in severe
neurologic development delay.59–61 Functional studies are
needed to understand the mechanisms underlying the link
between liver and brain disease.

The hepatic transcriptome analyses showed a dissocia-
tion between hepatic lipogenesis and inflammation/fibrosis
across both GPAM and APOE genotypes. Moreover, in our
replication cohort, we did not observe any association be-
tween these variants and histologic evidence of liver
inflammation/fibrosis. This may indicate the presence of
pleiotropy of these genetic variants on inflammatory/
fibrosis pathways that can confound the association with the
liver inflammation and fibrosis. Alternatively, the lack of
association between the genetic variants and inflammation/
fibrosis may be due to a low statistical power of these co-
horts to detect an association with these traits. Consistently
with this hypothesis, the association with inflammation and
fibrosis was directionally consistent with the effect on he-
patic steatosis. Further human genetic studies are war-
ranted to confirm that genetic variants in GPAM and APOE
are associated with liver inflammation and fibrosis.

In conclusion, we identified 2 novel genetic variants in
GPAM and APOE associated with liver fat content. Functional
studies are needed to understand the mechanisms under-
lying the genetic associations.
Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2020.12.023.
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Figure 6. Liver transcriptomic enrichment analysis of 125 obese individuals from Milan, Italy. Pathway enrichment analysis in
carriers vs noncarriers for (A) GPAM rs2792751 and (B) APOE rs429358.
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Supplementary Figure 2. a) Manhattan and b) QQ plots for genome-wide association study of ALT in European participants
from the UK Biobank.
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Supplementary Figure 3. Hepatic mRNA expression levels of a) GPAM rs2792751 and b) APOE rs429358 stratified by ge-
notype in 125 obese individuals from Milan, Italy.
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Supplementary Table 1. International Classification of Diseases, 10th Edition, Codes for Chronic Liver Disease and Cirrhosis
in UK Biobank

ICD-10 code Diagnosis

Inclusion critera
K70.0 Alcoholic fatty liver
K70.1 Alcoholic hepatitis
K70.2 Alcoholic fibrosis and sclerosis of liver
K70.3 Alcoholic cirrhosis of liver
K70.4 Alcoholic hepatic failure
K70.9 Alcoholic liver disease, unspecified
K72.1 Chronic hepatic failure
K72.9 Hepatic failure, unspecified
K73.0 Chronic persistent hepatitis, not elsewhere classified
K73.1 Chronic lobular hepatitis, not elsewhere classified
K73.2 Chronic active hepatitis, not elsewhere classified
K73.8 Other chronic hepatitis, not elsewhere classified
K73.9 Chronic hepatitis, unspecified
K74.0 Hepatic fibrosis
K74.1 Hepatic sclerosis
K74.2 Hepatic fibrosis with hepatic sclerosis
K74.6 Other and unspecified cirrhosis of liver
K76.0 Fatty (change of) liver, not elsewhere classified
K76.6 Portal hypertension
K76.7 Hepatorenal syndrome
K76.8 Other specified diseases of liver
K76.9 Liver disease, unspecified
I85.0 Esophageal varices with bleeding
I85.9 Esophageal varices without bleeding

Exclusion criteria
B18.0 Chronic viral hepatitis B with delta-agent
B18.1 Chronic viral hepatitis B without delta-agent
B18.2 Chronic viral hepatitis C
B18.8 Other chronic viral hepatitis
B18.9 Chronic viral hepatitis, unspecified
B19.0 Unspecified viral hepatitis with coma
B19.9 Unspecified viral hepatitis without coma

NOTE. International Classification of Diseases 10th edition (ICD-10) codes from hospitalization, underlying primary and sec-
ondary cause of death (data-fields 41270, 40001 and 40002) were used to define chronic liver disease and cirrhosis. Di-
agnoses in bold were used for the definition of cirrhosis.
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Supplementary Table 2.Characteristics of Participants From
UK Biobank Stratified by the
Presence of Liver Fat Content
Measured by Proton Density Fat
Fraction

Trait Overall No PDFF PDFF

n 434,601 425,671 8930

Age, y 57 ± 8 57 ± 8 56 ± 8

Sex, male, n (%) 199,387 (45.9) 195,106 (45.8) 4281 (47.9)

BMI, kg/m2 27.4 ± 4.76 27.4 ± 4.8 26.7 ± 4.3

ALT, U/L 20.1 (12) 20.2 (11.9) 19.6 (11.6)

PDFF, % 2.4 (3.1) — 2.4 (3.1)

CLD, n (%) 6,214 (1.4) 6,147 (1.4) 67 (0.8)

Cirrhosis, n (%) 1,846 (0.4) 1,831 (0.4) 15 (0.2)

NOTE. Continuous traits are shown as mean ± SD. Second
and third columns represent individuals without and with
available PDFF, respectively.
CLD, chronic liver disease; PDFF, proton density fat fraction.

Supplementary Table 7.Population Attributable Fraction Estimates of Top Genetic Variants Associated With Chronic Liver
Disease and Cirrhosis

SNP Gene OR MAF PAF, % Trait

rs738409 PNPLA3 1.309 0.216 6.26 CLD

rs58542926 TM6SF2 1.319 0.075 2.34 —

rs641738 MBOAT7 1.060 0.440 2.60 —

rs2642438 MARC1 0.926 0.297 5.35 —

rs2792751 GPAM 1.068 0.273 1.82 —

rs429358 APOE 0.928 0.156 6.16 —

Combined PAF — — — 22.26 —

rs738409 PNPLA3 1.563 0.216 10.83 Cirrhosis

rs58542926 TM6SF2 1.496 0.075 3.59 —

rs641738 MBOAT7 1.095 0.440 4.01 —

rs2642438 MARC1 0.914 0.297 6.23 —

rs2792751 GPAM 1.076 0.273 2.02 —

rs429358 APOE 0.893 0.156 9.19 —

Combined PAF — — — 31.15 —

NOTE. PAF was calculated by taking into account the frequency of risk alleles (calculated in all Europeans in UK Biobank) and

ORs (from logistic mixed-effects model) using the following equatione1: PAF ¼ AF ðOR � 1Þ
1 þ AF ðOR � 1Þ

where AF is the frequency of risk allele (major allele for MARC1 rs2642438 and APOE rs429358, and minor allele for the

remaining variants). Combined PAF was also calculated as: PAFcombined ¼ 1 �
Yall SNPs

i ¼ 1

ð1 � PAFiÞ
CLD, chronic liver disease; OR, odds ratio; PAF, population attributable fraction.
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Supplementary Table 8.Association and Meta-Analysis Between GPAM rs2792751 and APOE rs429358 With Severity Of
Inflammation, Ballooning, and Fibrosis in 3 Replication Cohorts: French, Italian, and Finnish

Cohort

GPAM rs2792751 APOE rs429358

TraitOR 95% CI P value OR 95% CI P value

Italian 0.96 0.71–1.29 .786 1.21 0.66–2.23 .540 Inflammation

Finnish 1.02 0.77–1.35 .901 0.75 0.52–1.10 .140 —

French 1.31 1.08–1.58 .005 0.93 0.71–1.21 .596 —

Fixed-effect model 1.15 1.00–1.32 .046 0.90 0.73–1.11 .315 —

Random-effects model 1.12 0.91–1.37 .298 0.90 0.73–1.11 .315 —

Italian 1.41 1.06–1.87 .019 0.67 0.37–1.19 .172 Ballooning

Finnish 1.05 0.74–1.48 .791 0.93 0.60–1.44 .729 —

French 0.95 0.69–1.30 .764 0.88 0.56–1.34 .575 —

Fixed-effect model 1.15 0.96–1.38 .138 0.88 0.56–1.34 .575 —

Random-effects model 1.14 0.89–1.45 .305 0.84 0.64–1.11 .226 —

Italian 1.15 0.89–1.48 .290 1.40 0.83–2.37 .208 Fibrosis

Finnish 1.00 0.79–1.27 .997 0.86 0.63–1.18 .348 —

French 1.12 0.91–1.37 .265 1.03 0.78–1.35 .811 —

Fixed-effect model 1.09 0.96–1.24 .205 1.01 0.84–1.20 .948 —

Random-effects model 1.09 0.96–1.24 .205 1.01 0.82–1.25 .915 —

NOTE.The association was tested by an ordinal logistic regression analysis under an additive genetic model adjusted by age,
sex, BMI, center of recruitment (only for Finnish cohort), and number of PNPLA3 I148M mutant allele. Pooled effect estimates
were calculated using fixed- and random-effects meta-analysis models.
CI, confidence interval; OR, odds ratio.

Supplementary Table 9.The Association Between Genetic
Risk Scores and Proton Density Fat
Fraction in UK Biobank

Genetic risk score b SE P value P valuea R2

GRS-1b .125 .006 9.51E-67 5.72E-84 0.276

GRS-2c .137 .008 1.34E-53 3.03E-69 0.271

GRS-3d .097 .011 2.54E-15 1.64E-17 0.251

NOTE. Unweighted genetic risk scores were calculated by
summing the number of risk alleles. For PNPLA3 rs738409,
TM6SF2 rs58542926, MBOAT7 rs641738, and GPAM
rs2792751 minor allele was considered as the risk allele, while
it was the major allele for MARC1 rs2642438, and APOE
rs429358. P values were calculated using a linear regression
analysis.
aAdjusted for age, sex, BMI, the first 10 principal components
of ancestry, and genotyping array.
bGRS-1: PNPLA3 rs738409, TM6SF2 rs58542926, MBOAT7
rs641738, GPAM rs2792751 MARC1 rs2642438 and APOE
rs429358.
cGRS-2: PNPLA3 rs738409, TM6SF2 rs58542926, MBOAT7
rs641738, and MARC1 rs2642438.
dGRS-3: GPAM rs2792751 and APOE rs429358.
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Supplementary Table 10. In Silico Prediction of the GPAM rs2792751 and APOE rs429358 Effects on Protein Function

Tool

Prediction (raw score)

RangeGPAM rs2792751 APOE rs429358

SIFTe2 Tolerated (1.0) Tolerated (1.0) —

PolyPhene3 Benign (0) Benign (0) —

CADD PHREDe4 1.54 (0.031)a 16.65 (1.64)a –6.46 to 18.30

DANN_scoree5 0.14a 0.22a 0 to 1

FATHMMe6 Tolerated (1.78) Tolerated (–0.24) —

LRTe7 Neutral (0.005) Neutral (0.15) —

MetaLRe8 Tolerated (0) Tolerated (0) —

MetaSVMe8 Tolerated (–0.99) Tolerated (–1.01) —

MutationAssessore9 Neutral (–1.59) Neutral (–1.47) —

MutationTastere10 P (1), harmless P (1), harmless 0 to 1

PROVEANe11 Neutral (0.15) Neutral (4.36) —

REVELe12 0.04a 0.23a 0 to 1

NOTE. All predictions were extracted from dbNSFP database (version 4.1a).e13
aThe larger the score the more likely the SNP has damaging effect.
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