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Abstract
A neural network structure of Long Short Term Memory (LSTM) is proposed which could be used to predict the temperature 
and humidity of other key parts from the temperature and humidity data of some parts of the human body when wearing tight 
sportswear, so as to realize the temperature and humidity data prediction of all key points of the human body. The temperature 
and humidity of different people wearing tights were collected by DHT sensors. The experimental results show that the LSTM 
neural network structure proposed has higher prediction accuracy than other algorithms, and the model evaluates the feasibility of 
temperature and humidity data of tights in a state of motion, which facilitates the study of dynamic thermal and humid comfort and 
reduces the time cost of analyzing the temperature and humidity distribution and changing the law during human movement. It will 
effectively promote the study of temperature and humidity changes when people wear sports tights, provide theoretical reference 
for the study of human skin temperature in the field of sports medicine, and provide practical guidance for the application of human 
skin temperature changes in sports clothing production, diagnosis and prevention of sports injuries.
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1.  Introduction 

Sports tights have attracted much 
attention in recent years, and are no longer 
limited to professional athletes. For the 
research of tight sportswear, function and 
comfort are the main research directions 
of this kind of clothing. At present, the 
research of tight-fitting sports clothing 
focuses on functional research. Just like 
the above-mentioned sports protection 
and improving athletes’ strength, speed 
and endurance, the research of comfort 
is often neglected. However, comfort is 
also of great research significance for 
improving sports performance [1-6], 
that is, tight-fitting sportswear brings 
inappropriate heat and humidity or 
pressure or touch to the human body 
during sports, which is not conducive to 
the wearer’s sports state. For example, 
for endurance sports such as running, 
cycling and marathons, thermal physical 
comfort is particularly important. This 
kind of high metabolic rate sports can 
generate 800-1300W of heat, which 
in turn raises the core temperature of 
the body and eventually leads to the 
increase of the average skin temperature. 
This thermal stress may even cause 

heatstroke. Such an exhausting situation 
not only affects the sports performance 
of the wearer, but also threatens their 
physical and mental health, which can 
easily lead athletes to quit the sport [7-9]. 
With the promotion of sports, the comfort 
of tight-fitting sportswear has attracted 
more and more attention. In recent years, 
scholars [10-19] have gradually analyzed 
the influencing factors of tight-fitting 
clothing comfort. Scholler et al. used 
an infrared camera to measure the skin 
temperature of people wearing cycling 
clothes during riding [20]. Awais et 
al. proposed a process for the thermal 
simulation of sportswear by considering 
the human thermophysiological model 
and important thermal properties of 
fabrics to measure  the core body and 
mean skin temperatures[21]. Fiala et 
al., built the UTCI-Fiala mathematical 
model of human temperature regulation 
to predict the human temperature[22]. 

The existing research on the prediction 
of human clothing temperature and 
humidity information is mostly based 
on a physical model or geometric model 
in mathematics. However, this model 
cannot learn the characteristics of data 

from temperature and humidity data, 
and cannot well represent the correlation 
between heat and humidity data of 
different parts of the human body.

Data collection in motion is a time-
consuming and laborious experiment, 
and the collected data may be unstable or 
inaccurate. In order to solve this problem, 
we imagine that building a model can 
reduce the number of experiments and 
save the collection time. In addition, as 
a whole, there may be some correlation 
between the temperature and humidity 
of human parts. In view of this idea, this 
paper designed a model which only needs 
to collect the data of one or several parts 
to predict the data of other parts.

Because the change of body temperature 
and humidity is a time series when the 
human body is moving, it changes with 
time. In view of this, this paper proposes 
a long-term and short-term memory 
model based on a particle swarm search, 
which is based on the temperature and 
humidity data of different people wearing 
tight clothes. The model is a time series 
data-driven model which can understand 
the relationship between temperature 
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and humidity data of different parts 
of the human body from the data, 
and can characterize the information 
characteristics of the heat and humidity of 
different parts of the human body. From 
the sampled temperature and humidity 
data of different human bodies, we can 
better explore the relationship between 
the heat and humidity information data 
of different parts of the human body, and 
further explore the useful parts of the heat 
and humidity information.

1.1.  Long Short-Term 
Memory neural network 
model

In this paper, the Long Short-Term 
Memory(LSTM) neural network is 
used to establish a time series model of 
temperature and humidity. The LSTM 
neural network prediction model is a time 
recursive neural network which can solve 
the problem of long-term dependence. 
So far, LSTM has been widely used 
in transportation, finance and other 
fields,  but not including clothing. We 
will adopt the LSTM model to predict 
the temperature and humidity data of 
different parts of the human body.

The LSTM cell structure consists of the 
Input Gate, Output Gate, Forget Gate and 
Cell State. At time t, the LSTM structure 
is updated as follows.
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Where, ft, it, ot are the outputs of the 
forgetting gate, input gate and output 
gate at time t; ct and tc

~
are the contents 

stored in the t time memory unit; xt and 
ht are the input vector and the output of 
the hidden layer at time t, respectively; σ 
represents the Sigmoid function; Wf, Uf 
and bf are the weight and deviation of the 
forgetting gate respectively. Wi, Ui and bi 

are the weight and deviation of the input 
door, respectively; Wo, Uo and bo are the 
weights and deviations of the output 
gates, respectively;  and Wc, Uc and bc are 
the weight and deviation of the contents 
stored in the memory unit, respectively.

The gating structure in the neural unit 
structure of the LSTM neural network 
uses the Sigmoid function and tanh 
function. Among them, the
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The main difference between the Sigmoid 
function and tanh function is that the 
value range of the Sigmoid function is 
(0,1), while that of the tanh function is 
(-1,1). Both functions increase with an 
increase in variable x, and finally realize 
the function of the gating structure.

2.  Experiment

2.1.  Experimental instrument

In order to study the thermal and wet 
comfort of sports tights for the human 
body, a DHT22 digital temperature and 
humidity sensor is mainly used in the 
temperature and humidity data acquisition 
module. DHT22 is a temperature and 
humidity composite sensor of low cost 
and long-term stable operation, with 
relative humidity and temperature 
measurement, of quick response, small 
size, low power consumption, high cost 
performance, strong anti-interference 
ability, and with a calibrated digital signal 
output [23-24].

The acquisition device is mainly 
embodied in the hardware design and 
software program design centered on 
Arduino Nano 33 BLE. It processes, 
compares, analyzes and comprehensively 

Tights Fabric 
composition

Fabric 
structure

Weight/
g·m-2

Thickness/
mm

Thread density/
longitudinal fabric 

density/coil number·
(5cm)-1

Thread density/
horizontal fabric 

density/coil 
number·(5cm)-1

T1 70%Polyester, 
26%Nylon, 
4%Spandex

Jersey stitch 230.8 0.66 178.0 93.5

T2 86%Polyester, 
14%Spandex

Warp plain 
stitch

200.6 0.91 100.0 185.0

T3 75%Polyester, 
25%Nylon

Warp plain 
stitch

181.1 0.60 99.0 103.5

T4 91%Polyester, 
9%Spandex

Jersey stitch 153.3 0.94 136.5 88.5

T5 72%Polyester, 
28%Spandex

1×1 rib 
stitch

159.1 0.71 83.0 148.0

T6 65% Polyamide, 
35% Elastane 

Jersey stitch 245.5 0.48 90.5 175.0

T7 81% Polyester, 
19% Elastane 

1×1 rib 
stitch

264.7 0.87 121.5 138.0

Table 1. Fabric parameters of tight sportswear
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judges the real-time data collected by 
the temperature and humidity sensor 
embedded in the tights, then sends and 
receives the data through the Bluetooth 
function, and stores all the data during 
the exercise.

2.2.  Experimental garments

Seven tight sportswear  long-sleeved tops 
were purchased for 3 participants who 
are male, Their age and body size are as 
follows, respectively: age: 25±1, height: 
175.1±2.0cm, weight: 66.3±3.1kg, bust 
girth: 91.6±1.9cm, shoulder width: 
41.1±0.2. Parameters of the tight 
sportswear  are shown in Table 1.

2.3.  Acquisition site

In order to study the thermal and 
humid comfort of the upper body, the 
temperature and humidity of the chest, 
back, waist and abdomen of the upper 
body were measured, as shown in Figure 
1. DHT22 was attached to these four 
parts, and the temperature and humidity 
data of these parts were collected during 
running.

2.4.  Experiments plan

These participants were requested to run 
at a speed of 6km/h on a treadmill for 
30minutes, as shown in Figure 2. The 
experiment was conducted in a room with 
a temperature of (20±2)℃ and relative 
humidity of (60±5)%. All the subjects 
wore the same style tight pants. 

3.  Temperature and 
humidity data analysis

We used SPSS 23.0 to analyze the 
Spearman correlation of the collected data, 
shown in Table 2 and Table 3. From Table 
2 and Table 3, it can be seen that there is 
a high correlation between the humidity 
of the waist, chest, back and abdomen, 
thus for humidity data collection, only 
one part of the data can be used to predict 
the humidity of other parts through the 
LSTM model. However, through the 

analysis of Spearman correlation results, 
it is found that the temperature correlation 
between the abdomen and chest is low, as 
well as that between the back and chest 
is low, while the correlation between 
the abdomen, back and waist is high. 
Therefore, for temperature collection, only 
the temperature of the chest and waist is 
needed. The purpose of this paper is only to 
verify the feasibility of the LSTM model, 

thus it only analyzes the temperature and 
humidity of the waist, and then predicts 
the humidity and temperature of the chest, 
back and abdomen.

4.  Construction of model

In this paper, the LSTM model uses a 
hidden layer to predict the comfort, and 

Fig. 1 Measurement points on human body

 

Fig. 2 Experimental site and data acquisition
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takes the comfort and temperature on 
the waist surface as input variables, and 
the prediction result is the comfort on 
the abdominal surface, the temperature 
on the abdomen surface, the humidity 
on the back surface, the temperature on 
the back surface, the humidity on the 
chest surface, and the temperature on the 
chest surface. The number of neurons in 
the input layer and in the output layer 
is 2 and 6, respectively. The number of 
neurons in the hidden layer represents the 
number of nodes used for memory, which 
is selected as 30. Construct the collected 

temperature and humidity data into a 
training set matrix, as follows:
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where, A-humd means the humidity 
on the abdomen surface. A-temp the 
temperature on the abdomen surface, 

B-humd  the humidity on the back surface, 
B-temp the temperature on the back 
surface, C-humd  the humidity on the 
chest surface, C-temp  the temperature on 
the chest surface, W-humd the humidity 
on the waist surface, and W-temp means 
the temperature on the waist surface.

The specific process is as shown in Figure3.

The artificial neural network library 
Keras in Python is used to model the 
LSTM neural network, the key parts of 
which are introduced below.

Abdomen 
humidity, %

Back 
humidity, %

Chest 
humidity, %

Waist 
humidity, %

Spearman 
Rho

Abdomen 
humidity, %

Correlation 
coefficient

1.000 0.815** 0.822** 0.962**

Significance 
(two-tailed)

. 0.000 0.000 0.000

Back 
humidity, %

Correlation 
coefficient

0.815** 1.000 0.988** 0.813**

Significance 
(two-tailed)

0.000 . 0.000 0.000

Chest 
humidity, %

Correlation 
coefficient

0.822** 0.988** 1.000 0.819**

Significance 
(two-tailed)

0.000 0.000 . 0.000

Waist 
humidity, %

Correlation 
coefficient

0.962** 0.813** 0.819** 1.000

Significance 
(two-tailed)

0.000 0.000 0.000 .

Table 2. Correlation between humidity in different parts

Abdomen 
Temperature, 

℃

Back 
temperature, 

℃

Chest 
temperature, 

℃

Waist 
temperature, 

℃
Spearman 

Rho
Abdomen 

temperature,
℃

Correlation 
coefficient

1.000 0.838** 0.093 0.502**

Significance 
(two-tailed)

. 0.000 0.354 0.000

Back 
temperature,

℃

Correlation 
coefficient

0.838** 1.000 0.084 0.339**

Significance 
(two-tailed)

0.000 . 0.401 0.001

Chest 
temperature,

℃

Correlation 
coefficient

0.093 0.084 1.000 0.350**

Significance 
(two-tailed)

0.354 0.401 . 0.000

Correlation 
coefficient

0.101 0.101 0.101 0.101

Waist 
temperature,

℃

Significance 
(two-tailed)

0.502** 0.339** 0.350** 1.000

Correlation 
coefficient

0.000 0.001 0.000 .

Table 3. Correlation between temperature in different parts
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The Min Max Scaler is used to normalize 
the training data and test data:

scaler = Min Max Scaler() 
train X = scaler.fit_transform(train X) 
train Y = scaler.fit_transform(train Y) 

test X = scaler.transform(test X) 

Use the Input in Keras to establish the 
input layer, LSTM the LSTM layer and 
Dense  the output layer. An LSTM neural 
network model with a structure of 2-30-6 
and a time step of 10 is created by using 
the Model. The activation function is the 
ReLU function, the learning algorithm 
- the Adam algorithm, the loss function 
- the mean square error, and the initial 
learning rate is 0.0001.

input_dim =2 
output_dim = 6 
lstm_units = 64 

timesteps = 10 
Input_layer = Input(shape=(timesteps, 

input_dim)) 
lstm_input = Reshape(target_

shape=(timesteps, lstm_units))(Input_layer) 
lstm_output = LSTM(lstm_units, 
activation=’relu’)(lstm_input) 

Output_layer = Dense(output_dim)
(lstm_output) 

model = Model(inputs= Input_layer, 
outputs= Output_layer) 

Compile the model for training with 
model.compile:

model.compile(optimizer=’adam’, 
loss=’mse’)

Use model.fit to learn the data of the 
training set, with a number of iterations 
of 300: history = model. fit (trainx, trainy, 
epochs = 300).

Use the model.predict to predict the test 
set data:

lstmt = model.predict(test X) 

Inverse normalization is performed on 
the prediction result to obtain the final 
result: 

lstm_predict = scaler.inverse_
transform(lstmt) 

The mean absolute error (MAE), mean 
absolute percentage error (MAPE) and 
root mean square error (RMSE) are 
used to measure the performance of 
the model in predicting temperature 
and humidity. MAE can well reflect the 
error of the predicted value; MAPE is a 
percentage value, indicating the average 
deviation degree of the predicted value 
from the real value; RMSE represents 
the deviation between the predicted value 
and the real value, which is often used 
as an evaluation index for time series 
prediction problems. Their calculation 
formula is as follows.

 

Where, xi and ti represent the predicted 
value and actual value of the i-th sample, 
respectively, and n represents the number 
of samples. The lower the values of these 
three indicators, the higher the prediction 
accuracy and the better the performance 
of the model.

5.  Results and discussion

Take T5 as the test sample, that is, the test 
set, and the amount data of other samples 
as the training set. Figure 4 presents the 
prediction results.

As can be seen from Figure 4, the 
predicted results of the LSTM model for 
temperature and humidity are close to 
the actual values, respectively. In order 
to verify the reliability of this model, 

Fig. 3 Flow chart of LSTM model
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Fig. 4. LSTM model prediction results

Comfort sense Prediction model MAE MAPE RMSE

A-humd BP neural network 7.2682 0.3364 8.2078

RNN 5.6314 0.1876 7.1911

LSTM 4.9695 0.0814 5.6164

A-temp BP neural network 6.3590 0.2838 7.5956

RNN 5.1719 0.1123 6.0645

LSTM 0.7881 0.0266 0.8719

B-humd BP neural network 6.9588 0.3138 7.9893

RNN 6.8672 0.3072 7.9201

LSTM 2.6220 0.0353 3.8243

B-temp BP neural network 3.2595 0.0517 4.4136

RNN 1.9904 0.0301 0.7382

LSTM 0.5424 0.0170 0.6483

C-humd BP neural network 7.2777 0.3414 8.2873

RNN 5.6293 0.1793 6.8152

LSTM 3.3424 0.0520 4.5567

C-temp BP neural network 4.0872 0.0713 5.2473

RNN 2.7166 0.0369 3.9719

LSTM 0.6356 0.0205 0.7686

Note: A-humd means the humidity on the abdomen surface, A-temp the temperature on the abdomen surface, B-humd the humidity on 
the back surface, B-temp the temperature on the back surface, C-humd the humidity on the chest surface, and C-temp the temperature 
on the chest surface.

Table 4. Comparison of error values of prediction results of three neural network models
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the LSTM neural network is compared 
with the recurrent neural network (RNN) 
model and BP neural network model, 
respectively, as shown in Table 4.

It can be seen from Table 4 that the 
average absolute error, average absolute 
percentage error and root mean square 
error of the LSTM neural network model 
are lower than those of the BP neural 
network and RNN model respectively, 
that is, the prediction accuracy of the 
LSTM neural network model is higher 
than these two algorithms. Taking the 
humidity on the abdomen surface as an 
example, the average absolute error, 
average absolute percentage error and 
root mean square error of the LSTM 
neural network model are reduced by 
2.2987, 0.255 and 2.5914, respectively 
compared with the BP neural network. 
Compared with the RNN model, the 
average absolute error, average absolute 
percentage error and root mean square 
error of the LSTM neural network model 
decreased by 0.6619, 0.1062 and 1.5747, 
respectively. Therefore, the LSTM neural 
network prediction model is better than 

the BP neural network model and RNN 
neural network model for the prediction 
effect of temperature and humidity in 
different parts.

6.  Conclusion

In this paper, an intelligent model(LSTM 
neural network structure) is proposed for 
quickly obtaining comfort data in motion. 
When people wear tight sportswear, the 
neural network predicts the temperature 
and humidity of several other key 
parts according to the temperature and 
humidity data of one part of the body. 
In order to verify the reliability of the 
proposed model, it is compared with the 
other two neural network models, and it 
is found that the LSTM neural network 
constructed in this paper has higher 
prediction accuracy, which also shows 
the feasibility of LSTM in predicting 
temperature and humidity. However, 
limited by the number of test samples, 
the accuracy of the model can get better 
prediction results and higher accuracy in 
more sample sizes. In a word, the model 

reduces the experimental cost, facilitates 
the study of dynamic thermal and humid 
comfort to a certain extent, and will 
improve the efficiency of analyzing the 
distribution and variation of temperature 
and humidity during human movement. 
This study will effectively promote 
the study of temperature and humidity 
changes when people wear sports tights, 
provide theoretical reference for the 
study of human skin temperature in the 
field of sports medicine, and provide 
practical guidance for the application 
of human skin temperature changes in 
sports clothing production, diagnosis and 
prevention of sports injuries.
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