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BACKGROUND Ventricular arrhythmia in hypertrophic cardiomyopathy (HCM) relates to adverse structural change and

genetic status. Cardiovascular magnetic resonance (CMR)–guided electrocardiographic imaging (ECGI) noninvasively

maps cardiac structural and electrophysiological (EP) properties.

OBJECTIVES The purpose of this study was to establish whether in subclinical HCM (genotype [G]þ left ventricular

hypertrophy [LVH]�), ECGI detects early EP abnormality, and in overt HCM, whether the EP substrate relates to genetic

status (Gþ/G�LVHþ) and structural phenotype.

METHODS This was a prospective 211-participant CMR-ECGI multicenter study of 70 GþLVH�, 104 LVHþ (51 Gþ/53

G�), and 37 healthy volunteers (HVs). Local activation time (AT), corrected repolarization time, corrected activation-

recovery interval, spatial gradients (GAT/GRTc), and signal fractionation were derived from 1,000 epicardial sites per

participant. Maximal wall thickness and scar burden were derived from CMR. A support vector machine was built to

discriminate GþLVH� from HV and low-risk HCM from those with intermediate/high-risk score or nonsustained ven-

tricular tachycardia.

RESULTS Compared with HV, subclinical HCM showed mean AT prolongation (P ¼ 0.008) even with normal 12-lead

electrocardiograms (ECGs) (P ¼ 0.009), and repolarization was more spatially heterogenous (GRTc: P ¼ 0.005) (23% had

normal ECGs). Corrected activation-recovery interval was prolonged in overt vs subclinical HCM (P < 0.001). Mean AT

was associated with maximal wall thickness; spatial conduction heterogeneity (GAT) and fractionation were associated

with scar (all P < 0.05), and GþLVHþ had more fractionation than G�LVHþ (P ¼ 0.002). The support vector machine

discriminated subclinical HCM from HV (10-fold cross-validation accuracy 80% [95% CI: 73%-85%]) and identified

patients at higher risk of sudden cardiac death (accuracy 82% [95% CI: 78%-86%]).

CONCLUSIONS In the absence of LVH or 12-lead ECG abnormalities, HCM sarcomere gene mutation carriers express an

aberrant EP phenotype detected by ECGI. In overt HCM, abnormalities occur more severely with adverse structural

change and positive genetic status. (J Am Coll Cardiol 2024;83:1042–1055) © 2024 The Authors. Published by Elsevier

on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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AB BR E V I A T I O N S

AND ACRONYM S

DAT = dispersion of activation

time

DRTc = dispersion of

repolarization time corrected

ARIc = activation recovery

interval corrected

AT = activation time

Gþ/� = genotype positive/

negative

GAT = gradient of activation

time
P roarrhythmic substrate in hypertrophic car-
diomyopathy (HCM) is related to adverse car-
diac structural change (hypertrophy, fibrosis,

disarray, small vessel disease), and those with a
sarcomere gene mutation (genotype [G]þ left ventric-
ular hypertrophy [LVH]þ vs G�LVHþ) have a higher
incidence of sudden cardiac death (SCD).1-3 Twelve-
lead electrogram (ECG) abnormalities occur in those
with sarcomeric mutations without hypertrophy
(GþLVH� also known as subclinical HCM) and predict
future LVH.4 Both the origins and mechanisms
underlying ventricular arrhythmia remain poorly
understood.
SEE PAGE 1056
GRTc = gradient of

repolarization time corrected

LGE = late gadolinium

enhancement

LVHþ/� = left ventricular

hypertrophy positive/negative

RTc = repolarization time

corrected

UEG = unipolar electrogram
Abnormalities in ventricular activation and repo-
larization could be the link between structural
changes and SCD.3,5 In this domain, electrocardio-
graphic imaging (ECGI) provides detailed noninvasive
electrophysiological (EP) assessment in intact hearts
under physiological conditions6 and may be more
sensitive to early changes (subclinical disease) than
structural assessment by macroscopic imaging, ie,
cardiovascular magnetic resonance (CMR) alone.
ECGI is a high spatiotemporal resolution method of
computing unipolar epicardial electrograms (UEGs) to
panoramically map ventricular activation and repo-
larization.7 It has been validated ex vivo and in vivo,
provided EP insights into multiple diseases, and
shown potential to guide device and ablation thera-
pies.7-13 Recent advances in this technique include
our development of a fully washable and reuseable
vest that has demonstrated high repeatability and
allows noninvasive performance of ECGI at scale.14

Integration with advanced myocardial tissue charac-
terization is therefore enabled by CMR. This
approach, “CMR-ECGI,” now permits fully coregis-
tered simultaneous interrogation of the myocardial
structure, scar, and EP properties.

We hypothesized that CMR-guided ECGI would
detect the following: 1) subtle EP abnormalities in
subclinical HCM; and 2) EP abnormalities in overt
disease related to genetic status (Gþ vs G�LVHþ) and
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METHODS

Ethical approval was obtained for each study
site from the UK Research Ethics Committee
(IRAS 227168), and all participants provided
informed consent to participate in the study.
An academic collaboration was formed for
large-scale clinical deployment of ECGI tech-
nology (capturECGI Vest [Patent Application
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heart-torso geometry preprocessing14 led by
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Lab, Washington University, St Louis, USA;
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3 tertiary referral sites (Barts Heart Centre, St
George’s University of London, Royal Free London,
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formed according to American College of Medical
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American Heart Association guidelines (unexplained
LVH: MWT >13 mm in any American Heart Associa-
tion segment using either echocardiography or CMR
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else $15 mm).1,16 HCM was diagnosed by an inherited
cardiomyopathy expert in a recruiting site. Overt
HCM patients with intermediate/high SCD risk were
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protocol did not undergo genetic testing or Holter
monitoring. Exclusion criteria were contraindication
to CMR, needle-phobia, inability to consent, known
or clinically suspected coronary artery disease, prior
myectomy/alcohol septal ablation, implantable
cardiac devices, persistent atrial fibrillation, high
ventricular ectopic burden, poorly controlled hyper-
tension (suboptimal control despite 2 antihyperten-
sives) and significant valve disease. No patients were
on cardiac myosin inhibitors. Recent (within
12 months) clinical Holter results and clinical echo-
cardiograms identified participants with non-
sustained ventricular tachycardia ($3 beats of
ventricular tachycardia at $120 beats/min) and LV
outflow tract obstruction (gradient $30 mm Hg under
any condition).
ECGI ACQUISITION AND ANALYSIS. A resting 256-
lead ECG in the recumbent position was recorded
for 5 minutes for signal averaging at a sampling fre-
quency of 2,400 Hz using the fully reuseable, wash-
able capturECGI vest and a high-performance
amplifier system (g.HIamp 256 bundle GT-8016/
USBamp GT-0216; g.tec medical engineering
GmbH).14 The 5-minute body surface recording was
quality controlled using in-house Matlab software
(Mathworks) (Figure 1). Signal averaging enhanced
the signal quality, and low-quality signals were
removed. The vest was replaced with an identically
sized “mirror-vest” using 256 identically positioned
magnetic resonance imaging lucent fiducial markers
for scanning. Heart-torso geometry was obtained by
segmenting an anatomical transaxial stack (see
following text) using Amira-Avizo software (Thermo
Fisher, version 2021.1) for electrode positions and
epicardial meshes. Body surface recordings and
heart-torso geometry underwent the inverse solution
of electrocardiography (defined as the reconstruction
of cardiac electrical activity from given body surface
electrocardiographic measurements) using previously
validated protocols.7 Computed electrodes arising
from valve-plane (nonconducting tissue) were
excluded. A total of 1,000 UEGs (Figure 1) were
computed per heart to obtain activation time (AT)
(the time from the earliest activation in the epicar-
dium to steepest point of the QRS downslope), repo-
larization time corrected for heart rate (RTc) (the
steepest point of the T-wave upslope18), and
activation-recovery interval (ARIc) (the difference of
AT and RTc). Heart rate correction used the Fridericia
formula.19 Dispersions of AT and ARIc (DAT, DARIc)
were measured as the maximum-minimum of AT and
ARIc, respectively, across the entire myocardium.
Spatial gradients (gradient of activation time [GAT],
gradient of repolarization time corrected [GRTc]) were
computed for each epicardial site as the absolute
value of the difference between neighboring sites
(within 15 mm) divided by their distance, averaged
across all neighbors. Signal amplitudes were defined
as the peak to peak (maximum to minimum) of the
QRS complexes. Parameters from all 1,000 electrodes
were averaged per participant and maximal gradients
were also recorded (max: GAT/GRTc). Subclinical HCM
with max/mean GRTc >2 SDs above the mean were
defined as having abnormal spatial repolarization.
Signal fractionation was defined as number of UEGs
with $2 negative deflections within the QRS complex.

CMR ACQUISITION AND ANALYSIS. All scans were
performed at 3-T (Prisma, Siemens Germany) in UCL’s
Bloomsbury Center for Clinical Phenotyping imme-
diately after body surface ECG recordings. Heart-
torso geometry was obtained from a free-breathing
100 thin-slice (4 mm contiguous) Half-Fourier
Acquisition Single-shot Turbo spin Echo imaging
(HASTE) sequence.14 Cine imaging was conventional
with retrospectively gated breath-held balanced
single-shot free precession short- and long-axis
views. These were segmented for cardiac volume
and wall thickness using fully automated AI-based
algorithms shown to exceed human precision.20,21

Free-breathing motion-corrected LGE data were ac-
quired 5 minutes following intravenous contrast
(Dotarem, Guerbet). LGE was quantified using the
5-SD technique and expressed as absolute mass in
grams. Precontrast and postcontrast modified Look-
Locker inversion recovery (MOLLI) T1 with same-
day hematocrit for extracellular volume (ECV) were
acquired and septal ECV was computed.22

DIGITAL 12-LEAD ECG. A 12-lead ECG was acquired at
rest using the Beneheart R3 (Mindray), and recordings
were sent to University of Glasgow Core-Lab for
automated analysis of electrical intervals (PR, QRS,
QTc), QT dispersion, amplitudes, and the presence of
ECG abnormalities.23,24 ECG abnormalities known to
be relevant to disease progression in HCM4,25 were
defined as follows: abnormal Q waves ($2 contiguous
leads and with minimum amplitude 0.3 mV or $25%
of the subsequent R-wave, or duration >40 ms); LVH
criteria defined as Sokolow-Lyon or Cornell criteria
and repolarization abnormalities (T-wave inversion
of $0.1 mV in $2 contiguous leads and/or ST-segment
depression $0.1 mV in $2 contiguous leads); and ECG
fractionation defined as notching within the QRS
complex (including R0, r0, S notching, R notching, or
fragmentation) in 2 contiguous leads.

STATISTICAL ANALYSIS. Statistical analysis was
performed using Matlab (MathWorks, version May 11,
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(Top) A 256-lead electrocardiogram (ECG) is recorded using the fully re-useable capturECGI vest. Themirror vest is positioned tomatch the electrode vest and

the participant wears this during the dark blood (HASTE [Half-Fourier Acquisition Single-shot Turbo spin Echo imaging]) anatomical stack acquisition. Heart-

torso geometry is obtained using segmentation of the epicardium and themarkers on themirror vest using Amira-Avizo software (Thermo Fisher). The inverse

solution is performed according to previously described protocols thereby obtaining 1,000 computed unipolar electrograms. (Bottom Left) Activation time

(AT) is defined by the steepest QRS downslope. Repolarization time (RT) is defined by the steepest part of QRS upslope. Both are referenced to earliest

epicardial activation. Activation recovery interval (ARI) is the difference between RT and AT. Three points (circle, triangle, square) on AT and ARIc maps are

shown and their corresponding AT, RT, ARI are indicated on their computed unipolar electrograms (black arrows show ECGI intervals of the ‘circle’ UEG). RT

(and ARI) are corrected for heart rate. (Bottom right) AT/RT gradients: (DAT/ DRT) between adjacent orange and blue unipolar electrograms (UEGs) are

shown. Gradients are measured as the difference in AT/RT between neighboring electrograms divided by their inter-electrode distance (d).
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2022) and SPSS (IBM SPSS Statistics, version 28). The
distribution of data was examined using histograms,
Shapiro-Wilk tests and QQ plots. Normally distributed
continuous variables were summarized as mean � SD
and compared using independent samples Student’s
t-tests; non-normally distributed variables were pre-
sented as median (Q1-Q3) and compared using Mann-
Whitney U tests. Multiple testing with Bonferroni
was performed on a 3 comparisons per variable basis
(P < 0.05/3). Categorical/binomial variables were
expressed as absolute counts and percentages and
compared using the chi-square/Fisher exact test as
appropriate. Spearman’s correlations were used to
examine simple linear/monotonic relationships
between structural variables, risk markers (non-
sustained ventricular tachycardia [NSVT]/left ven-
tricular outflow tract obstruction [LVOTO]) and ECG/
ECGI parameters. Multiple linear regression models
were used to explore independent between-group
differences by including a priori defined con-
founders as covariates, namely age, sex, LGE vol-
ume, and QRS duration for AT comparisons or QTc
for ARIc comparisons. Additionally, differences in
GþLVH� were adjusted for the presence vs absence
of an abnormal resting 12-lead ECG. Variance infla-
tion factor <3 excluded collinearity. Further details
are provided in the Supplemental Methods. To
discriminate subclinical HCM from health, a super-
vised machine learning approach using a support
vector machine (SVM) classification was built. This
incorporated all 12-ECGI biomarkers and was
applied to the subclinical vs control data set fol-
lowed by a 10-fold cross validation. Confusion
matrices were generated to summarize model per-
formance, and area under the receiver-operator
curves (AUCs) were calculated using R package
(ROCR). A similar SVM and receiver-operator curve
approach explored whether in patients with
overt HCM, those with high/intermediate risk
(from the ESC Risk score) or those with prior NSVT
could be discriminated from low-risk patients
(Supplemental Methods).

RESULTS

A total of 211 participants were prospectively studied:
70 GþLVH� subjects, 104 LVHþ patients (51 GþLVHþ,
53 G�LVHþ), and 37 healthy volunteers (HVs), of
whom 26 were younger and used for age-matched
comparisons with GþLVH�, whereas 23 (with over-
lap) were older and used for age-matched compari-
sons with GþLVHþ (reported in Supplemental
Table 1). A comparison of Drug-Free HCM and
matched healthy volunteers are shown in
Supplemental Table 2. Relationships between LV
morphology and ECGI parameters are shown in
Supplemental Table 3. Likely pathogenic/pathogenic
variants for GþLVH� were present in the following
genes: 41 (59%) MYBPC3, 16 (23%) MYH7, 5 (7%)
TNNI3, 4 (6%) TNNT2, 1 (1%) MYL2, 1 (1%) CSRP3, 1
(1%) ACTC1, 1 (1%) TPM1 and for GþLVHþ: 28 (55%)
MYBPC3, 13 (25%) MYH7, 4 (8%) TNNI3, 4 (8%)
TNNT2, 1 (2%) TNNC1, and 1 (2%) CSRP3.

CLINICAL CHARACTERISTICS. Subcl in ica l HCM
(GDLVHL ) vs HV. Compared with age-matched
HVs, GþLVH� had similar age, sex, ethnicity, and
body surface area (BSA). GþLVH� had similar LV
cavity size and myocardium (MWT, LV mass, ECV,
and LGE) but more hyperdynamic function.
GþLVH� had a stronger family history of SCD.
GDLVHD vs GDLVHL . Compared with GþLVH�,
GþLVHþ had similar BSA but were older, were more
often male and with smaller cavity sizes, had more
abnormal myocardium (higher MWT, LV mass, ECV,
and LGE), and had higher ejection fraction.
GLLVHD vs GDLVHD . Compared with GþLVHþ,
G�LVHþ had similar sex and BSA; were older; had
similar LV cavity sizes, function, and MWT; had
greater LV mass; had lower ECV; and had similar LGE.
There was no difference in LV morphology. GþLVHþ
had a stronger family history of sudden cardiac death
(Table 1).

12-LEAD ECG. Subclinical HCM (GDLVHL) vs HV.
Compared with age-matched HVs, GþLVH� had
shorter QRS intervals but otherwise similar electrical
intervals, QRS amplitudes, and QT dispersion.
GþLVH� had a higher prevalence of ECG
abnormalities (31% [22] vs 8% [2]; P ¼ 0.019, but not
after correction for multiple comparisons).
GDLVHD vs GDLVHL . Compared with GþLVH�,
GþLVHþ had similar heart rates, longer QRS and QTc
intervals, greater QT dispersion, and greater Cornell
amplitude (but similar Sokolow-Lyon). GþLVHþ also
had a higher prevalence of ECG abnormalities
including T-wave inversion (TWI), LVH by either ECG
voltage criteria, ST depression, and fractionation.
GLLVHD vs GDLVHD . Compared with GþLVHþ,
G�LVHþ had longer QTc intervals, higher QRS am-
plitudes and a higher prevalence of LVH by either
ECG voltage criteria. Other 12-lead ECG intervals and
prevalence of ECG abnormalities were similar (QRS
duration was longer in G�LVHþ but not after
correction for multiple comparisons) (Table 1).

ECGI. GDLVHL vs HV. Compared with age-matched
HVs, GþLVH� had slower ventricular conduction
(more prolonged mean AT) (Table 2, Figure 2).
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TABLE 1 Demographics, CMR, and 12-Lead ECG Variables in Younger HVs and HCM Cohorts

Younger HVa

(n ¼ 26)
GþLVH�
(n ¼ 70)

GþLVHþ
(n ¼ 51)

G�LVHþ
(n ¼ 53)

P Value

GþLVH�
vs HV

GþLVHþ
vs GþLVH�

G�LVHþ
vs GþLVHþ

Demographics

Age, y 35 (25-38) 36 (25-41) 52 (37-59) 59 (50-66) 0.85 <0.001 0.005

Female 14 (54) 41 (59) 17 (33) 8 (15) 0.68 0.003 0.09

White 21 (81) 57 (81) 43 (84) 36 (68) 0.94 0.68 0.051

BSA, m2 1.8 � 0.2 1.9 � 0.2 1.9 � 0.2 2.0 � 0.2 0.45 0.21 0.42

BMI, kg/m2 24 (22-27) 25 (22-28) 25 (24-28) 26 (24-28) 0.24 0.65 0.5

Hypertension 0 (0) 4 (6) 9 (18) 19 (36) 0.29 0.029 0.035

Diabetes 0 (0) 0 (0) 2 (4) 0 (0) >0.9 0.17 0.15

On lipid lowering 0 (0) 0 (0) 6 (12) 16 (30) >0.9 0.005 0.021

On antiarrhythmic 0 (0) 3 (4) 21 (41) 25 (47) 0.56 <0.001 0.54

Family history of SCD 0 (0) 12 (17) 13 (25) 5 (9) 0.023 0.28 0.042

Volumes and mass

LVEDV index, mL/m2 89.3 (74-109) 81.4 (70-94) 71.0 (63-80) 77.7 (68-85) 0.07 <0.001 0.087

LVEF, % 65.9 (63-69) 70.9 (66-75) 77.7 (73-83) 78.6 (75-82) 0.001 <0.001 0.79

MWT, mm 9.3 (8-11) 9.8 (9-11) 17.0 (15-21) 17.5 (16-22) 0.24 <0.001 0.24

LV mass index, g/m2 56.1 (47-61) 51.5 (43-62) 77.2 (67-92) 101.6 (82-127) 0.47 <0.001 <0.001

LV morphology

Isolated basal septal LVH — — 23 (45) 29 (55) — — 0.33

Reverse septal curvature — — 22 (43) 15 (28) — — 0.11

Concentric — — 0 (0) 1 (2) — — 0.32

Mixed apical-ASH — — 6 (12) 8 (15) — — 0.62

Tissue characterization

ECV, % 26.9 (24-29) 27.1 (25-30) 29.4 (27-34) 26.8 (25-30) 0.79 <0.001 0.009

LGE present 0 (0) 7 (10) 47 (92) 51 (96) 0.09 <0.001 0.43

LGE mass, gb 0 [0-0] 0 [0-4] 8.4 (3-15) 5.9 (3-14) 0.1 <0.001 0.52

LGE mass %b 0 [0-0] 0 [0-5] 4.9 (2-11) 3.5 (1-7) 0.12 <0.001 0.13

12-lead ECG: measures

HR, beats/min 67 (60-75) 65 (57-76) 66 (56-72) 63 (57-73) 0.52 0.59 0.59

QRS, ms 90 (87-101) 86 (80-94) 96 (86-104) 98 (92-108) 0.005 <0.001 0.029

PR, ms 160 (138-175) 154 (140-170) 165 (147-181) 172 (152-196) 0.58 0.065 0.13

QTc, ms 409 � 19 397 � 22 423 � 29 437 � 25 0.22 <0.001 0.011

QT dispersion, ms 48 (24-62) 43 (20-62) 58 (38-77) 52 (36-68) 0.62 0.006 0.35

Amp-Sokolow, mV 2.0 (1.5-2.2) 2.0 (1.6-2.7) 2.2 (1.8-3.1) 3.0 (2.3-4.5) 0.25 0.17 <0.001

Amp-Cornell, mV 1.2 (0.9-1.5) 1.2 (1.0-1.6) 2.1 (1.3-2.7) 2.7 (1.9-3.1) 0.55 <0.001 0.001

12-lead ECG: qualitative

Abnormal ECG 2 (8) 22 (31) 41 (80) 48 (91) 0.019 <0.001 0.14

Q waves 1 (4) 14 (20) 14 (27) 14 (26) 0.07 0.36 0.91

TWI 0 (0) 5 (7) 34 (67) 40 (75) 0.33 <0.001 0.32

LVH voltage criteria 0 (0) 6 (9) 19 (37) 34 (64) 0.33 <0.001 0.006

ST-segment depression 0 (0) 0 (0) 20 (39) 30 (57) >0.9 <0.001 0.076

RBBB 0 (0) 0 (0) 1 (2) 3 (6) >0.9 0.42 0.62

LBBB 0 (0) 0 (0) 0 (0) 5 (9) >0.9 >0.9 0.06

Fractionation 1 (4) 3 (4) 10 (20) 18 (34) >0.9 0.007 0.1

Values are median (Q1-Q3), n (%), mean � SD. Bold P values are statistically significant. aThe remaining 11 healthy volunteers (HVs) (not shown here) were older to permit
comparisons with the GþLVHþ group. bValues of LGE mass and LGE mass % for Younger HV and GþLVH� are median [range].

Amp ¼ amplitude; ASH ¼ asymmetric septal hypertrophy; BMI ¼ body mass index; BSA ¼ body surface area; ECG ¼ electrocardiogram; ECV ¼ extracellular volume;
HR ¼ heart rate; LBBB ¼ left bundle branch block; LGE ¼ late gadolinium enhancement; LVEDV ¼ left ventricular end-diastolic volume; LVH ¼ left ventricular hypertrophy;
MWT ¼ maximal wall thickness; QTc ¼ corrected QT; RBBB ¼ right bundle branch block; TWI ¼ T-wave inversion.
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Differences persisted after adjusting for age, sex, QRS
duration, LGE volume, and the presence of abnormal
ECG (b ¼ 0.42 [95% CI: 0.2–0.6]; P < 0.001). Compared
with HVs, GþLVH� with a normal 12-lead ECG
(n ¼ 48) also had slower ventricular conduction
(prolonged mean AT [39 ms (Q1-Q3: 35-44 ms) vs
35 ms (Q1-Q3: 31-41 ms)]; P ¼ 0.009). There were no
differences in repolarization duration (mean RTc/
ARIc) or activation/repolarization dispersion (DAT/
DRTc). GþLVH� had more spatially heterogenous



TABLE 2 ECGI Parameters in HV, Subclinical HCM, GþLVHþ, and G�LVHþ

Younger HV
(n ¼ 26)

GþLVH�
(n ¼ 70)

GþLVHþ
(n ¼ 51)

G�LVHþ
(n ¼ 53)

P Value

GþLVH�
vs HV

GþLVHþ
vs GþLVH�

G�LVHþ
vs GþLVHþ

Conduction

Mean amplitude, mV 1.4 (1.1-1.6) 1.4 (1.2-1.7) 1.6 (1.2-1.9) 1.9 (1.4-2.6) 0.4 0.42 0.12

Fractionation (n/1,000) 8 (0-22) 8 (1-20) 13 (2-27) 2 (0-10) 0.99 0.13 0.002

Mean AT, ms 35 (31-41) 39 (35-45) 41 (37-45) 42 (38-47) 0.008 0.23 0.27

DAT, ms 174 (153-196) 177 (154-196) 183 (162-208) 188 (159-205) 0.89 0.25 0.76

Mean GAT, ms/mm 0.42 (0.37-0.47) 0.40 (0.31-0.49) 0.40 (0.35-0.46) 0.44 (0.30-0.56) 0.38 0.82 0.33

Max GAT, ms/mm 4.7 (4.2-6.0) 4.9 (4.2-5.6) 5.1 (4.2-5.8) 5.1 (4.3-6.4) 0.74 0.54 0.27

Repolarization

Mean ARIc, ms 247 � 18 245 � 26 276 � 29 281 � 24 0.78 <0.001 0.29

DARIc, ms 180 (159-197) 181 (161-202) 183 (162-208) 193 (162-213) 0.62 0.62 0.63

Mean RTc, ms 285 (274-297) 283 (273-292) 322 (296-340) 327 (305-345) 0.55 <0.001 0.21

DRTc, ms 160 (145-179) 164 (147-183) 165 (150-178) 170 (149-193) 0.48 0.73 0.47

Mean GRTc, ms/mm 1.0 � 0.2 1.1 � 0.3 1.0 � 0.3 1.0 � 0.3 0.042 0.13 0.79

Max GRTc, ms/mm 9.5 (9.0-11) 11.2 (10-12.9) 11.3 (9.9-12.7) 11.1 (9.3-14.0) 0.005 0.79 0.92

Values are median (Q1-Q3) or mean � SD. Bold P values are statistically significant.

D ¼ dispersion; Amp¼ amplitude; ARIc¼ activation recovery interval corrected; AT ¼ activation time; G ¼ gradient; max ¼maximum; RTc ¼ repolarization time corrected for
heart rate; other abbreviations as in Table 1.
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repolarization (steeper GRTc, occurring in 23% [11 of 48]
of those with normal ECGs) (Figure 3, Table 2) but
similar GAT. There were no differences in signal
amplitudes or fractionation.
GDLVHD vs GDLVHL . Compared with GþLVH�,
GþLVHþ had prolonged ventricular repolarization
(elevated mean ARIc and RTc), and differences
persisted after adjusting for age, sex, LGE volume,
and QTc (ARIc: b ¼ 0.31 [95% CI: 0.2-0.5]; P < 0.001;
RTc: b ¼ 0.28 [95% CI: 0.2-0.5]; P < 0.001). All other
ECGI parameters were similar (Table 2, Figure 2).
Further analyses comparing HVs matched to
GþLVHþ are included in the Supplemental Results.
GLLVHD vs GDLVHD . Compared with G�LVHþ,
GþLVHþ had more signal fractionation (P ¼ 0.002)
(Table 2, Figure 4), and differences persisted after
adjusting for age, sex, LGE volume, and ECG frac-
tionation (b ¼ 0.39 [95% CI: 0.2-0.6]; P < 0.001). All
other global and local ECGI parameters were similar
(Table 2, Figure 2).

ECG VS ECGI. Across all participants, AT was asso-
ciated with QRS duration (rs ¼ 0.26 [95% CI: 0.1-
0.4]; P < 0.001). Mean ARIc and RTc were both
associated with QTc (mean ARIc: rs ¼ 0.73 [95%
CI: 0.7-0.8]; P < 0.001; mean RTc: rs ¼ 0.73 [95%
CI: 0.7-0.8]; P < 0.001) and QT dispersion (ARIc:
rs ¼ 0.16 [95% CI: 0.01-0.30]; P ¼ 0.03; RTc: rs ¼ 0.2
[95% CI: 0.05-0.30]; P ¼ 0.008). DRTc was associ-
ated with QT dispersion (rs ¼ 0.17 [95% CI: 0.01-
0.30]; P ¼ 0.03).

ECG STRUCTURAL RELATIONSHIPS. 12- lead ECG. In
GþLVH�, MWT associated with QRS duration
(rs ¼ 0.42 [95% CI: 0.2-0.6]; P < 0.001), PR interval
(rs ¼ 0.31 [95% CI: 0.06-0.50]; P ¼ 0.012), and Cornell
but not Sokolow-Lyon amplitude (rs ¼ 0.38 [95% CI:
0.1-0.6]; P ¼ 0.002). In overt HCM (all LVHþ), MWT
associated with Cornell amplitude (rs ¼ 0.34 [95% CI:
0.1-0.5]; P < 0.001), presence of an abnormal ECG
(rs ¼ 0.29 [95% CI: 0.1-0.5]; P ¼ 0.019), and TWI
(rs ¼ 0.26 [95% CI: 0.07-0.40]; P ¼ 0.007). Also, LGE
associated with PR interval (rs ¼ 0.26 [95% CI: 0.06-
0.40]; P ¼ 0.009), the presence of an abnormal ECG
(rs ¼ 0.39 [95% CI: 0.2-0.5]; P < 0.001), and TWI
(rs ¼ 0.40 [95% CI: 0.2-0.6]; P < 0.001).

ECGI RELATIONSHIPS TO RISK MARKERS. Maximal
wal l th ickness . MWT associated with signal ampli-
tude in HV (rs ¼ 0.42 [95% CI: 0.3-0.7]; P ¼ 0.032),
GþLVH� (rs ¼ 0.26 [95% CI: 0.02-0.50]; P ¼ 0.028),
and overt HCM (rs ¼ 0.33 [95% CI: 0.1-0.5];
P < 0.001). In GþLVH�, MWT associated with mean
ARIc (rs ¼ 0.24 [95% CI: 0.003-0.50]; P ¼ 0.046) and
RTc (rs ¼ 0.28 [95% CI: 0.04-0.50]; P ¼ 0.019).
In overt HCM, MWT associated with mean
AT (rs ¼ 0.25 [95% CI: 0.05-0.40]; P ¼ 0.011),
DAT (rs ¼ 0.32 [95% CI: 0.1-0.5]; P ¼ 0.001), DARIc
(rs ¼ 0.36 [95% CI: 0.2-0.5]; P < 0.001), and mean
RTc (rs ¼ 0.24 [95% CI: 0.04-0.40]; P ¼ 0.015).
Scar burden. In overt HCM, LGE volume associated
with fractionation (rs ¼ 0.21 [95% CI: 0.01-0.40];
P ¼ 0.032) and local AT gradients (GATmean: rs ¼ 0.27
[95% CI: 0.08-0.40]; P ¼ 0.005).
Left ventr i cular outflow tract obst ruct ion . In
total, 24 (23%) of overt HCM patients had LVOTO. No
ECGI changes were associated with LVOTO.

https://doi.org/10.1016/j.jacc.2024.01.006


FIGURE 2 Exemplar AT and ARIc Maps
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SCD r i sk . To determine the relationship between
ECGI abnormalities and surrogate markers of ven-
tricular arrhythmia and risk in overt HCM, we
describe a subgroup of 19 participants (18% of overt
HCM) who had an intermediate/high SCD risk score or
NSVT. Compared with overt HCM not meeting such
criteria, these patients were similar in age (P ¼ 0.29),
sex (P ¼ 0.74), and ethnicity (White: P ¼ 0.80), but
had a higher MWT (19.6 mm [Q1-Q3: 17-23 mm] vs
17.0 mm [Q1-Q3: 15-21 mm]; P ¼ 0.005), more LGE
(15.1 g [Q1-Q3: 8-28 g] vs 5.5 g [Q1-Q3: 2-13 g];
P < 0.001), and more spatially heterogenous
conduction (GATmax P ¼ 0.007). Other ECGI parame-
ters were similar. After adjustment for MWT and LGE
volume, those with NSVT/intermediate- or high-risk
score continued to exhibit more spatially heteroge-
nous conduction (ß ¼ 0.29 [95% CI: 0.1–0.5];
P ¼ 0.006). An exploratory analysis was performed



FIGURE 3 Repolarization Gradient Maps
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for all those with NSVT (n ¼ 16) showing similar
findings (Supplemental Results).
MACHINE LEARNING CLASSIFICATION OF ECGI HCM

SUBTYPES. The SVM differentiated subclinical HCM
from HV with an AUC of 0.96 (bootstrap 95% CI: 94%-
98%; sensitivity 100% [95% CI: 93%-100%], specificity
91% [95% CI: 76%-98%], positive predictive value
96% [95% CI: 87%-99%], negative predictive value
100% [95% CI: 87%-100%], balanced accuracy 95.7%)
(Supplemental Tables 5 to 7, Supplemental Figure 1)
and an accuracy of 80% after 10-fold cross-validation
(95% CI: 73%-85%). This ECGI biomarker panel
was able to identify HCM patients at greater risk of
SCD (because of prior NSVT or intermediate/high ESC
SCD risk status) compared with low-risk patients,
with an AUC of 0.97 (bootstrap 95% CI: 96%-98%;
sensitivity 94% [95% CI: 71%-99%], specificity 100%
[95% CI: 95%-100%], positive predictive value 100%
[95% CI: 77%-100%], negative predictive value 95%
[95% CI: 93%-99%], and balanced accuracy 97.2%)
(Supplemental Tables 5 to 8) and an accuracy of 82%
after 10-fold cross-validation (95% CI: 78%-86%).

DISCUSSION

This is a prospective multicenter study using CMR-
guided ECGI to simultaneously characterize struc-
tural and EP parameters across the spectrum of
genotyped HCM. The main findings are as follows:
1) EP abnormalities exist in individuals with subclin-
ical HCM, including in those with normal resting
12-lead ECGs; and 2) in overt HCM, EP abnormalities
occur more severely with adverse cardiac
structural features and positive genetic status
(Central Illustration). There is well-described
evidence that such EP abnormalities, consisting of
spatially heterogenous repolarization, slowed
discontinuous ventricular conduction, and signal

https://doi.org/10.1016/j.jacc.2024.01.006
https://doi.org/10.1016/j.jacc.2024.01.006
https://doi.org/10.1016/j.jacc.2024.01.006
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FIGURE 4 Exemplar Fractionation Maps in HCM
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fractionation, are proarrhythmic,10,11,26,27 thus
potentially affecting patient-specific risks for SCD in
HCM. This is the largest clinical ECGI study ever
performed and the only one to date to have studied
subclinical HCM.

As novel HCM therapies show promise in disease
modification with some suggestion that early
expression of sarcomeric gene variants are poten-
tially reversible,28,29 the discovery of sensitive bio-
markers for early disease is an emerging priority.
Structural changes adopted in modern-day HCM risk
stratification (LA dilation, severe LVH, LVOTO, high
LGE burden) tend to occur late. Furthermore, NSVT
is the only EP characteristic considered in current
risk stratification algorithms but has the highest
predictive value for SCD; it is, however, uncommon
in early disease and is a dichotomous risk marker.17

Here we show quantifiable EP abnormalities occur-
ring in the absence of standard 12-lead ECG changes
or measurable hypertrophy or fibrosis. Although
cascade genetic screening allows the identification
of a larger number of individuals at risk, HCM is
characterized by variable penetrance and disease
expression so detecting phenotype development is a
priority. Due to the complexity of a 12-biomarker
ECGI panel, a machine learning approach was used
for discrimination between patient groups. This
showed the potential of ECGI to discriminate
subclinical HCM from healthy individuals and
identify patients with HCM at higher risk of SCD.
Future work will need to externally validate these
discovered ECGI biomarker panels to understand
their real-world diagnostic and prognostic potential.

Notably, EP abnormalities occurring in GþLVH�
and GþLVHþ differed, likely reflecting disease
heterogeneity and different phenotypic stages of dis-
ease. Longitudinal studies relating EP abnormalities
to events are now possible using this more sustain-
able, time and cost-effective, and reuseable ECGI
methodology. This may lay the foundation for ECGI-
based risk stratification and provide support for de-
cisions surrounding exercise prescription.

Ventricular conduction was slower in GþLVH�
compared with HVs (increased AT) despite the
absence of CMR markers of fibrosis and LVH (scar,
ECV and MWT were similar to health). Importantly
this occurred in a cohort predominantly without
bundle branch block (2% in GþLVHþ, none in
GþLVH�). Furthermore, slowed ventricular conduc-
tion is missed by the 12-lead ECG occurring in both
GþLVH� with normal and abnormal 12-lead ECG. In
overt disease, ventricular conduction was not glob-
ally slower compared with matched HV (similar AT)
but more regionally slowed (resulting in increased
DAT) (Supplemental Results). This finding is consis-
tent with invasive endocardial mapping findings in

https://doi.org/10.1016/j.jacc.2024.01.006


CENTRAL ILLUSTRATION Electrophysiological Abnormalities in Hypertrophic Cardiomyopathy and Their
Relationship to Risk Markers
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Subclinical hypertrophic cardiomyopathy (HCM) individuals with pathogenic (P)/likely pathogenic (LP) sarcomeric variants are characterized by slowed ventricular

conduction, even in the presence of a normal electrocardiogram (ECG), and spatially heterogenous repolarization. In overt HCM, conduction is regionally slowed and

repolarization is prolonged and spatially heterogenous. In overt HCM, electrophysiological abnormalities relate to conventional risk markers: fractionation was worse in

those with a sarcomeric mutation (GþLVHþ) and more extensive scar, and spatially heterogenous conduction was related to scar extent and the presence of

nonsustained ventricular tachycardia. Severity of left ventricular hypertrophy (LVH) associated with regionally slowed conduction and prolonged repolarization.
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overt HCM which showed lateral LV activation before
the septum, longer action potential durations, pro-
longed stimulus-to-V times and reduced action po-
tential upstroke velocity on patch-clamp tests of HCM
myocardium.5,30 Mechanisms of ventricular conduc-
tion slowing in HCM are likely to include decreased
electrical coupling, discontinuous propagation, and
reduced conduction velocity. Our discovery that
these occur in the absence of hypertrophy and fibrosis
in subclinical HCM challenges the LVH-centric view
of EP abnormalities and raises the possibility that
electrical changes may be more closely related to
myocyte disarray, ischemia, or electromechanical
factors than actual LVH.28,31 However, a compound-
ing effect of LVH is observed in overt disease, as
demonstrated by the association of MWT and both
activation time and dispersion. Slowed discontinuous
ventricular conduction and local conduction distur-
bances are a well-known proarrhythmic prerequisite
for ventricular arrhythmia initiation.10,11 Our findings
provide a possible reason behind the increased inci-
dence of ventricular arrhythmia observed with
greater degrees of LVH.1,17,32 Slower ventricular con-
duction has been detected by ECGI in other disease
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states with primary structural substrate changes
including arrhythmogenic cardiomyopathy (AC) and
cardiac amyloidosis, and overlying the right ventric-
ular outflow tract epicardium in Brugada syndrome
(although this is primarily a channelopathy, epicar-
dial focal fibrosis has also been observed on au-
topsy).8-10 Furthermore, in aborted SCD survivors and
Brugada syndrome, ECGI has demonstrated greater
conduction heterogeneity postexercise, further
demonstrating its ability to detect abnormal pro-
arrhythmic rate adaptation.33

Repolarization in subclinical HCM was more
spatially heterogenous (steeper repolarization gradi-
ents) when detected by ECGI, but globally, repolari-
zation was largely normal on ECG (normal QTc, low
prevalence of TWI/no ST-segment depression). Re-
lationships between early LVH and prolonged repo-
larization can be observed in subclinical HCM where a
positive relationship existed between MWT and ARIc.
In overt disease where LVH is established, prolonged
repolarization is detected in both ECG (elevated QTc)
and ECGI (ARIc, RTc). In HCM mechanisms of repo-
larization abnormalities are likely related to ionic
remodeling, which can be heterogenous because of
LVH, calcium handling and sensitivity changes,
which can result in action potential prolongation with
early and late afterdepolarization leading to ventric-
ular arrhythmia in structurally remodeled (hypertro-
phy, fibrosis, disarray) and therefore susceptible
myocardium.30,31,34 The exaggerated spatially heter-
ogenous repolarization noted in the absence of hy-
pertrophy could be evidence of cellular and molecular
changes occurring in response to sarcomeric mutation
or prehypertrophic myocardial substrate changes.28,31

Repolarization gradients as seen in subclinical
HCM have been observed in ventricular fibrillation
survivors with structurally normal hearts.27,33

Spatially heterogenous repolarization is known to be
proarrhythmic by supporting the conditions for
asymmetric excitability and propagation of re-entry.
This abnormality has also been demonstrated by
ECGI in multiple arrhythmogenic diseases, including
Brugada, AC, long QT syndrome, and early repolari-
zation, and hypothesized in heart failure.9,10,26,35

Other ECG techniques quantifying repolarization ab-
normality in overt HCM include dynamic QTc changes
on Holter monitoring, prolonged QTc as a predictor of
ICD discharge, and QT dispersion; however, none
have been especially useful in HCM, limited by lack of
spatial information, technical limitations, and bias
toward more advanced disease.36,37 With QTc being
normal in subclinical disease, it is unlikely to afford
benefits as an early disease biomarker.
Scar volume was related to spatial conduction
heterogeneity (activation gradients and fraction-
ation). This demonstrates the ability of ECGI to detect
and quantify preclinical conduction discontinuities
resulting from scar (not detected solely by LGE CMR).
Conduction discontinuities most likely occur because
of islands of viable tissue trapped within fibrotic tis-
sue. Indeed, the fact that myocytes are electrotoni-
cally uncoupled will also serve to exaggerate cellular
repolarization differences and increase repolarization
gradients.38 Spatial conduction heterogeneity also
associated with NSVT and SCD risk score independent
of scar, showing the incremental value of ECGI for
detecting proarrhythmic features. This EP abnormal-
ity has potential for arrhythmia formation3,9,11,38

through asymmetric loading on a propagating wave
front favoring unidirectional block, creating disper-
sion of repolarization and facilitating re-entry. Both
spatial conduction heterogeneity and fractionation
are observed in AC scar, and fractionation is observed
in both infarct and AC scar.9,11

Despite similar MWT and LGE burden and a more
benign 12-lead ECG phenotype, ECGI-detected frac-
tionation was greater in genotype-positive HCM pa-
tients compared with G�LVHþ. Greater fractionation
in GþLVHþ could not be accounted for by bundle
branch block, suggesting a genuinely greater area of
tissue with fractionated electrograms. Exaggerated
spatially heterogenous ventricular conduction is
another plausible contributor to the greater ventric-
ular arrhythmia seen in GþLVHþ HCM compared with
G�LVHþ.2 Unexpectedly, we found more severe 12-
lead ECG abnormalities in G�LVHþ compared with
GþLVHþ HCM (longer QRS duration, longer QTc, and
greater QRS amplitudes). This mirrors data from a
prior study showing G�LVHþ was characterized by
greater lateral T-wave inversion.39 Overall differences
in ECG and ECGI between G� and Gþ HCM could be in
part related to different LV morphologies (greater LV
mass despite similar MWT) and different tissue
characterization (lower ECV) as described by large
registry studies.2,40

STUDY LIMITATIONS. ECGI provides epicardial EP
mapping data only and does not therefore measure
potentially important transmural electrophysiology;
it also misses EP phenomena occurring within the
septum. As expected, participants with subclinical
HCM were 16 years younger than overt disease
counterparts and medication use affects electro-
physiology and may influence results. However, our
sensitivity analyses (Supplemental Results) showed
consistent EP changes even when comparing overt
HCM and drug-free HCM to age-matched HVs.

https://doi.org/10.1016/j.jacc.2024.01.006


PERSPECTIVES

COMPETENCY IN PATIENT CARE AND

PROCEDURAL SKILLS: In patients with HCM, CMR-

guided electrocardiographic mapping can detect

pathogenic sarcomere variants even in the absence of

myocardial hypertrophy or abnormalities on the

standard 12-lead ECG.

TRANSLATIONAL OUTLOOK: Abnormalities

detected by this method could identify patients with

subclinical disease who might benefit from therapeu-

tic intervention.
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Although ECGI-detected EP abnormalities found in
our cross-sectional study have proven associations
with ventricular arrhythmia in other diseases and
show the potential to identify patients at greater
risk of malignant arrhythmias, hold-out data set
internal validation of the SVM was not possible
because of the limited sample size. To mitigate this,
we undertook 10-fold cross validation, which
showed good accuracy of the combined panel.
Longitudinal multicenter studies are now needed to
externally validate these results and confirm their
generalizability. No HV underwent genetic testing.
GþLVH� subjects here were recruited in the context
of familial evaluation, and these findings do not
apply to those with pathogenic sarcomere variants
as secondary genomic findings.

CONCLUSIONS

In the absence of LVH or abnormalities on the 12-lead
ECG, HCM sarcomere gene mutation carriers express
an aberrant electrophysiological phenotype detected
by ECGI. In overt HCM, electrophysiological abnor-
malities occur more severely with adverse structural
change and positive genetic status.
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