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Simple Summary: Ascidians (Tunicata) are a powerful model for studying the innate immune system.
To better understand the dynamics of immune responses under bacterial challenge in Ciona robusta, we
exposed ascidians to lipopolysaccharide (LPS) injection. Immunohistochemistry analysis on two compo-
nents of the nuclear factor kappa B (NfκB) key signalling pathway, the Toll-like receptor 4 (TLR4) and
NFκB, showed their over-expression on tissue of LPS-injected ascidians. Also, several enzymes related
to immune responses were up-modulated following the LPS challenge. Our study suggests a broad and
complex innate immune activation in the regulation of tunicate inflammatory responses.

Abstract: The close phylogenetic relationship between ascidians (Tunicata) and vertebrates makes them a
powerful model for studying the innate immune system. To better understand the nature and dynamics
of immune responses and the mechanisms through which bacterial infections are detected and translated
into inflammation in Ciona robusta, we applied an approach combining in vivo lipopolysaccharide (LPS)
stimulation, immune-labelling techniques and functional enzymatic analyses. The immunohistochem-
istry showed that Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NFκB) were expressed during
the inflammatory pharynx response 4 h post-LPS, with the formation of nodules in pharynx vessel lumen.
Also, the endothelium vessels were involved in the inflammatory response. Observations of histological
sections from naive and buffer-inoculated ascidians confirmed an immuno-positive response. Enzyme
immune parameters—which included the activity of phenoloxidase, glutathione peroxidase, lysozyme,
alkaline phosphatase and esterase—showed up-modulation 4 h after LPS injection, confirming their
participation during ascidian inflammatory response. These findings provide new insights into the
mechanisms underlying the LPS-induced C. robusta response and suggest that a broad innate immune
mechanism, as in vertebrates, is involved in the regulation of inflammatory responses. Further findings
in this direction are needed to cover knowledge gaps regarding the organized set of molecular and
cellular networks involved in universal immune interactions with pathogens.

Keywords: ascidian; LPS; inflammation; innate immunity; Ciona robusta

1. Introduction

Tunicates (urochordates) are generally considered to be the phylogenetically closest
living relatives of vertebrates [1,2]. These organisms form a heterogeneous group spread
across different marine habitats and have varied lifestyles (colonial or solitary, benthic or
pelagic). Among these, the tunicate Ciona robusta Hoshino & Tokioka, 1967, is a non-colonial
ascidian that lives mainly in clusters fixed in natural and artificial substrates. C. robusta is
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widely considered a powerful model for studying embryological development and innate
immunity, and it possesses a high degree of genetic complexity, with protein homologues
involved in vertebrate immunity being described for this organism in recent decades [3–5].

Like other filter-feeding invertebrates, this species lives in environments full of in-
fectious agents (e.g., viruses, bacteria and fungi) and is characterized by a pharynx that
has respiratory and nutritional functions as well as serving as the main immune organ [4].
C. robusta have developed obligatory relationships with harmful agents from the micro-
biome that can activate defence reactions, and they possess the capacity for self/non-self-
recognition [4]. One of the primary functions of the tunicate innate immune system is to
recognize non-self molecule-specific patterns [4–6] named pathogen-associated molecular
patterns (PAMPs), such as peptidoglycan, lipopolysaccharide (LPS) and mannan compo-
nents of the microbial cell wall or nucleic acids. These PAMPs and others are recognized by
pattern recognition receptors (PRRs), which are proteins including both soluble proteins,
such as lectins, and Toll-like receptors (TLRs) [3–7].

Several TLR genes with “hybrid” functionality have been identified in the genus Ciona [7,8],
reflecting mammalian TLRs, and are generally divided into two subfamilies that mainly recog-
nize related PAMPs: TLR1, TLR2, TLR4 and TLR6 recognize lipids, while TLR3, TLR7, TLR8
and TLR9 recognize nucleic acids [9,10]. The binding of PAMPs to TLRs activates cellular
signalling cascades through myeloid differentiation primary response 88 protein (MyD88),
which in turn binds members of the IL-1R-associated kinase (IRAK) family, thus leading to
the activation of nuclear factor kappa B (NFκB) [11–15]. NFκB proteins, in turn, lead to the
expression of proinflammatory cytokines (e.g., tumour necrosis factor α and interferons) [16–18]
and are stored/sequestered in the cytoplasm by members of the κB family [19–22].

Tunicates utilize phenoloxidase (PO) for melanin biosynthesis like other invertebrates, with
the enzymatic activity participating in inflammatory processes, wound healing, sclerotization,
pigmentation, and defence [4,23–25]. Ascidian haemocytes contain a proenzyme (proPO) which
is activated by PO through the serine protease cascade, which is in turn activated by PRRs after
their binding to PAMPs [23,26–29]. Cytotoxic radicals produced by inflammatory reactions,
such as reactive oxygen species (ROS), can also lead to cell oxidative stress, causing damage to
tissue. Antioxidants, which readily scavenge oxygen radicals, are critical enzymes involved in
functions related to cell immunity and phagocytosis during pathogen infection [30,31]. These
include glutathione peroxidase (GPx), catalase, superoxide dismutase and fluorescent proteins.

Lysozyme (LYS) is a non-specific bacteriolytic enzyme characteristic of several groups
of organisms, ranging from bacteria to animals, both vertebrate and invertebrate [32]. In
C. robusta, it corresponds to the primary and rapid defence against pathogen attacks with
bactericidal hydrolytic activity, which hydrolyses the β-1,4 glycosidic bonds of the bacterial cell
wall, destabilizing the membrane [33–35]. In addition, the activity and kinetic characteristics of
several metabolic enzymes, closely linked to immunity, are essential for maintaining invertebrate
homeostasis following inflammatory activation [36]. Alkaline phosphatase (ALP) and esterase
(EST) are examples of enzymes involved in a wide range of processes involving synthesis and
hydrolysis reactions, as well as in various catabolic pathways in invertebrates [37–39].

Although the gene expressions involved in the immune response in C. robusta are well
known (e.g., TLR, NFκB and PO), much remains to be understood about the wide-ranging
nature and dynamics of immune activities in this ascidian during LPS exposure in vivo. In
the present study, using an in vivo LPS-injection strategy, immuno-labelling techniques on
pharynx tissues and enzyme activity readout, we investigated the response of C. robusta to
LPS challenge. The combined approach provided valuable additional indications about the
involvement of the TLR-NFκB-dependent pathway during the activation of inflammatory
response following LPS injection. Furthermore, the functional activities of PO, GPX, LYS,
ALP and EST enzymes were analysed for the first time in this ascidian species in LPS-
mediated inflammatory response. These new findings indicate that at least the response
circuits considered here, relevant to vertebrate immunity, were already in place in the common
ancestor of the protochordates and vertebrates, broadening current knowledge on immune
interaction evolution with pathogen agents.
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2. Materials and Methods
2.1. Ascidian Collection and Experimental Design

Thirty adult ascidians were collected from Palermo Harbour (Sicily, Italy), maintained
in aquaria with filtered seawater at 18 ◦C and fed with a Coraliquid diet from Sera Heins-
berg, Germany. In the experimental plan, 10 control animals not subjected to injection were
randomly sampled from the tanks, and tissues were fixed or frozen at −30 ◦C until tissue
analyses. Then, 10 randomly chosen organisms were inoculated with LPS of Escherichia coli
or marine solution (MS), and 4 h post injection were immediately fixed or stored at −30 ◦C.
LPS of E. coli (ATCC 25922 strain; Chrisope Technologies, Lake Charles, LA, USA) was
resuspended in MS (12 mM CaCl2·6H2O, 11 mM KCl, 26 mM MgCl2·6H2O, 43 mM TRIS
HCl, 0.4 M NaCl, pH 8.0). LPS (100 µg in 100 µL MS per animal) or MS was inoculated
under the tunic [4,40,41].

2.2. Immunohistochemistry

Before carrying out the immunohistochemical analyses, the antibody specificities against
the selected target proteins in ascidian tissues were determined by checking the alignments
between the deposited sequences of C. robusta (National Center for Biotechnology Information
and UniProt databases) and the relative antibody epitopes (Figure S1; Table S1).

Body wall fragments of ascidians containing a pharynx alone or both a tunic and pharynx
were excised at the injection site. Tissues were fixed in 4% paraformaldehyde in PBS-buffer
solution (NaCl 137 mM, KH2HPO4 10 mM, KH2HPO4 2 mM, KCl 2.7 mM, pH 7.6) at 4 ◦C for
24 h. After dehydration in ethanol, animals were embedded in paraffin (Bio-Optica, Milan,
Italy). Histological sections (7 µm thickness) were cut with a rotary automatic microtome
(Leica Microsystems HM350S, Wetzlar, Germany). Immunohistochemistry assays were carried
out as follows: dewaxed sections were incubated in a blocking buffer (PBS containing 5% BSA
and 1% Tween-20) for 2 h at environmental temperature, and then with the following primary
antibodies diluted in blocking solution (PBS containing 1% BSA and 1% Tween-20): polyclonal
anti-TLR4 produced in rabbit (SAB5700684, Sigma-Aldrich, Darmstadt, Germany) (1:200);
polyclonal anti-NFκB produced in rabbit (SAB4501989, Sigma-Aldrich) (1:200) overnight at
4 ◦C. Thus, ascidian sections were incubated with the secondary antibodies (goat anti-rabbit
IgG-alkaline phosphatase; A3812, Sigma-Aldrich) diluted 1:50 in blocking buffer (PBS con-
taining 1% BSA and 1% Tween-20) for 90 min at environmental temperature. The slides were
washed (washing buffer: PBS containing 1% Tween-20) and stained with the BCIP/NBT chro-
mogen substrate (Sigma-Aldrich). In all experimental control slides, sections were incubated
only with the secondary antibodies. Slides were analysed using a light microscope (Leica
DM750, Leica Biosystems, Milan, Italy), and images were obtained using an ORMA-Eurotek
MDH5 scientific camera (Milan, Italy). The quantification of the immune-positive stained
areas in pharynx vessels (percentage of stained cells) on 6 randomly chosen fields (45,000 µm2)
for each slide was carried out using Image J software (13.0.6).

2.3. Extract Preparation and Protein Concentration

After removing the tunic from the specimens (3–5 cm length), the entire bodies were
homogenized into polycarbonate tubes with 500 µL of MS buffer under ice and then
centrifuged (36,200× g for 20 min at 4 ◦C). The supernatant was collected and the protein
concentration was measured according to the Bradford method [42]. The absorbance
of ascidian samples was read at 595 nm with MS as a blank, and a calibration curve
defined through BSA (bovine serum albumin) was used to protein concentration estimation
(mg/mL). Extract concentrations were adjusted to 0.5 mg/mL.

2.4. Phenoloxidase (PO)

PO assays were carried out spectrophotometrically according to the Winder and Harris
method [43], using L-Dopa (3,4 dihydroxy-L-phenylalanine; Sigma-Aldrich, St. Louis, MO,
USA) as a substrate and MBTH (3-methyl-2 benzothiazolinone hydrazone hydrochloride;
Sigma-Aldrich, USA) as a specific reagent. Briefly, ascidian extract (50 µL) with trypsin
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(50 µL) from bovine pancreas (1 mg/mL; Sigma-Aldrich, USA) or distilled water (50 µL;
experimental control) was incubated for 20 min at 20 ◦C in a reaction mixture (50 µL; 5 mM
L-DOPA and 20.7 mM MBTH in distilled water). The spectrophotometric absorbance of
samples was read within 60 min (5 min intervals) at 505 nm (microplate reader, RAYTO
RT-2100C; Guangming New District, China). Enzymatic activities were calculated as units
(U) per min, where 1 U = 0.001 ∆A540 min−1 mg−1 protein.

2.5. Glutathione Peroxidase (GPx)

GPx assays were carried out according to the Ross method [44]. Ascidian samples
(50 µL) were incubated with TMB (100 µL; 3,3′ 5,5′-tetramethylbenzidine; Sigma-Aldrich,
USA) in 96-well flat-bottomed plates. After 30 min of dark incubation, the reaction was
stopped with sulfuric acid (H2SO4) 2 M. The spectrophotometric absorbance of samples
was read at 450 nm and the enzymatic activities were expressed in U/mg according
to the following equation: U/mg = Abs × Vf/CS (Vf, final volume of the well; CS,
sample concentration).

2.6. Lysozyme (LYS)

LYS assays were carried out following the Parry method [45]. Briefly, ascidian sam-
ples (30 µL) were incubated with a bacterial suspension (270 µL; Micrococcus lysodeikticus
ATCC 4698, Sigma-Aldrich, USA) in triplicate placed in 96-well flat-bottomed plates.
MS buffer (30 µL) was used in the experimental control. The absorbance (450 nm; mi-
croplate reader, RAYTO RT-2100C) was measured at 25 ◦C for 10 min (30 s intervals).
An LYS unit was expressed as the amount of sample causing a decrease in absorbance
of 0.001/min (U min−1), and U/mL was calculated according to the following formula:
U/mL = (∆ abs/min−1 × dilution factor × 1000)/enzyme volume buffer.

2.7. Alkaline Phosphatase (ALP) and Esterase (EST)

For ALP, ascidian extracts were incubated in a 96-well flat-bottomed plate with an
equal volume of 4 mM p-nitrophenyl phosphate substrate (Sigma-Aldrich, USA) liquid in
100 mM ammonium bicarbonate containing 1 mM MgCl2 (pH 7.8); EST assays were carried
out by incubating the same volume of ascidian extract with 0.4 mM p-nitrophenyl myristate
substrate (Sigma-Aldrich, USA) in 100 mM ammonium bicarbonate containing 0.5% of
Triton X-100 (pH 7.8, 30 ◦C; Sigma-Aldrich, USA). The kinetics of both enzymes were
assessed according to the Ross method [44], spectrophotometrically reading the sample
absorbance (microplate reader, RAYTO RT-2100C) for 1 h (5 min intervals) at 405 nm. A unit
(U) of ALP and EST activity was expressed as the amount of enzyme required to release
1 µmol of p-nitrophenol produced in 1 min.

2.8. Statistical Analyses

To test differences among experimental treatments, a one-way analysis of variance
(ANOVA) was performed on the percentage of immune-positive areas and enzymatic
activities. When significant differences were found, a pairwise comparison was used to
explore differences among experimental groups (Tukey post hoc test). All data analy-
ses were performed using GraphPad software (Prism 10). Values were expressed as the
mean ± standard deviation (SD) resulting from three independent experiments. Differ-
ences among groups were considered statistically significant for p < 0.05.

3. Results
3.1. TLR4 and NFκB Immunolocalization

The comparison of pharynx slides revealed that very few cells expressed TLR4 (Figure 1A)
or NFκB (Figure 1B) markers in the control ascidian pharynx vessels, and some positive cells
were observed of MS-inoculated animals (Figure 1C,D). In addition, no positive expression of
the examined proteins was observed in the endothelium of control ascidians. Conversely, 4 h
after inoculation with E. coli LPS, a large number of the vessels were densely populated with
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haemocytes expressing both proteins (Figure 1E,F). Immuno-positive haemocytes formed
numerous large nodules inside the vessel lumen (Figure 1G,H). Positive staining was also
observed in the endothelium, indicating the variable expression of TLR4 and, consistently,
NFκB markers within this tissue (Figure 1G,H). Quantification of the immune-positive cells
(percentage) confirmed significant differences in the staining of both markers; the control and
MS-inoculated ascidians showed from 8.8 to 23.4% of TLR4 stained cells and from 5.0 to 12.4%
of NFκB stained cells, while significantly higher values were recorded for the LPS-inoculated
ascidians compared to the control and MS-inoculated specimens (74.8 and 46.5% of stained
cells for TLR4 and NFκB, respectively) (Figure 2; Table 1). No staining was present when the
primary antibody was omitted or if pre-immune serum was used.
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Figure 1. Representative sections of C. robusta pharynx at 4 h post-LPS inoculation showing immuno-
histochemistry with anti-TLR4 and anti-NFκB antibodies. (A,B) Control ascidians (not injected);
(C,D) sham-injected ascidians inoculated with MS; (E,F) pharynx vessels at 4 h post-LPS inoculation
showing densely populated haemocytes and nodules (nd) marked by the anti-TLR4 and anti-NFκB
antibodies, respectively; (G,H) magnification of marked haemocyte nodules and endothelium (end)
in the vessels. Scale bar 50 µm.
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Figure 2. Quantification of the immune-positive stained areas in pharynx vessels (percentage of
stained cells; mean values ± SD) from slides belonging to experimental treatments. The letters
indicate statistically significant differences (p < 0.05) between experimental groups.

Table 1. Summary of the one-way ANOVAs carried out on marker expression (TLR4 and NFκB)
among experimental treatments on immune-positive stained areas in pharynx vessels (percentage of
stained cells).

Ordinary One-Way
ANOVA F p Value R Square

TLR4 170.00 <0.0001 0.95
NFκB 51.24 <0.0001 0.87

3.2. Enzymatic Response

Overall, the enzymatic activities measured in C. robusta whole-body extracts under-
went a significant increase in ascidians 4 h after LPS inoculation (Figure 3; Table 2). In
detail, PO activity increased in animals belonging to the MS and LPS groups with respect to
controls, and even more so in specimens injected with E. coli (Figure 3). However, multiple
comparison analysis showed significantly higher values only for ascidians injected with
LPS compared to controls and MS-injected organisms (Figure 3; Table 2). The GPx trend
among experimental groups was similar to PO (Figure 3), with significantly higher values
for the LPS-injected animals (Table 2). Regarding LYS, the one-way ANOVA evidenced
significant differences between treatments (Table 2). Overall, activity was higher in the
injected animals than in the control group (Figure 3). The highest LYS activity was detected
in the LPS group. Also in this case, Tukey’s test showed significant differences for ascidians
injected with E. coli. Elevated ALP and EST activity was observed, with values 2-fold
greater than in control and MS-injected animals (Figure 3). Statistical analysis revealed
highly significant differences only for animals challenged with LPS compared to the other
treatments, for both enzymes (Figure 3; Table 2).

Table 2. Summary of the ordinary one-way ANOVAs carried out on enzymatic activities among
experimental groups.

Ordinary One-Way
ANOVA F p Value R Square

PO 15.29 0.0044 0.83
GPx 16.08 0.0039 0.84
LYS 30.52 0.0007 0.91
EST 42.11 <0.0001 0.84
ALP 12.09 0.0028 0.72
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Figure 3. Enzymatic response of phenoloxidase (PO), glutathione peroxidase (GPx), lysozyme (LYS),
alkaline phosphatase (ALP) and esterase (EST) in ascidians at 4 h post-inoculation with E. coli LPS.
The letters indicate statistically significant differences (p < 0.05) between experimental groups.

4. Discussion

This study confirms that the innate immune signalling pathway activated by LPS
in C. robusta is evolutionarily conserved and involves TLR-NFκB activities, in agreement
with previous observations that highlighted the activation of this key immune pathway
against invading pathogens and other potential threats to an ascidian host [6,7]. This is not
surprising, given their key phylogenetic position in chordate evolution, generally consid-
ered a sister group of vertebrates [1,2,46,47]. In our C. robusta model, the NFκB signalling
pathway appears to have been activated in pharynx vessels as a defence response against
the bacterial LPS stimuli through the involvement of TLR receptors. The upregulation
of TLR4 was found at 4 h post-inoculation, when TLR4-producing haemocytes densely
populated the lumen of the pharynx vessels. In addition, numerous nodules were formed in
the vessels by TLR4-producing haemocytes, giving a distinctive inflammatory signature to
the vessels. Consistently, an increase in circulating haemocytes expressing the key immune
protein NFκB was also shown 4 h after LPS challenge, indicating the probable activation of
a TLR-NFκB-dependent pathway.

Nodules in the ascidian vessels were made up of tightly packed cells and were of-
ten connected or closely associated with the internal part of the endothelium. These
haemocytes, containing TLR4 and NFκB transcripts in membranes and nuclei/cytoplasm,
respectively, could be retained as activated cells engaged in inflammatory response in
both the pharynx and haemolymph. The vascular endothelium was also involved in the
response; although no continuous staining was observed in the endothelial tissue, sev-
eral cells expressed the two proteins. Since several cells were shown to be maintained
as proliferating cells, endothelium-associated haematopoietic nodules could develop fol-
lowing LPS stimulation [48–51]. In fact, there is the possibility that nodular stem cells
differentiate into cell lines that circulate in the haemolymph and are recruited to inflamed
sites [5,48]. Our results showed that the pharyngeal tissues of C. robusta can be stimulated
by an LPS response and that they participate in immunity through vascular endothelium
and nodules potentially acting as inflammatory haemocytes. This ascidian LPS-induced
inflammatory response was also supported by the lack of pharynx inflammation observed
in sham-injected animals inoculated with MS.

Overall, C. robusta tissue extracts showed a marked and significant upregulation of
enzymatic activity following LPS injection. PO activity 4 h post-LPS injection was approx-
imately two-fold higher compared to untreated ascidians. After PAMP recognition and
subsequent activation, the PO-cascade hydroxylate monophenol and diphenol substrates
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in melanin polymeric deposits produced highly cytotoxic defences and barriers against
foreign cells or molecules [4,23,24,52]. Comparable PO up-activation has already been
documented in the haemocytes, body wall and tunic extracts of C. robusta model species,
showing its involvement in inflammatory responses following LPS challenge [23,24,52].
Based on their biochemical properties, several POs have been described among ascidian
species, presumably related to various functional roles [4,23]. Although they show cate-
cholate activity, differences in size, trypsin sensitivity, activating substances, and SDS chain
sensitivity have been found between species [4,23]. Additionally, differences within the
same species have been found, for example, in terms of different sizes and trypsin enzyme
sensitivity in granular haemocytes and morula cells [23,29]. Concurrent with the activation
of the cytotoxic PO system, there was corresponding heightened antioxidant activity of
GPx, an enzyme that generally scavenges hydrogen peroxide [53]. The significant values
(greater than four-fold) manifested 4 h post-LPS injection in challenged specimens suggest
this enzyme’s involvement in ascidian inflammatory response. This is consistent with
the induction of oxidative stress conditions during the invertebrate immune response
under LPS stimuli, as a result of the oxidative bursts and as a product of the PO system’s
activity [30,54].

LYS exhibited clear and significant up-regulated activity in C. robusta extracts 4 h post-
LPS challenge, three-fold greater than untreated animals. These findings further corroborate
the involvement of LYS in innate immune defence and in the bacterial intracellular digestion
of this invertebrate that feeds by filtering seawater and which is often exposed to high
concentrations of microorganisms [33]. For example, previous observations from our group
showed that the spatial mRNA expression of g-type lysozymes in adult specimens of
C. robusta was detected mainly in pharynx, stomach and intestine tissues from 1 to 4 h
after LPS injection [33], which is consistent with the hypothesis that LYS is expressed
predominantly in organ tissues exposed to the external environment or in haematopoietic
tissues [55,56]. We also analysed ALP and EST activities 4 h post-LPS challenge. The
results of the assays conducted on C. robusta wall-body extracts suggested a correlation
between the inflammatory response and the modification of these enzymatic parameters.
The involvement of ALP and EST in the innate immune response to LPS had already been
observed in other marine invertebrates, such as nematodes and molluscs [34,35], as well as
being considered among the most interesting markers during regenerative inflammatory
processes [57].

5. Conclusions

In conclusion, our results provide convincing evidence of the involvement of the entire
pharynx in the inflammatory response of C. robusta, manifesting 4 h after LPS challenge,
confirming the stimulation of the TLR-NFκB-dependent pathway against pathogenic agents.
Also, to our knowledge, this is the first study to provide functional indications regarding the
activities of several enzymatic parameters in the innate immune response to LPS injection
in wall-body extracts of ascidian animal models. To fill the knowledge gaps regarding the
hierarchically organized set of molecular, cellular and organismal networks involved in
immune interactions with pathogens and the subsequent evolution of immune responses,
it is essential to implement new studies that use such a broad-based approach.
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