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ABSTRACT
Objectives  Plasma P-tau181 is an increasingly 
established diagnostic marker for Alzheimer’s disease 
(AD). Further validation in prospective cohorts is still 
needed, as well as the study of confounding factors that 
could influence its blood level.
Methods  This study is ancillary to the prospective 
multicentre Biomarker of AmyLoid pepTide and 
AlZheimer’s diseAse Risk cohort that enrolled 
participants with mild cognitive impairment (MCI) who 
were examined for conversion to dementia for up to 
3 years. Plasma Ptau-181 was measured using the 
ultrasensitive Quanterix HD-X assay.
Results  Among 476 MCI participants, 67% were 
amyloid positive (Aβ+) at baseline and 30% developed 
dementia. Plasma P-tau181 was higher in the Aβ+ 
population (3.9 (SD 1.4) vs 2.6 (SD 1.4) pg/mL) and in 
MCI that converted to dementia (3.8 (SD 1.5) vs 2.9 
(SD 1.4) pg/mL). The addition of plasma P-tau181 to a 
logistic regression model combining age, sex, APOEε4 
status and Mini Mental State Examination improved 
predictive performance (areas under the curve 0.691–
0.744 for conversion and 0.786–0.849 for Aβ+). The 
Kaplan-Meier curve of conversion to dementia, according 
to the tertiles of plasma P-tau181, revealed a significant 
predictive value (Log rank p<0.0001) with an HR of 3.8 
(95% CI 2.5 to 5.8). In addition, patients with plasma 
P-Tau(181) ≤2.32 pg/mL had a conversion rate of less 
than 20% over a 3-year period. Using a linear regression 
approach, chronic kidney disease, creatinine and 
estimated glomerular filtration rate were independently 
associated with plasma P-tau181 concentrations.
Conclusions  Plasma P-tau181 effectively detects Aβ+ 
status and conversion to dementia, confirming the value 
of this blood biomarker for the management of AD. 
However, renal function significantly modifies its levels 
and may thus induce diagnostic errors if not taken into 
account.

INTRODUCTION
Alzheimer’s disease (AD) accounts for 60%–70% of 
dementia and is thus a major public health problem 
and socioeconomic burden that is only increasing 
with the ageing of the population. For a long time, 
diagnostic efforts have been minimal, due to the 
lack of preventive measures or curative treatment. 
However, in recent years, it has been demonstrated 

that modifiable risk factors account for 40% of 
AD.1 Furthermore, many potential treatments are 
in the final stages of study.2 Early diagnosis will be 
the key to further understanding of AD and success-
fully treating it.

The development of biological biomarkers, 
linked to amyloid and tau pathology, has greatly 
contributed to the understanding of the presymp-
tomatic and postsymptomatic AD ‘continuum’, in 
which, thanks to genetic forms, it has been shown 
that the disease was present from a biological point 
of view decades before its clinical appearance.3 This 
opens up therapeutic perspectives and allows us to 
use these biomarkers in early diagnosis and even in 
risk assessment. Their relevance has already been 
proven in cerebrospinal fluid (CSF) justifying their 
implementation in clinical routine.4 5 Furthermore, 
the blood is now amenable to diagnostic assays, 
thanks to ultrasensitive techniques, including mass 
spectrometry.

The first analytes used in blood were amyloid 
peptides. Their levels in serum can detect amyloid 
positive (Aβ+) patients, as defined by amyloid PET 
or CSF analysis, and predict evolution of patients 
within the AD continuum, including conversion of 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ The clinical use of plasma phosphorylated tau 
181 (P-tau181) for Alzheimer’s disease is being 
considered but further validation and study of 
confounding factors are still needed.

WHAT THIS STUDY ADDS
	⇒ In our large prospective cohort, P-tau181 
predicts brain amyloidopathy and conversion 
to dementia in patients with mild cognitive 
impairment, but renal function significantly 
alters plasma levels and thus may induce 
diagnostic errors if not taken into account.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Our study suggests that measurement of 
creatinine or estimation of glomerular filtration 
rate, which are easy and standardisable ways 
to provide information on renal function, will 
contribute to optimal interpretation of plasma 
P-tau181 results in routine clinical practice.
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patients, with mild cognitive impairment (MCI), to dementia.6 
While the detection of total tau in blood was not so discrimi-
nating,7 detection of its phosphorylated forms at position thre-
onine 181 was a real breakthrough.8 P-tau181 concentration is 
predictive of amyloid or tau PET findings and is significantly 
higher in AD and MCI compared with subjects without cognitive 
impairment or compared with other causes of dementia.8–10 Its 
prognostic value has also been established in some longitudinal 
studies11–13 and its overall performance allow to consider a clin-
ical application. To reach this milestone, we will need additional 
prospective data, in vitro diagnostic certified kits and sufficient 
information on preanalytical stability.14 15 It will equally be para-
mount to identify any confounding factors that may alter clinical 
performance in routine use.14

In this work, we used the prospective multicentre Biomarker 
of AmyLoid pepTide and AlZheimer’s diseAse Risk (BALT-
AZAR) cohort16 to confirm the ability of plasma P-tau181 to 
detect brain amyloidopathy and also to predict the conversion 
of MCI patients to dementia stage. As plasma biomarkers are 
soon to be implemented in routine practice, we also investigated 
potential confounding factors that must be considered to inter-
pret the results adequately.

MATERIALS AND METHODS
Study population
The BALTAZAR study is a multicentre prospective cohort study 
(​ClinicalTrials.​gov Identifier #NCT01315639) that enrolled 
patients with MCI or AD, according to a previously described 
protocol.16 All participants had clinical, neuropsycholog-
ical, brain MRI and biological assessments (see below). Right 
and left hippocampal volume was obtain for each participant 
using automatic segmentation of the hippocampus. The hippo-
campal volume was normalised using the following calculation: 
hippocampal volume/total brain volume×mean total brain 
volume. CSF samples were collected only in accepting partici-
pants. APOE was genotyped in a single centralised laboratory. 
MCI subjects were selected according to the Petersen’ criteria17 
and then they were dichotomised into amnestic (aMCI) and 
non-amnestic (naMCI) phenotypes, based on the presence of 
memory impairment on the free and cued selective reminding 
test related to age, sex and educational level. The characteristic 
of the aMCI/naMCI population is fully described elsewhere.16 
Patients had visits every 6 months for 3 years. MCI participants 
were reassessed for conversion to dementia at each visit by the 
clinician.6 The progression from MCI to dementia was defined 
by evaluating the following parameters: (1) decline in cognitive 
function (measured by changes from the baseline in scores of the 
Mini Mental State Examination (MMSE)), (2) disability in activ-
ities of daily living (ADL) (instrumental ADL (IADL) >1) and 
(3) clinical dementia rating sum of boxes (>1). The conversions 
were reviewed by an adjudication committee.

In this study, we analysed 476 available baseline plasma 
samples from patients with MCI diagnosis (365 aMCI and 111 
naMCI).

Biological biomarker measurements
To minimise preanalytical and analytical problems, identical 
collection tubes were used across centres to collect plasma (EDTA 
BD Vacutainer K2E, ref 367 525, Becton Dickinson, USA) and 
for CSF (10 mL polypropylene tube, ref 62.610.201, Sarstedt, 
Germany). Blood and CSF samples were collected on the same 
day. All aliquots were stored in the same low-binding Eppen-
dorf LoBind microtubes (Eppendorf, ref 022431064, Hamburg, 

Germany). Baseline blood samples were used to measure fasting 
glycaemia, cholesterol (total, high-density lipoproteins (HDL), 
low-density lipoprotein (LDL)), prealbumin, albumin, creat-
inine.16 Estimated glomerular filtration rate (eGFR), based on 
creatinine, age and sex, was computed using the chronic kidney 
disease (CKD)-Epidemiology Collaboration (CKD-EPI) equa-
tion18. CSF biomarkers were measured in a single centralised 
laboratory using commercially available Innotest assays for tau 
and phosphorylated tau at position T181 (P-tau181) or Euro-
immun for amyloid peptides Aβ1–42 and Aβ1–40. Positive 
amyloid status (Aβ+) was defined, as previously, when the CSF 
Aβ1–42/Aβ1–40 ratio was below 0.1.19

Plasma P-tau181 was determined using a commercial P-tau181 
assay kit (Quanterix, USA) based on ultrasensitive Simoa tech-
nology20 on an HD-X analytical platform. All samples were 
fourfold diluted with the provided dilution buffer to minimise 
matrix effects. After dilution, the lowest limit of detection was 
0.019 pg/mL and the limit of quantification was of 0.085 pg/
mL. Quality controls with low (QC 1 with mean concentration 
of 3.82 pg/mL) or high (QC 2–52.4 pg/mL) P-tau181 known 
concentration were provided in the kits. Inter-assay variation for 
QC 1 and QC 2 was low, with coefficient of variation (CV) of 
7% and 5%, respectively. We also used two serum pools (average 
P-tau181 of 4.47 pg/mL and 2.81 pg/mL) as internal QCs run at 
the beginning and end of each sample plate. These had low inter-
assay CV of 3% and 6%, respectively.

Statistical analyses
General characteristics were analysed in the whole MCI sample, 
according to MCI subtype (aMCI and naMCI), conversion to 
dementia and to plasma P-tau181 tertile. Categorical variables 
are presented as percentages and counts (% (N)); continuous 
variables, as mean and SD (M (SD)), or median (25–75th percen-
tile), and comparisons were assessed by χ2 tests, t-tests, Mann-
Whitney U test and analysis of variance (ANOVA, Kruskal-Wallis 
test). The relationship between conversion and plasma P-tau181 
was assessed using regression models with age, sex and baseline 
presence of APOE ε4 allele as covariables.

Kaplan-Meier curves were drawn for conversion according to 
plasma P-tau181tertile and overall differences between tertiles 
was calculated by log rank test. We also examined how plasma 
P-tau181 improved dementia risk prediction using logistic 
regression with age, sex, APOE ε4 and MMSE score at baseline 
and by calculating continuous net reclassification improvement 
(NRI).21 Receiving operator characteristic (ROC) curves, using 
conversion as a dependent variable, were also used to compute 
for different factors. The corresponding areas under the curve 
(AUCs) were compared using the Delong method.22 Logistic 
regression model (enter model), Kaplan Meier and ROC curves 
were generated with MedCalc (V.20.111) software. In all anal-
yses, the two-sided α-level of 0.05 was used for significance 
testing.

RESULTS
Characteristics of the MCI participants at baseline
Of the 539 MCI participants enrolled in the BALTAZAR study, 
63 were excluded due to missing data or absence of plasma 
P-tau181 biomarkers. In this study, we analysed, 476 MCI 
participants (mean age 77.7 (SD 5.5) years, 61.4% women) with 
365 aMCI (77%) and 111 naMCI (23%) at baseline (table 1, 
online supplemental table 1). Average MMSE score was 26.4 
(SD 2.5) and 39.8% (n=185) were APOE ε4 carriers. During 
the clinical follow-up period of 6 to 36 months, 30% (n=144) of 
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the MCI participants developed dementia, on average 14.6 (SD 
8.2) months after the baseline visit and in 95% of the cases, they 
converted to clinically probable AD.6

Comparison between MCI converters and non-converters: 
P-tau predicts conversion to AD
At baseline, the MCI converters to dementia were older, had a 
lower MMSE score, were more often APOE ε4 carriers and had 
more severe hippocampal atrophy (table 1). As lumbar puncture 
was optional in our cohort, CSF values were available in 214 
subjects. CSF Aβ1–40, Aβ1–42, tau and p-tau181 values were 
highly differential between MCI that converted or not.

We next turned our attention to the efficacy of markers in the 
blood, as these samples were available from all participants. We 
have previously described differential levels of plasma amyloid 
biomarkers in the BALTAZAR cohort.6 Here we found plasma 
P-tau181 increased significantly, on average by 30%, between 
MCI non-converters at 2.9 (SD 1.4) pg/mL and converters at 
3.8 (SD 1.5) pg/mL (p<0.0001). Plasma P-tau remained signifi-
cant after adjustment for age, sex and APOE ε4 status (table 1). 
No difference was observed between MCI converters and non-
converters for metabolic or renal function blood biomarkers: 
fasting blood glucose (glycaemia), triglycerides, cholesterol 
(total, HDL, LDL), prealbumin, albumin and creatinine or eGFR.

Comparison between Aβ+ and Aβ− patients: tau predicts 
amyloid status
The amyloid status, Aβ+ corresponding to the (A+) ATN classi-
fication,3 was defined based on the CSF Aβ1–42/Aβ1–40 ratio.23 

Almost half of the MCI participants had a lumbar puncture and 
117 of them were Aβ+ and 97 were Aβ−. At baseline, Aβ+ 
patients were older, had a lower MMSE score and were more 
often APOE ε4 carriers. However, unlike MCI converters, Aβ+ 
patients did not have a lower hippocampal volume (table 2). CSF 
Aβ1–42, Tau and p-tau181 values were also highly differential 
between Aβ+ and Aβ− patients. Plasma P-tau181 was signifi-
cantly higher on average by 50% in Aβ+ than in Aβ− (3.9 
(SD 1.4) vs 2.6 (SD 1.4) pg/mL, p<0.0001). This difference 
remained significant after adjustment for age, sex and APOE ε4 
status (table 2).

P-tau181 improves predictive power of age, sex, APOEε4 
status and MMSE for MCI conversion and amyloid status 
detection
Using a logistic regression approach with conversion as a 
dependent variable and age, sex, APOEε4 status and MMSE 
as independent variables, it was possible to predict conversion 
(p<0.0001) with an AUC of the model fit of 0.691 (95% CI 
0.655 to 0.741). The addition of plasma P-tau181 resulted in 
a significant increase of the AUC to 0.744 (95% CI 0.702 to 
0.784) (online supplemental table 3). The added value of plasma 
P-tau181 was further documented by computing the NRI of the 
two models. This revealed a 12.8% improvement in patient clas-
sification between MCI converters and non-converters due to 
plasma P-tau181. Since blood biomarkers are intended to replace 
CSF biomarkers, we compared the respective values of plasma 
and CSF P-tau181 for amyloid status detection in the subcohort 
where patients had undergone a lumbar puncture. The addition 

Table 1  Characteristics in the whole MCI population and between MCI participants who converted, or not, to dementia within 3 years

All MCI MCI non-converters MCI converters

P value P$N=476 N=332 N=144

Patient characteristics

 � Age (years) 77.7 (5.5) 77.3 (5.4) 78.5 (5.7) 0.048 0.003

 � Women (%) 292 (61.4) 205 (61.7) 60.4 0.78 0.67

 � BMI (kg/m2) 25 (3.8) 25.1 (3.8) 24.8 (3.8) 0.39 0.95

 � MMSE (/30) 26.4 (2.5) 26.7 (2.5) 25.6 (2.5) <0.0001 0.0002

 � 1 or 2 APOE4 alleles 185 (39.8) 105 (31.6) 80 (55.5) <0.0001 <0.0001

 � Hippocampal volume (R+L) (cm3) 4.55 (1.12) 4.79 (1.05) 4.01 (1.09) <0.0001 <0.0001

CSF biomarkers*

 � Aβ1–40 (pg/mL) 7434 (2241) 7458 (2298) 7389 (2143) 0.83 0.64

 � Aβ1–42 (pg/mL) 766 (384) 857 (398) 593 (288) <0.0001 <0.0001

 � Aβ1–42/Aβ1–40 0.104 (0.045) 0.116 (0.045) 0.082 (0.036) <0.0001 <0.0001

 � Tau (pg/mL) 578 (254) 376.1 (185.2) 547 (223.4) <0.0001 <0.0001

 � p-tau181 (pg/mL) 76.7 (30.2) 58.58 (24.47) 80.3 (33.58) <0.0001 <0.0001

Blood biomarkers

 � Fasting glycaemia (mmol/L) 5.37 (1.19) 5.34 (1.21) 5.45 (1.14) 0.34 0.20

 � Triglycerides (mmol/L) 1.21 (0.59) 1.2 (0.58) 1.24 (0.6) 0.54 0.82

 � Cholesterol total (mmol/L) 5.5 (1.16) 5.48 (1.2) 5.53 (1.07) 0.67 0.91

 � Cholesterol HDL (mmol/L) 1.74 (0.52) 1.75 (0.53) 1.72 (0.48) 0.66 0.98

 � Cholesterol LDL (mmol/L) 3.2 (1) 3.19 (1.01) 3.24 (0.98) 0.65 0.90

 � Prealbumin (mg/dl) 27.6 (5.4) 28.1 (6.2) 27.7 (5.8) 0.53 0.52

 � Albumin (g/L) 40.3 (3.9) 40.5 (3.5) 39.8 (4.5) 0.09 0.11

 � Creatinine (μmol/L) 78.2 (21.3) 79.4 (22.2) 73.7 (13.6) 0.10 0.82

 � eGFR (mL/min/1.73 m2) 76.9 (14.7) 77.0 (14.8) 76.7 (14.7) 0.85 0.80

 � Plasma P-tau181(pg/mL) 3.19 (1.49) 2.9 (1.4) 3.8 (1.5) <0.0001 <0.0001

P: Comparison between the three groups, by ANOVA or χ2; P$: comparison between the three groups by linear regression adjusted for age, sex and the presence of the APOE ε4 allele; % (number) 
were used to describe categorical variable, mean±SD for continuous variables.
*CSF biomarkers were available in 140 and 74 MCI non-converters and converters, respectively.
ANOVA, analysis of variance; APOE, apolipoprotein E; BMI, body mass index; CSF, cerebrospinal fluid; eGFR, estimated glomerular filtration rate; MCI, mild cognitive impairment; MMSE, Mini 
Mental State Examination; R+L, right+left.
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in the model of plasma or CSF P-tau181 resulted in a significant 
increase of the AUC from 0.786 (95% CI 0.723 to 0.84) for 
age, sex, APOEε4 status and MMSE to 0.849 (95% CI 0.792 to 
0.895) and 0.857 (95% CI 0.801 to 0.902), respectively (P(dif-
ference)=0.00075 and 0.0002). AUCs obtained by the addition 
of plasma or CSF P-tau181 for conversion or amyloid status 
detection (0.750 and 0.752, respectively) were not different 
(P(difference)=0.81). Importantly, when creatinine or eGFR 
were associated with P-tau181 using logistic regression, they did 
not give in better performance models.

Association of plasma P-tau181 with other biomarkers and 
cohort characteristics
The relationships and correlations between plasma P-tau181 
concentration and the other biomarkers and cohort charac-
teristics were analysed after splitting the population by tertile 
(table 3). Age, body mass index (BMI) and APO ε4 were signifi-
cantly different between tertile. Patient conversion rate was also 
clearly correlated with plasma P-tau181, with values of 16.4%, 
26.1% and 47.8% in the first, second and third tertile, respec-
tively. Distribution of Aβ+ patients was also greatly increased 
along with tertile, a relationship that was confirmed by the 
high correlation observed between plasma P-tau181 and CSF 
Aβ1–42/Aβ1–40 use to define the Aβ+ status (correlation 
coefficient=−0.4428, p<0.0001). eGFR decreased (p=0.017) 
while creatinine very significantly increased (p<0.0001) in the 
higher plasma P-tau181 tertiles. All these results remained signif-
icant after adjustment for age, sex and APOE ε4 status (table 3). 
The relationship between plasma P-tau181 and MCI conversion 

was further documented by plotting the Kaplan-Meier curve 
of conversion to dementia according to the tertiles (figure 1A). 
A very significant overall difference was observed (Log rank 
p<0.0001) and the HR between the first and the third tertile 
was 3.8 (95% CI 2.5 to 5.8).

Impact of comorbidities and covariates on P-tau181 
concentration and diagnostic performance
The relationship between plasma P-tau181 concentration 
and comorbidities, demographic factors and biological infor-
mation collected at baseline in the BALTAZAR cohort was 
investigated using a linear regression approach. We identified 
APOE status, creatinine and eGFR as strongly connected to 
plasma P-tau181 (figure 1B). To a lesser degree, age and BMI 
also affected plasma P-tau181levels. Among comorbidities we 
tested, chronic kidney disease (CKD) appeared strongly linked 
to P-tau181 levels. All these results remained very similar after 
adjustment for age, sex and APOE ε4 status. To further eval-
uate the impact of these covariates, we plotted the correlation 
between creatinine, eGFR, BMI and age in the population 
stratified by amyloid status (figure  2A–D). The correlation 
in the BALTAZAR subpopulation with lumbar puncture 
(n=214) remained significant only for eGFR and creatinine 
(online supplemental table 2). We observed higher values of 
plasma P-tau181 in the Aβ+ population. P-tau181 levels were 
also correlated with low and high values of eGFR and creat-
inine. To confirm this observation, we stratified the popula-
tion based on tertile of creatinine or eGFR levels (figure 2E,F, 
table 4). The ANOVA confirmed that the mean level of plasma 

Table 2  Characteristics in the whole population and between Aβ− and + patients

All Aβ− Aβ+

P value P value$N=214 N=97 N=117

Patient characteristics

 � Age (years) 77.4 (5.6) 76.6 (5.1) 78 (5.9) 0.073 0.0122

 � Women (%) 127 (59.3) 53 (54.6) 74 (64.9) 0.20 0.36

 � BMI (kg/m2) 24.7 (3.7) 25.4 (3.7) 24.2 (3.6) 0.024 0.26

 � MMSE (/30) 26.4 (2.4) 27.1 (2) 25.8 (2.5) <0.0001 0.0007

 � One or 2 APOE4 alleles 78 (36.4) 15 (15.5) 63 (57.3) <0.0001 <0.0001

 � Hippocampal volume (R+L) (cm3) 4.56 (1.09) 4.64 (1.23) 4.5 (0.96) 0.41 0.91

CSF biomarkers

 � Aβ1–40 (pg/mL) 7434 (2241) 7421 (1896) 7446 (2499) 0.93 0.62

 � Aβ1–42 (pg/mL) 766 (385) 1095 (287) 494 (196) <0.0001 <0.0001

 � Aβ1–42/Aβ1–40 0.104 (0.045) 0.149 (0.022) 0.068 (0.018) <0.0001 <0.0001

 � Tau (pg/mL) 433 (213) 320 (133) 533 (222) <0.0001 <0.0001

 � p-tau181 (pg/mL) 66.4 (30.2) 51.3 (15.1) 79 (33.8) <0.0001 <0.0001

Blood biomarkers

 � Fasting glycaemia (mmol/L) 5.4 (1.1) 5.4 (1.1) 5.4 (1.2) 0.99 0.71

 � Triglycerides (mmol/L) 1.17 (0.6) 1.18 (0.48) 1.15 (0.69) 0.70 0.62

 � Cholesterol total (mmol/L) 5.5 (1.2) 5.5 (1.3) 5.5 (1.1) 0.78 0.29

 � Cholesterol LDL (mmol/L) 1.7 (0.5) 1.8 (0.5) 1.7 (0.5) 0.58 0.81

 � Cholesterol HDL (mmol/L) 3.2 (1) 3.3 (1.1) 3.2 (0.9) 0.92 0.21

 � Prealbumin (mg/dL) 28.4 (6.4) 28.5 (7.6) 28.3 (5.1) 0.77 0.77

 � Albumin (g/L) 40.1 (4.3) 39.9 (3.6) 40.2 (4.9) 0.60 0.38

 � Creatinine (μmol/L) 79.0 (23.0) 80.1 (24.9) 78.2 (21.5) 0.54 0.76

 � eGFR (mL/min/1.73 m2) 76.9 (14.7) 76.9 (15.5) 77.5 (15.5) 0.62 0.45

 � Plasma P-tau181(pg/mL) 3.3 (1.5) 2.6 (1.4) 3.9 (1.4) <0.0001 <0.0001

P: Comparison between the three groups, by ANOVA or χ2); P$: comparison between the three groups by linear regression adjusted for age, sex and the presence of the APOE ε4 
allele; % (number) were used to describe categorical variables, mean±SD for continuous variables. HDL, high-density lipoproteins; LDL, low-density lipoproteins.
ANOVA, analysis of variance; APOE, apolipoprotein E; Aβ+, amyloid positive; BMI, body mass index; CSF, cerebrospinal fluid; eGFR, estimated glomerular filtration rate; MCI, mild 
cognitive impairment; MMSE, Mini Mental State Examination; R+L, right+left.
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P-tau181 was globally differential among both creatinine or 
eGFR tertiles (p<0.001). Finally, to evaluate the impact on 
P-tau181 on the detection of amyloid status, we computed the 
ROC curves and determined best cutpoints and corresponding 
performance for Aβ+ (table 4).

DISCUSSION
Here, we present results from a large-scale multicentre prospec-
tive longitudinal cohort of clinically defined MCI participants, 
referred to memory centre, with a follow-up of 3 years. Our 
principal finding is that patients who convert to dementia 

have 30% higher levels of plasma P-tau181 independently of 
age, sex or APOE ε4. Importantly, 48% of MCI participants 
among the highest tertile of plasma P-tau181 (>3.61) converted 
to dementia and thus had a fourfold higher risk. In addition, 
patients in the first P-tau(181) tertile (ie, with a value ≤2.32 pg/
mL) have a conversion rate of 19.8% over a 3-year period. It is 
likely that combining P-tau(181) with other blood biomarkers 
such as plasma amyloid peptides could improve this predic-
tion. This information is valuable for patient management and 
for using therapeutic strategies to prevent progression. In this 

Table 3  Characteristics in the different P-tau181 tertiles

First tertile Second tertile Third tertile

P value P value$N=158 N=157 N=161

Plasma P-tau181

 � Age (years) 76.9 (5.4) 77.9 (5.1) 78.3 (5.9) 0.06 0.0009

 � Women (%) 101 (63.9) 96 (61.1) 95 (59.0) 0.66 0.32

 � BMI (kg/m2) 25.8 (3.7) 24.9 (3.9) 24.4 (3.7) 0.004 0.01

 � MMSE (/30) 26.7 (2.4) 26.4 (2.5) 26.1 (2.7) 0.16 0.19

 � 1 or 2 APOE4 alleles (%) 38 (17.7) 63 (40.1) 84 (52.2) <0.0001 <0.0001

 � Hippocampal volume (R+L) (cm3) 4.75 (1.13) 4.38 (1.16) 4.5 (1.04) 0.02 0.28

 � Aβ+ status (%) 13 (19.1) 40 (62.5) 64 (78.0) <0.0001 <0.0001

 � Conversion MCI (%) 26 (16.4) 41 (26.1) 77 (47.8) <0.0001 <0.0001

Blood biomarkers

 � Fasting glycaemia (mmol/L) 5.46 (1.28) 5.4 (1.1) 5.26 (1.18) 0.32 0.12

 � Triglycerides (mmol/L) 1.2 (0.6) 1.3 (0.7) 1.2 (0.5) 0.26 0.23

 � Cholesterol (mmol/L) 5.52 (1.19) 5.48 (1.23) 5.5 (1.06) 0.94 0.82

 � Cholesterol HDL (mmol/L) 1.72 (0.47) 1.76 (0.56) 1.75 (0.52) 0.85 0.29

 � Cholesterol LDL (mmol/L) 3.25 (1.03) 3.15 (1.07) 3.21 (0.9) 0.69 0.59

 � Prealbumin (mg/dL) 27.5 (6.2) 28 (6.7) 28.4 (5.4) 0.47 0.17

 � Albumin (g/L) 40.4 (3.7) 40.2 (4.8) 40.3 (3.1) 0.87 0.90

 � Creatinine (μmol/L) 73.5 (16.5) 78.6 (19) 82.1 (26.1) 0.002 0.0005

 � eGFR (mL/min/1.73 m2) 80.3 (13.5) 76 (14.1) 74.4 (15.9) 0.02 0.01

 � Plasma P-tau181(pg/mL) 1.75 (0.38) 2.93 (0.36) 4.86 (1.19) NA NA

P: Comparison between the three groups, by ANOVA or χ2); P$: comparison between the three groups with linear regression adjusted for age, sex and the presence of the APOE 
ε4 allele; % (number) were used to describe categorical variables, mean±SD for continuous variables.
ANOVA, analysis of variance; APOE, apolipoprotein E; BMI, body mass index; eGFR, estimated glomerular filtration rate; MCI, mild cognitive impairment; MMSE, Mini Mental 
State Examination; NA, not available; R+L, right+left.

Figure 1  (A): Kaplan-Meier curve of conversion to dementia according to the tertiles of plasma P-tau181 in MCI subjects. (B): Associations between 
multiple factors and plasma P-tau181 concentrations. Forest plots of associations between demographic, comorbidities (in blue) and biological variables and 
plasma P-tau181, using linear regression. Means and 95% CIs are provided. Z-scores are used to compare the factors between them. APOE, apolipoprotein 
E; BMI, body mass index; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; MCI, mild cognitive impairment; MMSE, Mini Mental State 
Examination; TIA, transient ischaemic attack; HDL, high-density lipoproteins; LDL, low-density lipoproteins.
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MCI population, plasma P-tau181 also predicted amyloid status 
(based on the CSF Aβ1–42/Aβ1–40 ratio), with Aβ+ patients 
having 50% higher P-tau181 levels than their Aβ− counterparts.

One important element that raises the interest of using 
this plasma biomarker in the future is its added value above 
that of just using a combination of age, sex, APOEε4 status 
and MMSE. It is noteworthy that adding plasma P-tau181 
significantly improved the detection of both Aβ+ patients and 
MCI converters. Even more striking is that this added value 
of plasma P-tau181 was equivalent to that of CSF P-tau181. 
This finding will impact future clinical use of the approach, 
as it might avoid the need for lumbar puncture. The capacity 
of plasma P-tau181 to detect Aβ+ patients as well as AD and 
MCI when compared with control and to other diseases has 
been described.8 9 11–13 24–27 However, the only previous other 
large study focusing on MCI conversion was that of Karikari 
et al11 who observed that baseline concentrations of plasma 

P-tau181 accurately predicted future dementia and Aβ+ status 
(as defined by PET). As well as validating this previous study, 
our study has the added value of the biological data collected 
in the BALTAZAR cohort. These include metabolic blood 
biomarkers: fasting glycaemia, triglycerides, cholesterol (total, 
HDL, LDL), prealbumin, albumin, creatinine and eGFR, which 
can be used to monitor diabetes, cardiovascular risk, nutritional 
status or kidney function. None of these factors were differen-
tial, either in comparing MCI converters to non-converters, or 
when comparing Aβ+ and Aβ− patients. However, when we 
investigated factors influencing P-tau181 level, by comparing 
tertiles or through a linear regression method, we first iden-
tified age and BMI as cofounding factors. These two factors 
have previously been associated with P-tau181, as well as with 
other blood biomarkers like neurofilaments.28 Age increases 
both plasma and CSF values of neurodegenerative biomarkers 
like total tau29 yet to be determined reasons. For BMI, a likely 

Figure 2  (A–D): Correlation between plasma P-tau181 and creatinine, eGFR, age and BMI in the amyloid negative and positive populations. (E, F): Levels 
of plasma P-tau181 in the amyloid negative and positive populations, by tertiles of creatinine or eGFR. Concentrations of plasma P-tau181 were significantly 
different between amyloid negative and positive patients in all cases, as tested using a Mann-Whitney U test (p<0.05). Aβ+, amyloid positive; BMI, body 
mass index; eGFR, estimated glomerular filtration rate (unit: mL/min/1.73 m2).
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relevant factor is the dilution of neuronal biomarkers in the 
blood volume.

Among the comorbidities that were associated with P-tau181, 
CKD was the most differential. This association with CKD has 
already been reported in recent studies.30 31 However, in the 
BALTAZAR cohort, we have access to the clinical chemistry 
profile realised on the same plasma sample used for P-tau181 
measurement. We thus noted that P-tau181 correlates with 
markers of kidney function: creatinine and eGFR. Adding 
these parameters improved the ability of P-tau181 to detect 
Aβ+ patients, whereas adding age and BMI did not. Strikingly 
P-tau181 and creatinine stratify together irrespective of other 
variables. Namely, in situations with increased creatinine (≥82 
µmol/L) or low eGFR (<74 mL/min/1.73 m2), indicating a 
moderate impaired kidney function, levels of P-tau181 were 
increased in both Aβ+ and Aβ− patients, as well as in MCI 
patients converting or not to dementia.

A major suggestion of our study is tailoring the clinical 
cutpoints of P-tau181 to renal function. We advocate minimising 
the false detection of a pathological situation in patients by 
always combining plasma P-tau181 with an assessment of renal 
function, for example, through creatinine measurement and 
GFR estimation. This recommendation should be confirmed for 
other P-tau isoforms (P-tau217, P-tau231) measured by immuno-
assay25 or mass spectrometry.32 We cannot exclude at this stage 
that altered renal function may also contribute in some way to 
the progression of AD.33 Indeed, this hypothesis is supported by 
the difference in creatine level between naMCI and aMCI popu-
lation. To understand the relationship between renal function 
and P-tau levels, i’s clearance by the kidney will therefore have 
to be studied in more detail. Of note, only very small amounts of 
this biomarker were detected in the free form or associated with 
exosome in urine.34 35

The present study has some limitations. To increase the likeli-
hood of conversion to AD we excluded participants with Lewy 
body, Parkinson, frontotemporal or vascular MCI disorders. 
Therefore, 77% of subjects had aMCI and 30% of participants 

developed dementia which in 95% of cases was represented by 
probable AD. Amyloid status was available in only a part of the 
population, since the BALTAZAR study focused on conversion, 
and it was defined using CSF biomarkers rather than with PET 
amyloid.

The main strengths of the study lie in the large sample size of 
MCI participants that are well described, the controlled preana-
lytical conditions, the centralised plasma P-tau181 analyses and 
the availability of clinical chemistry analyte measurement real-
ised in the same sample tube.

CONCLUSION
This study of our well-characterised population confirms 
the clinical relevance of plasma P-tau181 for the detection of 
amyloid status, which is important for risk assessment, patient 
management and inclusion in clinical trials. We also demon-
strate the strong predictive value of this blood biomarker for 
the prognosis of MCI patients, thus addressing an important 
medical need in memory centres. The question remains as to the 
use of blood biomarkers as a screening tool in patients without 
cognitive impairment who have risk factors and may benefit 
most from preventive strategies, and/or as triage tests in patients 
with early symptoms for whom future investigations, including 
imaging and spinal tap, are being considered. Finally, we iden-
tified and quantified the impact of renal function, assessed by 
creatinine levels and GFR estimation, on P-tau181 blood levels. 
These measures are an easy and standardisable way to provide 
essential information about kidney function and thus to optimise 
interpretation of results in routine clinical practice.
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