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In Industry 5.0, smart manufacturing brings additional intricacies and novel data processing challenges. Given
the evolving nature of manufacturing processes and the inherent complexity of data, including noise and
missing entries, achieving accurate anomaly detection becomes even more intricate. Conventional methods
often miss nuanced anomalies, especially when dealing with high-dimensional, multivariate, non-stationary
data. These data types are typical of smart manufacturing environments. Hence, many recent approaches
have embraced deep learning to confront these challenges, making use of diverse attention mechanisms to
acquire data representations. However, in manufacturing, where the dynamics of time series data change
over time, methods relying solely on pointwise or pairwise representations often fall short. Thus, ensuring
product quality and operational integrity calls for even more advanced methodologies. The deficiency lies
in the capability of state-of-the-art models to effectively capture abnormal patterns while considering both
local and global contextual information. This challenge is compounded by the rarity of anomalies, making
it exceedingly challenging to establish substantial associations between individual abnormal points and the
entire time series. To tackle these challenges, we introduce the “Adaptive Adversarial Transformer” as a
novel deep learning technique that combines Transformer architecture with an anomaly attention mechanism
and Adversarial Learning. Our Model effectively captures intricate temporal patterns, distinguishes normal
and anomalous behaviors, and dynamically adjusts thresholds to align with the evolving dynamics of time-
series data. Empirical validation on four benchmark datasets and three real-world manufacturing datasets
demonstrates our model’s effectiveness compared to the state-of-the-art, as evidenced by the F1-Score.

1. Introduction by embedding human judgment within automated processes, prov-
ing invaluable in complex scenarios where anomalies are subtle or

Industry 5.0 represents a pivotal shift in manufacturing, emphasiz- ambiguous. The progression of manufacturing technologies has also ne-

ing the integration of Artificial Intelligence (AI) with human expertise
to forge a new era of collaborative and intelligent systems. Building
upon the interconnected frameworks established by Industry 4.0 [1],
Industry 5.0 enhances the analytical capabilities of Al with the nu-
anced understanding of human operators, fostering a sophisticated
interaction between technology and intuition [2]. At the core of this
evolution is the symbiotic relationship between AI and human insight,
where Al systems analyze vast datasets to identify potential anomalies
and inefficiencies, and human operators apply their deep contextual
knowledge to interpret and manage these insights. This approach not
only enhances the responsiveness of manufacturing systems but also
significantly improves the effectiveness of anomaly detection mecha-
nisms. Human-in-the-loop (HITL) systems [3] exemplify this integration
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cessitated more advanced monitoring and management methods. Tradi-
tional anomaly detection often relied on manual inspections, which are
time-consuming and miss finer details. Recent advancements, including
Digital Twins and Edge Intelligence [4], facilitate real-time monitoring
and decision-making, representing a significant step forward in au-
tomating anomaly detection processes. Furthermore, Multivariate Time
Series (MVTS) data in manufacturing presents unique challenges due to
its complexity and dynamic nature. While traditional methods such as
One-Class SVMs have been utilized, Recurrent Neural Networks (RNNs)
and Long Short-Term Memory (LSTM) networks [5] have shown greater
potential in managing such data, capturing crucial temporal dependen-
cies. However, the high computational costs and training difficulties
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associated with these networks on large datasets underscore the need
for more efficient and robust approaches [6]. Recently, there has been a
significant trend towards utilizing the emerging Transformer architec-
ture in anomaly detection, benefiting from its robustness and ability
to capture fine and long-term contextual anomalies [7,8]. However,
much work still needs to be done in developing the proper attention
mechanisms and the training style for this architecture [9]. Moreover,
while Transformers are used as a reconstruction system, there is still
a need to enhance them with a mechanism for classifying inputs into
normal or abnormal categories. This method needs to be adaptive to
the intricate changes in the dynamics of the input data as expected in
an industrial setting.

In response to these challenges, the main contributions of our study
are as follows:

Our research introduces the Adaptive Adversarial Transformer
(AAT), a novel architecture that combines the strengths of Trans-
formers with a dual attention mechanism and adversarial learning
to improve anomaly detection accuracy and efficiency.

We integrate a Support Vector Data Description (SVDD) model
enhanced with a Radial Basis Function (RBF) kernel. Our ap-
proach adapts dynamically to changes in data characteristics,
significantly reducing the necessity for frequent model retraining.

We distinguish between the input and reconstructed input using
a vector approach rather than a scaled-based one. This method
enables distinctions to be based not only on the scale of the values
but also on their directional characteristics, providing a more
nuanced understanding of anomalies. This dynamic adaption to
changes in data characteristics, significantly reduces the need for
frequent model retraining [10].

Our results demonstrate AAT’s superiority in the field of anomaly
detection. It surpasses numerous well-established techniques,
achieving improvements of up to 10% as measured by the F1
score metric across both public and internal datasets. This not
only aligns with but also exceeds, Rosenberger’s expectations
regarding efficiency and scalability.

The remainder of the paper is organized as follows: Section 2
reviews pertinent literature to frame the technological and conceptual
foundations of our research. Section 3.1 delves into the specific chal-
lenges and solutions for anomaly detection in manufacturing MVTS
data. Section 3 elaborates on our proposed AAT framework, while
Sections 4 and 5 provide a comprehensive evaluation of our method’s
performance against established benchmarks. The paper concludes with
Section 6, discussing future research directions and the potential impact
of our findings on the field of smart manufacturing.

2. Contextual overview and related work

This section provides a comprehensive overview of the foundational
concepts and relevant research in the field of Anomaly Detection in
Multivariate Time Series Data.

2.1. Anomalies: Understanding definitions and overcoming challenges

In the context of handling anomalies in MVTS, it is crucial to
distinguish between anomalies and outliers while also recognizing
their intersections. Fundamentally, anomalies can be seen as truly
aberrant or unforeseen events, whereas outliers are primarily data
points that deviate from the typical value range. For example, a data
point that drastically surpasses or falls short of its counterparts in
a dataset might be labeled an outlier. In contrast, a data point rep-
resenting a measurement glitch or an illicit transaction exemplifies
an anomaly. Additionally, outlier detection (OD) serves a descrip-
tive purpose, while anomaly detection leans more towards predictive
methodologies. Therefore, in many scenarios, OD is employed as a
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preliminary step to ensure data integrity before training robust anomaly
detection models. The traditional definition of an anomaly, as described
by Hawkins [11], is: “An anomaly is an observation which significantly
differs from other data points, raising suspicion that it originates from a
distinct mechanism”. While anomalies are sometimes obvious and can
be easily identified by data scientists using straightforward methods,
the presence of noise often complicates anomaly detection. The primary
challenge lies in differentiating between noise and actual anomalies, as
illustrated in Fig. 1.

The distinction between anomalies and outliers is often ambiguous,
with the terms frequently being used interchangeably. Another signif-
icant challenge in anomaly detection, particularly in the context of
manufacturing processes, is the issue of imbalanced data. Class imbal-
ance (CI) is a prevalent problem where the number of data samples
for different classes (such as ‘normal’ and ‘anomalous’) is dispropor-
tionately distributed. In manufacturing, where production efficiency
is high and anomalies are rare, this imbalance becomes particularly
pronounced. This imbalance poses a challenge in developing effec-
tive machine learning models, as models tend to be biased towards
the majority class, often leading to poor performance in detecting
rare, yet critical, anomalous events. Furthermore, the cost of acquir-
ing labeled data in such imbalanced scenarios is another significant
hurdle. Labeling data requires expert knowledge, especially for com-
plex manufacturing processes where understanding what constitutes an
anomaly can be intricate. The expense and effort involved in obtaining
accurately labeled data cannot be understated, making it a crucial
factor in the feasibility and effectiveness of anomaly detection models.
The issue of class imbalance in manufacturing and its implications on
data modeling is extensively reviewed by de Giorgio et al. [12]. They
systematically analyze various machine learning and deep learning
solutions to address the class imbalance problem in the manufacturing
domain. Their work underscores the importance of considering class
imbalance and the challenges of labeled data in developing robust
anomaly detection systems in manufacturing.

To counteract this imbalance, techniques such as the oversampling
of the minority class and the downsampling of the majority class
are employed. This ensures that during the model training phase,
the presence of the majority class does not overshadow the critical
minority class, allowing for an equitable representation of all classes
within the decision-making algorithm. To address the class imbal-
ance in anomaly detection, techniques like oversampling the minority
class and downsampling the majority class are used. This ensures
balanced representation during model training. Oversampling with the
Synthetic Minority Over-sampling Technique (SMOTE) [13] generates
synthetic samples for the minority class through interpolation. Down-
sampling using a cluster-based method reduces the majority class size
by clustering and selecting representative instances from each cluster,
typically using centroids calculated from the clusters. Additionally,
overfitting-where the model learns both signal and noise from the
training data is a common issue. To mitigate overfitting, methods
such as cross-validation, reducing the number of features, pruning,
and regularization are employed. Traditional techniques like cross-
validation and step-wise regression are effective for small feature sets,
while regularization is preferable for large feature sets.

Not only do we quickly encounter the problem of imbalanced
datasets in anomaly detection, but we also face the issue of overfit-
ting, especially when the data model has a large number of features.
Overfitting occurs when the model learns both the signal and the noise
in the training data, leading to poor performance on new, unseen data.
There are several methods to avoid overfitting, such as cross-validation
sampling, reducing the number of features, pruning, and regularization.
Conventional methods like cross-validation and step-wise regression
work well with a small set of features, while regularization techniques
are more suitable when dealing with a large set of features.

Optimizing the threshold between normal data and anomalies is
also very complex, particularly with high-dimensional, multivariate,
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Fig. 1. Increasing outliers from left to right.

non-stationary data, such as that found in smart manufacturing. In
this context, adaptive thresholding is essential for anomaly detec-
tion. This dynamic approach outperforms static methods by adjusting
thresholds in response to data evolution, thereby accurately identifying
anomalies indicative of operational issues or quality defects. Methods
include Peak Over Threshold (POT), which identifies anomalies by
setting a threshold for extreme values [14]; Kernel Quantile Estimation
(KQE), which uses kernel-based techniques for quantile estimation to
handle non-linear relationships [15]; Support Vector Data Description
(SVDD), a supervised learning method that dynamically adjusts thresh-
olds based on discrepancies between reconstructed and actual values,
effectively reducing both False Positive Rate (FPR) and False Nega-
tive Rate (FNR) [16]; and Non-parametric Dynamic Threshold (NDT),
which offers a dynamic, non-parametric approach without relying on
assumed data distributions, making it ideal for changing manufacturing
environments [17].

SVDD, in particular, provides a robust framework for adaptive
anomaly detection by establishing a dynamic threshold for identifying
outliers [16]. It constructs a hypersphere around the data distribution,
aiming for the smallest volume that encloses the bulk of the data points,
with allowances for anomalies. The SVDD optimization problem seeks
to minimize the sphere’s radius R of the hypersphere with center a and
the slack variables ¢; that account for outliers:

minR2+CZ§[ st |IX;,—al>? < R*+¢&, & >0, @
R.a T

with C as the regularization parameter, X; for the data points.
A new sample Z is classified as an outlier if its distance from the
center a exceeds the radius R:

|Z - all*> > R* = Outlier, (2)

The use of kernel functions further enhances the adaptivity of SVDD,
allowing it to conform to non-linear data distributions and providing
a flexible approach to setting thresholds in complex manufacturing
environments [18].

2.2. Evolution of time series anomaly detection methods

The evolution of time series anomaly detection methods, particu-
larly in the context of manufacturing-derived data, reflects a progres-
sive integration of various techniques to handle the increasing complex-
ity of data dynamics. Traditional statistical methods like ARIMA (Auto
Regressive Integrated Moving Average) and Exponential Smoothing
initially laid the groundwork, yet struggled to capture the intricate pat-
terns in manufacturing data due to their deterministic nature [19,20].
Stochastic learning methods, such as Gaussian Processes and Hidden
Markov Models, introduced probabilistic modeling, offering greater
flexibility, though often at the cost of increased computational in-
tensity [21]. The focus then shifted to outlier detection techniques,
including Isolation Forest and Local Outlier Factor (LOF), which ef-
fectively addressed high-dimensional data but occasionally led to false
alarms [22]. These limitations, as highlighted by Choi et al. [23],
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became more evident when dealing with complex sensor data irregular-
ities, such as point, contextual, and collective anomalies. This led to ad-
vocacy for deep learning models, given their ability to identify intricate
nonlinear relationships. Consequently, modern approaches often com-
bine traditional and machine learning techniques, such as the Isolation
Forest-LOF (IF-LOF) hybrid model, to enhance anomaly detection capa-
bilities. With the advent of machine learning, algorithms like Support
Vector Machines (SVM) and Decision Trees were adapted for anomaly
detection, offering the advantage of handling large datasets and high
dimensionality. However, these models often required extensive feature
engineering and were sensitive to hyperparameters [10]. The limi-
tations of classical and conventional methods highlight the need to
harness deep learning models in anomaly detection applications. Long
Short-Term Memory (LSTM) networks, being auto-regressive, captured
the essence of sequential data dependencies. The LSTM-NDT model
by Hundman et al. [17] employed this approach, predicting future data
based on past feedback. However, its limitations arise from inefficien-
cies in modeling elongated temporal patterns, more so when faced with
noisy data, as pointed out by Su et al. [24]. Deep Autoencoding Gaus-
sian Mixture Model (DAGMM) introduced by Zong et al. [25], combines
the strengths of deep autoencoding with a Gaussian mixture model.
Despite the advantages of its decoupled training, it grapples with
limitations such as slow computational performance and challenges
in exploiting inter-modal correlations. In contrast, Li et al. [26] put
forth an unsupervised anomaly detection technique tailored for rotating
machinery, leveraging a memory-augmented temporal convolutional
autoencoder. Further adding to the evolution of deep autoencoders,
Unsupervised Anomaly Detection (USAD) [27] integrates an autoen-
coder with dual-decoders, carving a niche by significantly streamlining
the training process. OmniAnomaly by Su et al. [24] marks a signif-
icant stride with its stochastic recurrent neural network, integrating
elements from LSTM-VAE [28]. It proposes the Peak Over Threshold
(POT) method [14], ushering in remarkable performance improve-
ments. However, it comes at the expense of heightened training times.
Anomaly detection has increasingly embraced attention-based architec-
tures, especially in the context of smart manufacturing. Initially, models
like HitAnomaly [9] integrated conventional transformers within an
encoder—-decoder framework, primarily targeting natural language log
data. However, this approach showed limitations in handling continu-
ous time-series datasets typical in manufacturing. Responding to these
limitations, newer models such as TranAd (Transformer for Anomaly
Detection) [8] and Anomaly Transformer [7] have evolved. These mod-
els shift focus from intensive transformer designs to more specialized
attention mechanisms, better suited for the nuanced needs of time-
series data in industrial settings. Further diversifying the application
of transformers in anomaly detection, the MLPT (Multi-Layer Parallel
Transformer) model by Leng et al. [29] represents a significant step for-
ward. It demonstrates the versatility of transformer architectures in ad-
dressing the complexities of smart manufacturing systems, particularly
in product quality issue detection and rapid anomaly localization.

Fig. 2 illustrates the recent benchmark anomaly detection models
across three different learning approaches: supervised, unsupervised,
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Fig. 3. Schematic of AE with latent space.

and semi-supervised. The figure demonstrates a trend towards using
deep learning models in unsupervised and semi-supervised contexts.
Additionally, it showcases the capability of some models to address
anomalies in Multivariate Time Series (MVTS) from two distinct per-
spectives: the type of anomalies (point, contextual, and collective) and
the type of dependency these anomalies have on the rest of the data
(global and local). This visualization helps in understanding the evolv-
ing landscape of anomaly detection methodologies and their respective
strengths in handling complex data interactions.

2.3. Emerging techniques for anomaly detection

In light of the evolution of the developed models in the last decade,
three techniques emerged for their promising capacity to deal with
issues related to anomaly detection in the manufacturing context. Our
framework synergizes Autoencoder-Based Anomaly Detection,
Transformer-based Architectures, and Adversarial Learning Frameworks,
leveraging the strengths of each to enhance the detection of anomalous
patterns in manufacturing data.

2.3.1. Autoencoder-based anomaly detection

Anomaly detection is often cast as a binary classification task, aimed
at differentiating between normal and anomalous data instances. Given
the rarity of anomalous samples, unsupervised learning approaches are
favored, where models are trained solely on normal data. A prominent
unsupervised method is the Autoencoder (AE), a type of neural network
that excels in data compression and denoising tasks [30,31]. AE has two
core components: the encoder, which compresses the input into a latent
space, and the decoder, which attempts to reconstruct the input from
the compressed form, as illustrated in Fig. 3.
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The encoder maps the input X to a latent representation Z using a
parametric function e, which includes a linear transformation followed
by a non-linear activation:

Z = ep(X), 3
The decoder objective is to reconstruct the original input from Z
using a similar parametric function d,:

X =dy(2), (€]
Training involves adjusting the AE’s parameters to minimize the re-

construction loss, which measures the discrepancy between the original

input x and the reconstructed output £ during the training phase:

loss = [|x — &ll, = lIx = dy(ll, = lIx — d eI, )

Once the AE is trained, its reconstruction error is utilized to cal-
culate an anomaly score for new data points during the inference
phase:

Anomaly Score = ||x — %||,,

(6)
Despite the similarity in their calculation, the loss function is a training
criterion, while the anomaly score is a post-training metric used to
identify anomalies. While autoencoders form a foundational approach
for anomaly detection, our AAT framework overcomes its limitations in
handling high-dimensional, non-stationary data through its innovative
architecture and adaptive learning mechanisms.

2.3.2. Transformer based architecture
The utilization of Transformer architecture for anomaly detection
has witnessed a consistent rise in both academic and industrial spheres,
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owing to its demonstrated effectiveness. This approach has found prac-
tical applications across various domains, including cybersecurity [32],
telecommunications and networking [33], healthcare [34], and has
recently garnered increased interest in industrial contexts, exemplified
by its use in industrial quality monitoring [35] and real-time anomaly
detection for time series data from industrial furnace [36].

The transformer, a neural network architecture, was first introduced
in the paper “Attention is All You Need” by Vaswani et al. [37]
. Since its inception, it has formed the basis for several significant
projects, including Google’s BERT and OpenAlI’s GPT series, all of which
have delivered performance outcomes surpassing prior benchmarks. Al-
though similar to Recurrent Neural Networks (RNNs) in their design for
processing sequential data, transformers are unique in their structure,
comprising an encoder and a decoder. Their defining feature is the
utilization of self-attention mechanisms, enabling them to recognize
dependencies throughout an entire sequence regardless of distance.
This is in contrast to RNNs, which depend on recurrent connections
for transmitting information through sequential time steps. Both the
encoder and decoder in the transformer architecture consist of stacked
layers that include multi-head self-attention (Fig. 4(a)), additive con-
nections, layer normalization, and position-wise feed-forward layers.
Additionally, positional encoding is applied to the input embeddings in
a pre-processing step, ensuring that the model can retain the positions
of elements within the sequence, as the transformer architecture does
not inherently incorporate any information about sequence order. The
core innovation of the transformer is the self-attention mechanism,
which allows the model to weigh the importance of different parts
of the input sequence when processing each element. The formula for
computing the attention scores for each element in the input sequence

are as follows:
T
0K V.
Vi

Here, QO represents the query matrix, encapsulating the input sequences
in vector form. K denotes the keys, with sequences similarly repre-
sented as vectors, with d, as its dimension and K7 the transpose of K,
and V signifies the values, also depicted in vectorial sequence format.
The attention mechanism, applied in a repeated manner with varying
projections of Q, K, and V, is designed to enhance the model’s inter-
pretative capabilities. This process of parallel application is depicted in
Fig. 4(b). Linear transformations are achieved by the multiplication of
0, K, and V with the training-evolved weight matrices W. The multi-
head attention module, a pivotal element in connecting the encoder
and decoder, integrates the encoder’s input sequence with that of the
decoder, considering up to a specified point in the sequence. Post the
multi-head attention phase, both the encoder and decoder incorporate
a feed-forward layer.

The utilization of transformer models, notably their independence
from Recurrent Neural Networks (RNNs), has been pivotal in enhancing
performance across a spectrum of domains. This includes significant
advancements in language translation and natural language processing
(NLP), as expounded in the works of Wolf et al. [38] and further con-
tributions detailed in the HuggingFace’s Transformers [39]. In the field
of computer vision, notable developments are highlighted in studies
such as those by Gao et al. [40] and Ayoub et al. [41]. Moreover, in
the manufacturing sector, transformers have been instrumental in pre-
dictive maintenance, with models like Trans-Lighter discussed in [42].
Additionally, their application in human activity recognition (HAR) has
been effectively explored, as delineated in [43]. However, Transform-
ers are not without limitations. These include their high computational
complexity, especially for long sequences, due to the self-attention
mechanism which scales quadratically with the sequence length. Addi-
tionally, Transformers require large amounts of training data to achieve
optimal performance, making them less effective for tasks with limited
data availability. Training Transformers can be time-consuming, often
requiring significant computational resources and extended training

Attention(Q, K, V) = Sofmax ( @)

595

Journal of Manufacturing Systems 77 (2024) 591-611

times. Furthermore, due to their high capacity, Transformers are prone
to overfitting, especially when trained on small datasets without proper
regularization techniques. These limitations can impact their applica-
bility and efficiency in various scenarios, necessitating adaptations or
alternative approaches for certain tasks.

2.3.3. Adversarial learning framework
Adversarial learning, introduced through the Generative Adversarial
Network (GAN) [44] framework, consists of:

1. The generator: It crafts plausible data, which then act as nega-
tive training samples for the discriminator.

2. The discriminator: It discerns between genuine data and the
generator’s creations, penalizing the latter for implausible out-
puts.

Since their introduction in 2014, Generative Adversarial Networks
(GANs) have established a strong foundation for adversarial learning.
In this framework, a generator attempts to produce data that closely
resembles real instances, while a discriminator works to distinguish
between genuine and generated samples. This adversarial approach
has been particularly influential in anomaly detection within Multi-
variate Time Series (MVTS), underscoring the importance of detailed
and sophisticated feature extraction. Integrating adversarial learning
into a transformer architecture designed for high-dimensional, multi-
variate, nonstationary manufacturing data can significantly improve
the model’s efficiency. We will further explore the integration of ad-
versarial learning within this transformer paradigm, focusing on how
it addresses the complexities presented by high-dimensional data—
challenges that may hinder traditional transformer models. Further-
more, models like MAD-GAN [45], which employ LSTM-based GAN
architectures, have proven effective in modeling data distributions. By
incorporating prediction errors and discriminator loss into the anomaly
detection process, these models offer a comprehensive analysis of time-
series data, which is essential for identifying anomalies in complex
manufacturing processes.

2.4. Remaining challenges

Despite the emergence of these promising techniques, a prevail-
ing challenge remains: the developed models consistently confront
difficulties in simultaneously handling both long-term and short-term
dependencies (global and local), and in navigating the complex dynam-
ics inherent to multivariate time series in manufacturing settings. Some
of these challenges are:

1. Limited Training Spectrum: Solely training on normal data

confines the model’s ability to generalize.

Feature Representations: Current models’ feature representa-

tions, whether they be pointwise, pairwise, or a combination,

often lack the depth needed for capturing the full spectrum of
normal patterns.

. Reconstruction Focus: An encoder-decoder architecture’s very
focus on faithful reconstruction can sometimes blindside the
model, causing it to overlook nuanced anomalies.

. Curse of Dimensionality: As data dimensionality increases, the
volume of its space surges exponentially. This escalation makes
it an arduous task for models to capture relevant patterns, often
resulting in suboptimal anomaly detection.

. Assumption of Normality: These methods rest on the presump-
tion that anomalous data points are the exception rather than the
rule.

. Ambiguity in Thresholding: One of the pivotal decisions in
anomaly detection is determining the threshold that demarcates
normal from anomalous. A lax threshold might overlook subtle
deviations, whereas a stringent one could raise numerous false
alarms.

2.
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Solving these challenges in the manufacturing context requires the
development of a new methodology for anomaly detection described in
Section 3.

3. Proposed methods: Methodology and the AAT framework out-
line

This section provides a comprehensive overview of the proposed
system, called AAT (Adversarial Adaptive Transformer), for AD. This
system is composed of two modules, the Adversarial transformer (AT)
and the Adaptive Support Vector Data Description (SVDD) classifier,
to deal with the complexity of HO-MVTS data as depicted in Fig. 7,
and to facilitate a clearer grasp of the AAT approach, we will present
pseudocode along with a succinct description of the training procedure,
Algorithm 2.

Before diving into the intricacies of our methodology, it is essential
to grasp the real-world scenario that inspired its development and the
specific challenges it aims to address. Understanding this context is
crucial, as it not only grounds the abstract components of the AAT
framework in a practical setting but also highlights its relevance and
utility in real-world industrial applications. Additionally, in elaborating
on the AAT framework, we include a comparative analysis with existing
models, showcasing the distinct effectiveness of AAT in managing high-
dimensional, multivariate time series data within the realm of smart
manufacturing as illustrated in Section 5.

3.1. Problem formulation

Cable assembly manufacturing involves the production of cables and
wire harnesses used in various applications, from electronics to au-
tomotive. Throughout the manufacturing process, numerous machines
(M;) and equipment are employed to assemble and test these cables.
These machines continuously generate time series data, encompassing
a sequence of data points collected at successive intervals ().

Time series data in cable assembly manufacturing (7'Sy,, ;) typically
includes parameters such as voltage (VM’,,,), current (/ M’_,,), tempera-
ture (TMiy,), pressure (PM‘_’,), and various sensor readings. These data
points are collected in real-time, providing a detailed view of the
manufacturing process’s dynamics.

The time series data for each machine M; and at each time ¢ can be
defined as follows:

TSm e = Wht oo Ingy s Tha oo Praos -+ ®)
Where: T'S,,, , represents the time series data for machine M; at time
4 Vo Ingpos Taoos Poayns and so on, represent specific parameters or
sensor readings for machine M; at time 1.
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We aim to harness this detailed data to pinpoint patterns and
irregular behaviors that might result in a flawed product. This kind
of detection is crucial during the manufacturing process, referred to
as ‘“online inspection”, complemented by “offline inspection” post-
production, utilizing specialized tools and advanced technologies like
computer vision models powered by artificial intelligence. Both online
and offline inspections collaborate to establish a robust quality barrier,
as illustrated in Fig. 5.

The nature of high-order dependencies multivariate time series
data, typical in manufacturing, presents numerous difficulties in de-
tecting anomalies such as complexity, multi-modality, high dimension-
ality, noise and outliers, data drift, scalability, non-stationarity, and
non-normality.

The case study in focus pertains to the identification of potential
anomalies in the production of cable connectors at one of Rosen-
berger’s assembly lines. This assembly process exemplifies the appli-
cation of High-Order Multivariate Time Series (HO-MVTS) in Smart
Manufacturing. The manufacturing protocol inherently follows a se-
quential series of steps, with each step building upon the previous
one. Throughout this progression, the product undergoes various pro-
cedures, with multiple sensors monitoring specific parameters at each
stage. These steps are executed either sequentially or in parallel, as
depicted in Fig. 6(a). Any perturbation or irregularity in an early step
can reverberate through subsequent steps, leading to cascading effects.

Each step utilizes various sophisticated machines (M), totaling
eight in our context, equipped with numerous sensors. These sen-
sors collect critical parameters such as voltage (VM’ 1), current (I MiJ)’
temperature (7 Mi’f)’ and pressure (PMI,,,), along with 122 additional
sensor readings at successive time intervals (7). These interdependencies
between steps, combined with the multivariate nature of the data
from various sensors, lead to what we term High-Order dependencies
Multivariate Time-Series (HO-MVTS), presenting a complex scenario
for data analysis, as shown in Fig. 6(b).

The representation of the cable assembly process as a High-Order
MTVS problem involves not only structuring the complex, multidi-
mensional sensor data but also understanding the topology of the
manufacturing steps. The topology—referring to the layout and inter-
connections of these steps—plays a crucial role in how data is collected,
interconnected, and analyzed. This subsection outlines the essential
components of this representation and the underlying process topology:

+ Step and Machine Representation: The manufacturing process
consists of several steps, where each step is associated with a
machine M;.

M:{Ml,Mzﬁ---,M,-,---aMn} (9)
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where M denotes the set of all machines involved in the process,
where each M; corresponds to a specific machine within the
manufacturing process, and i ranges from 1 to n, with n = 8 in
our case.

Sensor Data Representation: For each machine M; at step s,

sensor readings at time ¢ are represented as a vector:
1 10
encompassing all critical parameters and additional sensor data.

Time Series for Each Step: The time series for each step involv-
ing machine M; over a time interval T is captured as:

XM,-,: = [VM,-,x’ IM,,ts TM[,rv PM,-,ts

Ty, = {XM,.,ylsXM,.,yza vXM,,IT}’ an
providing a comprehensive machine dataset for each step in the
manufacturing process.

Comprehensive High-Order MTVS Representation with High-
Order Dependencies: Aggregate the time series data across all
steps into a collection H = {Ty;, Ty, .-, Ty, }, with a mapping
function f : S — H that assigns each step to its corresponding
time series data. This representation not only reflects the intercon-
nected and temporal dynamics of the manufacturing process but
also accounts for High-Order Dependencies. Given the sequential
and, in some cases, parallel nature of manufacturing, parameters
from one step can significantly influence subsequent steps. This
interdependence results in data with high-order dependencies,
emphasizing the complex relationships between different stages
of the manufacturing process.

Matrix Representation of Time Series Data: The comprehensive
dataset for each machine M; across all steps in the manufactur-
ing process can be structured into a matrix representation. This
matrix, denoted as M M, consolidates the time series data over
the interval T for all observed parameters. Each row in M,
corresponds to a vector X, , at a specific time 1.

VM,J] IM,J] TM,JI

M.t IM
i» il
MM: = :’ 2 :‘ 2

Tty Patyay o (12)
Vo Imay Ty Prtap

where each column represents a specific parameter (e.g., voltage,

current, temperature, pressure), and each row represents the

sensor readings at a given time .

Windowing: To capture patterns and relationships over a period,

the data is segmented into windows W = {wy, ..., wr_,.,;} witha

stride of 1. Each window is defined as w, = {u, ... ,u,,,_; }, where

r is the window size.

Ground Truth Label: Each window or segment of the time series

has an associated label y, € {0,1}. A label of 1 indicates that the

window has an anomaly, whereas a label of 0 indicates a normal

observation.

The approach to data representation in the cable assembly process
highlights the complexity and dynamism of collecting, organizing,
and preprocessing multivariate time series (MTVS) data. This process
involves sophisticated technologies to handle the volume and velocity
of data from numerous sensors, forming a matrix that encapsulates
the intricate interdependencies of the manufacturing stages. Such a
comprehensive representation is pivotal for understanding the nuanced
interactions across time lags, which is essential for effective anomaly
detection. Anomaly detection in this context is challenging due to the
complex interplay between datasets from different stages of assembly,
often termed “locality”. The principle of locality underscores the cor-
relation between temporally proximate data points, a critical factor in
identifying relevant patterns and trends for precise anomaly detection.
This analysis forms the basis for creating predictive models capable of
identifying subtle fluctuations and potential issues early on, which is
crucial for maintaining quality standards and minimizing downtime in
cable assembly operations.
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The analysis of HO-MVTS data, therefore, is not just about detecting
anomalies but also about predicting potential disruptions by examin-
ing trends over time. Recognizing the significance of locality further
refines this process, highlighting correlations within specific periods or
operational contexts that might be missed in broader analyses. This de-
tailed exploration of data interdependencies and temporal correlations
underscores the challenges and opportunities in leveraging HO-MVTS
data for smarter manufacturing practices.

An additional complexity in this context is the scarcity of labeled
data, which is crucial for training accurate anomaly detection models.
This scarcity poses a significant challenge, as labeled data are essential
for guiding the learning process of Al models, ensuring they can distin-
guish between normal operations and potential anomalies effectively.
In addressing these challenges, a particular focus is placed on scenarios
where labels for training data may be scarce. This situation underscores
the importance of combining AI technologies with human expertise.
Domain experts play a crucial role by supplying a subset of labels to
evaluate the model’s performance, bridging the gap between automated
systems and nuanced, real-world knowledge. Even though labels might
be scarce, the synergy between AI and human expertise ensures that
domain experts provide the model with a subset of labels to gauge its
performance.

The ultimate aim is to define and implement an online anomaly
detection (AD) approach capable of managing unlabeled multivari-
ate time series, preprocessing them, training the AI model, and sub-
sequently testing its efficacy on both standard trends and custom
anomalies of interest. Building on this foundation, our aim extends to
developing and deploying an online anomaly detection (AD) methodol-
ogy. This innovative approach is designed to navigate the complexities
of unlabeled multivariate time series data effectively. It involves pre-
processing this data, training an AD model called adversarial adaptive
transformer (AAT), and then rigorously testing its capability to identify
both standard trends and bespoke anomalies of interest. Such an online
AD system promises to leverage the strengths of Al while remaining
flexible and responsive to the unique challenges presented by the cable
assembly process, ensuring a robust solution to the problem of scarce
labeled data.

3.2. Proposed transformer for anomaly detection

The Adversarial Adaptive Transformer (AAT) framework is meticu-
lously crafted to tackle the nuanced challenges of anomaly detection in
industrial environments. These challenges include managing high-order
dependencies in multivariate time series data, navigating the complex-
ities of high dimensionality, recognizing the importance of locality in
data correlations, detecting subtle anomalies that may otherwise go
unnoticed, and maintaining adaptability to continuously evolving data
patterns. By integrating adversarial learning with adaptive mechanisms
within a transformer architecture, the AAT framework is uniquely
positioned to address these issues head-on. Its cutting-edge design not
only enhances the accuracy of anomaly detection but also ensures
the system’s ability to adjust to new or unforeseen data patterns, as
discussed in the previous section. Through this approach, the AAT
framework aspires to set a new standard in anomaly detection, offer-
ing unprecedented precision and flexibility in handling the intricate
dynamics of industrial data.

The following subsections delve into the components and func-
tionalities of the AAT framework, elucidating its architecture, training
methodology, and key features. By focusing on the model intricacies,
this section aims to provide a thorough understanding of how the
AAT framework operates and its potential applications in real-world
industrial contexts.
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3.2.1. Model overview

In this section, we will delve into the AAT Model architecture,
emphasizing its unique attention mechanism and covering its adaptive
thresholding. AAT is composed of two modules, the Adversarial trans-
former (AT) and the Adaptive Support Vector Data Description (SVDD)
as a classifier (Fig. 7).

Anomalies in time series data pose a formidable challenge, often
blending subtly with normal data and posing difficulties for meth-
ods solely dependent on local or global contexts. The self-attention
mechanism offers a more expansive view, illuminating the nuanced dif-
ferences between regular data points and anomalies. This insight forms
the basis of ’contextual anomaly attending’, emphasizing the pivotal
role of encompassing temporal context in pinpointing anomalies, even
those deeply intertwined with regular patterns.

High-order Multivariate Time Series (HO-MVTS) data further com-
pounds the challenge, exhibiting intricate interdependencies among
multiple variables. Such data often shows deviations from expected
patterns across several variables and time intervals, amplifying the
importance of capturing locality within the data.

Traditional anomaly detection methods, including conventional
Transformer models, may struggle to effectively capture these high-
order dependencies and locality issues, leading to suboptimal perfor-
mance in anomaly detection tasks within HO-MVTS data.

To address these challenges and other challenges that have been
introduced in Section 3.1, the Adversarial Transformer (AT) model is
introduced. The AT employs a unique configuration with one encoder
(E) and two decoders (D1 and D2), fostering a competitive dynamic
between the encoder and decoders. This setup enhances the model’s
ability to discern regular patterns from anomalous ones and specifically
targets the subtle blending of anomalies with normal data patterns.

The AT is designed to handle the complexities of HO-MVTS data and
the locality issues inherent in anomaly detection tasks. By leveraging
adversarial learning techniques and robust attention mechanisms, the
AT effectively navigates the intricacies of time series data.

By incorporating adaptive mechanisms, the AT captures both local
and global dependencies within the data, enabling it to effectively
discern anomalies from normal patterns, even in the presence of subtle
blending across multiple variables and time intervals. This capability
positions AT as a promising solution for addressing the challenges
posed by contextual anomalies and HO-MVTS data, setting a new
standard for anomaly detection in complex industrial environments.

The use of a single encoder equipped with an anomaly attention
mechanism in our AT model represents a balance between compu-
tational efficiency and functional capability, making it suitable for
real-time and resource-constrained environments. The option of incor-
porating more decoders remains open for future exploration, particu-
larly as computational capabilities evolve and more complex anomaly
detection scenarios are considered.

Anchored on an adversarial basis, the AT boasts a singular config-
uration, composed of one encoder (E) and a pair of decoders (D1 and
D2). This setup fosters a competitive dynamic between the encoder
and decoders, bolstering the model’s adeptness at discerning regular
patterns from anomalous ones and addresses the intricate challenge
of anomaly detection within complex HO-MVTS data by harnessing
the advanced capabilities of the self-attention mechanism, particu-
larly within the context of ’contextual anomaly attending’. This ap-
proach specifically targets the subtle blending of anomalies with normal
data patterns, a common challenge in various industries, including
manufacturing.

3.2.2. Attention mechanism in AT

In time series anomaly detection, recognizing both long-term and
short-term dependencies is pivotal. Anomalies usually manifest as
variations from immediate patterns and often correlate more with
neighboring time points than with distant ones. By incorporating the
anomaly attention mechanisms into the Transformer’s Encoder block,
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the model can deftly identify standout features in time series data. This
enhancement allows for more accurate and efficient anomaly detection,
significantly boosting the identification and monitoring of potential
malfunction alerts. This advancement provides a nuanced view that
might elude traditional self-attention mechanisms, thereby bolstering
the Anomaly Transformer’s capabilities. Therefore, we introduce the
dual attention system in AT:

1. Long-Term Dependency (LTD): Predominantly based on the
transformer’s self-attention mechanism, LTD captures correla-
tions across the entire series, ensuring no long-term dependen-
cies are missed. Formally, it is represented as:

softmax, (QKT) "

Vi
with d, the dimension of the key vectors and K the transpose of
K. This mechanism is agnostic to the specific distance between
points in a sequence, ensuring no inherent bias towards the
spacing of data points. The Transformer model, which underpins
this approach, is discussed in detail in Section 2.3.2, providing
a comprehensive overview of its architecture and functionality.

. Short-Term Dependency (STD): To cater to the immediate neigh-
bors of a data point, AT utilizes an attention mechanism based
on the Gaussian kernel. This attention is formulated as:

d?
i = Y
Gaussian;; = exp ( Y >

where d;; represents the distance between positions i and j, and
o is a hyperparameter that dictates the width of the Gaussian
kernel.

SelfAttn, ;= (13)

14

Balancing and tuning long-term and short-term attentions. The Ad-
versarial Transformer (AT) achieves a harmonious integration of Long-
Term Dynamics (LTD) and Short-Term Dynamics (STD) attentions
through a learnable parameter, 6. This parameter is critical in dictating
the balance between these two types of attention, with the combined
attention mechanism, termed ‘CombinedAttention (CA)‘, formulated as:

CombinedAttn;; = 6 x SelfAttn;; + (1 — 0) X GaussianAttn;; (15)

Initialized within the interval [0,1], 0 is subject to updates during the
training process via gradient descent, ensuring the model’s adaptability
to the varying significance of LTD and STD in different contexts.

To maintain ¢ within its intended range and ensure the adap-

tive nature of AAT, it is adjusted using a sigmoid activation function
post-update:
6 = sigmoid(6’) (16)
where @’ represents the interim value of # prior to the application of the
sigmoid function. This approach guarantees that § dynamically finds
the optimal equilibrium between long-term and short-term attention
based on the training data’s characteristics, enabling the model to
effectively capture and respond to both immediate and evolving data
patterns.

3.2.3. Training approach

The Adversarial Transformer (AT) is composed of three elements:
Transformer Encoder E and two transformer decoders D1 and D2. As
depicted in Fig. 7a in the AT module, the three elements are connected
into an architecture composed of two transformer encoder/decoder
blocks ED1 and ED2 sharing the same encoder network E: employs a
two-phase training process for its encoder/decoder architecture in an
adversarial style. These two phases are:

Phase 1: Standard Transformer Encoder/Decoder Training In
the first phase, both transformer Encoder-Decoder blocks (ED1 and
ED2) are trained to reconstruct the input data, where the encoder
E compresses the input W into a latent space Z, and each decoder
D1 and D2 attempts to reconstruct the input from this latent space.
The objective of this phase is to minimize their reconstruction errors
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on the original input data. This reconstructive role is fundamental
during the first phase of training, where the primary goal is to learn to
accurately replicate the normal operation data, ensuring that the model
can identify what constitutes a non-anomalous state. The output of ED1
after Phase 1 training is denoted by O1.1, and the output of ED2 after
Phase 1 training is denoted by 02.1:

Ol.1 = DI(E(W)) 17)

02.1 = D2(E(W)) 18)
The loss functions for this phase are:

Lip =W -0L1|? 19)

Lgpy = I — 0211 (20)

Phase 2: Transition to Adversarial Training In the second phase,
an adversarial relationship is established between ED1 and ED2. Here,
ED, is trained to distinguish real data from the reconstructions pro-
duced by ED,. and ED, is trained to fool ED,, such that ED, cannot
differentiate between real data and the reconstructions of ED,. In
other words, ED1 (Encoder + D1) tries to produce reconstructions
EDI1(W) = DI(E(W)) that, when passed through the encoder E again
and then reconstructed by D2, are indistinguishable from the original
inputs. ED2 (Encoder + D2) tries to distinguish between the real
input W and the input reconstructed by ED1, i.e., EDI12(ED1(W)) =
D2(E(D1(E(W)))). ED1 tries to minimize the error when its output
is reconstructed again by ED2 while ED2 tries to maximize this error,
essentially trying to identify if the input is from ED1 or the original
data. Therefore we can formulate the adversarial loss functions as
follows:

min Lppy = [IW - ED2EDIW))|I* = |W — DAEMDUEW)I* (21)
max Lypy = —[IW ~ EDAEDIW)|* = =W — DAEMDIEW))|I*

(22)

During adversarial training, D2 processes both real inputs and re-
constructions from D1, developing the ability to differentiate between
normal and pseudo-anomalous inputs. Thus, D2 functions both as:

+ Traditional Decoder: During Phase 1, D2 functions like a normal
decoder, reconstructing the input from the latent space produced
by the encoder.

Adversarial Decoder: During Phase 2, D2 has a dual role. It re-
constructs inputs from the latent space and also tries to maximize
the reconstruction error of inputs that were passed through DI.
Essentially, D2 is trained to detect when the input it receives has
already been through another reconstruction process (from D1).
This dual-input mechanism ensures that D2 develops a nuanced
understanding of what constitutes normal versus anomalous pat-
terns, bolstered by continuous feedback from its attempts to
correctly classify the inputs (from D1).

This setup allows ED1 to learn better representations that can fool
ED2, while ED2 becomes better at distinguishing real inputs from
reconstructions, enhancing AT ability to distinguish between anomalies
and regular data points in the adversarial phase and making it more
adept at discerning between regular patterns and anomalies. This is
achieved by ensuring that ED1 can produce reconstructions that are
close to normal data, while ED2 learns to amplify the differences
when the data is anomalous. This distinction makes it easier to de-
tect anomalies during inference. This integration balances effective
anomaly detection with computational efficiency. Introducing more
than two decoders could enhance the model’s ability to discern and
classify multiple types of anomalies or operational states simultane-
ously, thereby increasing robustness and functional diversity. Each
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decoder could specialize in different aspects of the data or different
types of anomalies, similar to ensemble methods that aggregate diverse
perspectives. More decoders provide redundancy, reducing the risk
of significant performance drops if one decoder pathway degrades or
fails. Our methodology leverages a single-encoder structure, contrasting
with some dual-encoder systems in similar applications. The integra-
tion of an anomaly attention mechanism within this single encoder
enhances the model’s ability to focus on pertinent features indicative
of anomalies, without duplicative encoding layers. This approach re-
duces the number of trainable parameters, simplifying the training
process and decreasing the computational burden during both the
training and inference phases. With only one encoder to process inputs,
data throughput speed increases, making the system more suitable
for real-time anomaly detection applications where response time is
critical. Compared to models employing dual encoders like the TranAD
model [8], or multiple decoding pathways, our single-encoder model
with an integrated anomaly attention mechanism is computationally
less expensive and faster. This design choice addresses the need for
efficient data processing in industrial settings, where delays can lead
to increased operational risks and costs. While the single encoder
design enhances computational efficiency, it might limit the model’s
ability to independently adapt to highly variable or disparate feature
sets better handled by multiple encoders. However, the dual anomaly
attention mechanism is specifically designed to mitigate this limitation
by enhancing the encoder’s focus on relevant features.

3.3. Proposed support vector data description (SVDD) module

For anomaly detection in manufacturing time series data, the inte-
gration of adaptive thresholding techniques, such as NDT, POT, KQE,
and notably SVDD, which we adapt, offers a sophisticated approach,
look at Section 2.1. These methods not only streamline the anomaly de-
tection process but also boost the precision and promptness of pinpoint-
ing potential issues in high-dimensional multivariate nonstationary
manufacturing data. Maintaining operational efficiency and meeting
quality standards in today’s manufacturing environments hinges on
such proactive anomaly identification.

With the merger of adversarial learning and adaptive loss, the
proposed Adversarial Adaptive Transformer (AAT) model capitalizes
on the potency of these adaptive thresholding methods, Fig. 7b, the
SVDD module. It promises a refined and robust framework tailored for
intricate manufacturing contexts.

SVDD’s prominence shines brightest in handling high-order Multi-
variate Nonstationary Manufacturing data. At its essence, SVDD en-
compasses the majority of data points within a hypersphere in the
feature space, forming a robust representation of standard operational
behaviors. This method is particularly apt for the complex, high-order
nature of modern manufacturing.

SVDD'’s non-linear kernel trick excels in unraveling intricate, non-
linear relationships intrinsic to multivariate manufacturing data, a boon
in non-stationary settings where data dynamics shift constantly. When
integrated with the transformer Encoder-Decoder structure, SVDD’s
unique prowess lies in its adaptive thresholding. Unlike conventional
methods, SVDD dynamically adjusts based on the error vector, or
anomaly score, generated by the transformer. This thresholding, honed
by training on labeled test data’s error vector, aims to optimize the
F1 score. As a result, it effectively reduces both the False Positive
Rate (FPR) and False Negative Rate (FNR), curbing the operational and
quality costs linked to false alarms.

Moreover, SVDD’s design allows the assimilation of domain ex-
pertise, which is invaluable in manufacturing. Such integration deliv-
ers a richer understanding of anomalies, which is important in the
multifaceted world of modern manufacturing.

With these attributes, SVDD emerges as an adaptable and potent
technique for anomaly detection in high-order Multivariate Nonstation-
ary Manufacturing data. It forms the bedrock of our proposed Enable
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Fig. 8. Adaptive anomaly detection using SVDD.

Transformer model, which fuses Adversarial Learning and adaptive
loss. We have employed the SVDD classifier with RBF kernel to sculpt
a nonlinear SVDD as shown in Fig. 8.

First, we map the two loss vectors derived from the transformer
model into a higher-dimensional feature space, denoted by matrix X.
This is coupled with grid parameters essential for refining the SVDD
model and a range determining the weights of two unique error types:
‘Reconstruction_Loss‘ and ‘Adversarial_Loss‘, then we generate a com-
bined loss metric by systematically comparing these two errors, relying
on a fluctuating weighting factor. With the accumulated losses, the
dataset becomes richer, setting the stage for training the SVDD model.
This training is facilitated through a grid search approach, guaranteeing
the identification of the optimal model specifications. Once the best
model is pinpointed, the algorithm embarks on an adaptive exploration
of potential threshold values. The primary goal is to identify the thresh-
old which optimally elevates the F1 score. This process is underpinned
by the desire to harmoniously blend the two error types and recognize
the ideal threshold, thereby optimizing the SVDD model’s performance.
Ultimately, the algorithm produces the threshold that ensures the peak
F1 score as its output. More details are provided in Algorithm 1.

Algorithm 1 Determine Adaptive Threshold for AAT with SVDD

Require: Data matrix X, Grid parameters for SVDD param_grid,
Range for a between 1 and 10 and § equals 10 - a.
Ensure: the Best Threshold for the Global F1 Score
for « =1 to 10 do
2: combined_loss
Adversarial_Loss
X[Loss-a] < combined_loss
4: end for
Split X into X _train, X _test,y_train, y_test
6: svdd GridSearchCV(BaseSVDD(display="off’), param_grid,
scoring="F1_score")
svdd fit(X _train, y_train)
8: best_model « svdd.best_estimator_
best_F1 « 0
best_threshold < 0O
for each threshold in a predefined range do
Predict labels using distances from best_model and the
threshold
Compute F1_score for the predicted labels

< a X Reconstruction_Loss + (10 — a) X

«—

10:

12:

14: if Fl_score > best_F1 then
best_F1 « F1_score
16: best_threshold « threshold
end if
18: end for

return best_threshold
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Algorithm 2 Adversarial Encoder Transformer Training Algorithm

Notations:

+ E - Encoder
* D,, D, - Decoders
» W - Dataset for training
* N - Iteration limit
* 0 - Weight parameter for combined attention
* LTD - LongTermDependency
* STD - ShortTermDependency
* CA - CombinedAttention

Require:

1: Encoder E with two branches for LTD and STD.

2: Decoders D, and D,.
3: Dataset for training W'.
4: Adaptive hyperparameter o.
5: Epochs N.
6: procedure TRAINING
7: Initialization:
8: Initialize weights for E, D, D,.
9: Initialize 6 to 0.5.
10: n<0
11: while n < N do
12: // Process each window in the dataset
13: for each window W, in W do
14: O,K,V « LinearProjection(W;) > Linear projection of
window
15: LTD <« AnomalyAttention(Q, K, V)
16: STD « GaussianKernel(W;,¢)
17: CA=0XLID+ (1 -6)xSTD
18: 0,,0, « D,(E(W with CA)), D,(E(W with CA))
19: // Calculate loss based on differences between outputs
20: L« §||01 - +(§)I|01 — W,|| > Reconstruction Loss
21: L, « %HOZ -will+ (%)HOZ - Wl > Adversarial Loss
22: MaxD1MinD2(RescosError)
23: // Update weights using calculated loss
24: Update 6 based on the gradient of the combined loss

concerning 6.

25: Update weights of E, D;, D, using L, L,
26: end for
27: n < n+ 1 Backpropagate using Combined Loss and updated

weights, (Alog3)
28: end while
29: end procedure
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The 3 algorithm outlines an adaptive weight update process tailored
for the Adversarial Transformer (AT) Model, focusing on the interplay
between its encoder and dual decoders. Within each training iteration,
the algorithm processes a minibatch of examples from the dataset,
potentially supplemented by noise samples if applicable, embodying
an adversarial training context. It iteratively updates the encoder and
each decoder (focusing on Long-Term Dynamics (LTD) and Short-
Term Dynamics (STD) respectively) based on their stochastic gradients,
enhancing the model’s ability to discern patterns and anomalies in the
data.

A critical aspect of this approach is the dynamic adjustment of
the 6 parameter, which balances the combined attention mechanism
between LTD and STD. This is achieved through gradient descent,
minimizing the combined loss from both decoders, thereby refining the
model’s focus and improving anomaly detection accuracy. The use of
standard gradient-based learning rules, including momentum, ensures
efficient convergence and adaptability of the model to evolving data
characteristics, making this algorithm a cornerstone of the AT model’s
training process.

Algorithm 3 Adaptive Weight Update for AAT Model Training

for each training iteration do
2: Sample minibatch of m examples {W,, ..., W,,} from the training
dataset.
Sample minibatch of m noise samples {z(1), ...z} from noise
prior p,(z) > Only if applicable.
for k steps do
Update the encoder E by ascending its stochastic gradient:

m
Vgei Y log EW®).
i=1

Update the first decoder D, by ascending its stochastic
gradient related to LTD:

m

Voo % Y [log D, (E(W D)) .

i=1

Update the second decoder D, by ascending its stochastic
gradient related to STD:

m

ngzﬁ Y [log D,(EW D))] .

i=1

Update the combined attention 0 parameter by applying gra-
dient descent to minimize the combined loss from both D; and
D,:

0 < 6 — nV,CombinedLoss(D,, D,, 0),

where 7 is the learning rate.

end for
This algorithmic approach ensures dynamic adjustment of the encoder and
decoders, adapting to both LTD and STD features in the data. Gradient-
based updates leverage standard learning rules, incorporating momentum
for enhanced convergence.

3.4. Advantages and differentiators

AAT’s design addresses several limitations of existing models: The
transformer-based architecture excels in managing high-dimensional
time series data, effectively capturing complex dependencies through
its attention mechanisms. By incorporating Gaussian attention and
multi-head attention, our model can focus on both local and global
dependencies, which is essential for time series analysis in industrial
applications. Traditional methods often struggle with the dimensional-
ity of the data, performing well only on low-dimensional data and thus
lacking scalability in manufacturing settings.
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Unlike some approaches that necessitate two encoders, the AAT
utilizes a single encoder with an integrated anomaly attention mech-
anism. This dual attention mechanism combines scaled-dot product
attention with Gaussian attention, reducing model complexity while ef-
ficiently capturing both short-term and long-term dependencies. Multi-
headed attention enhances the model’s ability to capture complex
interdependencies across different positions of the input sequence,
improving global contextual understanding. In contrast, Gaussian at-
tention focuses on local contextual dependencies by assigning higher
weights to nearer elements, which is crucial for detailed anomaly
detection where local patterns are significant.

The AAT’s training process consists of two phases of training,
transformer training and adversarial training. In the initial phase,
the transformer model captures intricate patterns of normal data. In
the adversarial phase, it enhances its ability to distinguish between
anomalies and regular data points. This dual-phase approach mitigates
overfitting commonly encountered in complex deep-learning models.
By using a shared encoder and assigning distinct roles to each decoder,
the model maintains stability and benefits from improved gradient flow
and feature utilization across different training phases. In comparison
with pure GAN approaches, excluding reconstruction errors might seem
to simplify training and reduce costs, but it can lead to convergence
issues due to the adversarial nature of training, which can oscillate
without a balanced generator and discriminator. Additionally, pure
GANSs require careful tuning to ensure effective learning, and without
reconstruction errors, they might not learn the detailed structure of the
data, reducing anomaly detection accuracy.

By training the model on normal data and then using the reconstruc-
tion errors to train the SVDD, our approach avoids solely relying on the
assumption that anomalous data points are the exception. The dynamic
thresholding mechanism ensures that the model remains effective
even when the input data distribution changes. It is important to note
that the threshold set during the training of the SVDD is based on these
reconstruction error vectors and not on scaled values. This approach
ensures that when both normal and abnormal windows generate vec-
tors of the same scale but with different slopes or directions, the SVDD
can effectively distinguish between them, particularly by employing the
Radial Basis Function (RBF) kernel to transfer these vectors to another
space. In the first training phase, the outputs O1 and O2 are the results
of the transformations by ED1 and ED2, as illustrated in Fig. 7a, the
AT module. Our model can be adapted to other industrial processes
by leveraging the adaptive thresholding mechanism. This adaptabil-
ity allows for effective generalization across different processes with
varying characteristics. To capture the specific normal and anomalous
patterns of each unique environment, it is necessary to retrain only the
SVDD component. This approach simplifies the adaptation process and
ensures the model’s effectiveness in diverse industrial settings.

Our choice to integrate a GAN-like mechanism with reconstruc-
tion errors is driven by the goal of leveraging the strengths of both
approaches. This hybrid model is designed to achieve high sensitiv-
ity in anomaly detection with enhanced stability and reliability in
training, qualities that are essential for practical applications, espe-
cially in complex industrial settings. Compared to state-of-the-art ap-
proaches and benchmarked models, our approach demonstrates signif-
icant enhancements in effectively addressing the complexities of data
in manufacturing. However, our approach still has some limitations.

Inability to Efficiently Handle Tabular Data: Our model, which
utilizes a transformer architecture, faces limitations in efficiently incor-
porating tabular data such as statistical process control (SPC) data and
other categorical parameters from the machine or product. Our current
model architecture is primarily designed for time series data and does
not inherently accommodate tabular data, which could contain signif-
icant predictive information. However, recent techniques such as the
tabular transformer have shown promise in overcoming this limitation.
By adding another embedding block to incorporate tabular data, fu-
ture work could integrate these features more effectively, potentially
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using a hybrid model that combines elements of traditional machine
learning techniques with deep learning. In summary, The AAT model
further leverages its design to focus on variations in data correlations,
employing adaptive thresholding techniques. This approach allows the
AAT to effectively navigate the complexities inherent in anomaly de-
tection within multivariate time series data. By concentrating on these
variances and utilizing adaptive mechanisms, the AAT presents a robust
and comprehensive solution, adept at accurately detecting both subtle
and significant anomalies, thus addressing the multifaceted challenges
of anomaly detection.

4. Experimental framework

This section outlines the datasets utilized, the performance metrics
employed in the experimental evaluations, and the practical appli-
cation study conducted in the real-world manufacturing context at
Rosenberger.

4.1. Challenges with assessing model performance on public datasets

Numerous papers employ public datasets that have been repetitively
used in research. Over time, researchers have come to understand the
key features of these datasets, thereby accumulating experience that
aids in training models. This recurrent use poses a potential pitfall:
it becomes challenging to gauge a model’s genuine performance as
both the model and the researcher are overly familiar with the dataset.
Consequently, relying solely on such datasets for performance assess-
ment can be misleading. In essence, the researcher, not necessarily the
model, knows where to look, which may not always reflect real-world
applicability.

In our work, we aim to tackle this limitation head-on. Instead
of solely relying on public datasets, our experiments extend to real
manufacturing data, including one internal and two external datasets.!

This allows for a more comprehensive evaluation of our model’s per-
formance in realistic scenarios. Additionally, we do incorporate certain
public datasets, ensuring a comparative evaluation with state-of-the-art
models.

4.2. Datasets description

While public datasets offer a common ground for model comparison
and benchmarking, one must approach them with a degree of caution.
The familiarity of these datasets within the research community means
that they can sometimes offer a skewed representation of a model’s
capabilities. It is essential to consider the broader context and not just
the dataset in isolation.

The public datasets used for the evaluation of the performances of
our model are described below.

SecureWater Treatment (SWaT) Dataset: This dataset originates from
an actual industrial water treatment facility focused on producing
filtered water. It covers 11 days of the plant’s continuous operations.
The first 7 days document normal functioning, while the remaining
4 days record scenarios where the system was under cyber—physical
attacks. The dataset encompasses a variety of measurements, including
sensor readings like water levels and flow rates, as well as actuator
activities such as the operation of valves and pumps.

Soil Moisture Active Passive (SMAP) Dataset: The SMAP dataset
is a collection of telemetry data associated with soil samples, gath-
ered using the Mars rover. Provided by NASA, this dataset includes
55 separate traces, each encompassing 25 different dimensions. The
data offers valuable insights into telemetry anomalies, as reported in

1 The two external manufacturing datasets PHM and ECoating can be found
here Fraunhofer.
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NASA’s Incident Surprise Anomaly (ISA) reports, which are part of the
spacecraft monitoring system’s data collection.

Server Machine (SMD) Dataset: SMD is one of the largest public
datasets currently available for evaluating multivariate time-series
anomaly detection. It contains metrics like CPU load, network usage,
memory usage, etc, over 5 weeks long, monitors 28 server machines
for a large Internet company with 33 sensors.

Mars Science Laboratory (MSL) Dataset: Analogous to the SMAP
dataset, this dataset represents sensor and actuator data from the
Mars rover. It contains complex sequences labeled as A4, C2, and
T1. Notably, the MSL dataset encompasses telemetry anomaly data,
originating from NASA’s spacecraft monitoring systems, and covers a
range of 55 dimensions.

In addition to the frequently used public datasets in this field, we

evaluated our method on actual industrial data, where the proportion
of anomalies does not exceed 3.5%. E-Coating: An industry case study
dataset from the air filtration system of an electrophoresis paint shop.
Can be used to predict process conditions as a basis for maintenance
improvements. Inspection records over 7 years and sampled every
30 min.
Prognostics and Health Management (PHM): The data provided by
PHM Data Challenge 18 was provided to investigate the fault behavior
of ion mill etch tools in the wafer manufacturing process. It is a
database that collects sensor data in time sequence from ion mill
etching tools operating under various setting conditions.

Statistical details are summarized in Table 1.

4.3. Feasibility study on Rosenberger’s dataset

We conducted our feasibility study using Rosenberger’s internal
dataset, which was sourced from various sensors involved in the cable
assembly manufacturing process. Given that multiple machines func-
tion in tandem during this assembly process, the data can be classified
as a high-order multivariate time series, as elaborated in Section 3.1.

This dataset encapsulates data collected during the initial half of
2023, comprising 126 variables in total. For our analysis, we utilized
data from the first four months as our training set and data from the
subsequent two months for testing.

Anomalous windows, which correspond to defective batches, were
meticulously identified and excluded from the training data with in-
valuable assistance from domain experts. Comprehensive statistical
details related to this dataset are presented in Table 1.

4.4. Implementation details

The Adaptive Adversarial Transformer (AAT) is optimized for real-
time evaluation in smart manufacturing through a comprehensive im-
plementation strategy that encompasses model training, data prepro-
cessing, and lifecycle management

Model Training and Evaluation: Our proposed Transformer was
optimized to achieve minimal reconstruction error within ten epochs.
With a learning rate of 0.005 and a gradient clip value of 0.2 were
set, employing the mean squared error (MSE) as the loss function. For
hyperparameter tuning of the SVDD component, Hyperopt’s optimizer
was utilized for distributed asynchronous hyper-parameter optimiza-
tion, exploring a I' search space of (0.1, 0.2, 0.5) for the RBF kernel
with empirically determined 30-fold cross-validation.

Data Infrastructure and Management:

1. Data Storage and Scalability: A lakehouse architecture is em-
ployed for data storage, offering a harmonized platform that
combines the benefits of data lakes and data warehouses. This ar-
chitecture supports extensive data volume and variety, providing
a scalable foundation for advanced analytics in manufacturing
settings.
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Table 1
Details of benchmark Dataset, with three datasets in manufacturing.
Dataset Applications Application Train Test Dimensions Anomalies
Senario(s) (%)
SMAP Space Monitoring 135183 427 617 55 13.13
MSL Space Monitoring 58317 73729 55 10.72
SWaT Water Monitoring 496 800 449919 51 11.98
SMD Server Monitoring 708 405 708 420 38 4.16
E-Coating Machinery Monitoring 73760 36881 17 3.18
Equipment
PHM Ion mill etch tool Production 750000 250000 24 2.14
Quality
Rosen Manufacturing Production 802912 378015 126 1.1
Quality

. Preprocessing Pipeline: A systematic pipeline ensures data
quality, encompassing normalization, imputation, feature ex-
traction, and secure feature storage. These preprocessing steps
are crucial for preparing the manufacturing data for subsequent
analysis by AAT.

. Model Lifecycle Oversight: Comprehensive management of the
AAT model’s lifecycle is implemented, encompassing stages from
training and deployment to active monitoring, with a focus on
version control and tracking of model iterations for consistent
performance evaluation.

. Operator Interface: An interface is devised for system opera-
tors, equipped with analytical and visualization tools, to effec-
tively engage with the AAT system and leverage its insights for
operational oversight.

. Human-Machine Interface (HMI) Development: An intuitive
HMI was designed for operator interaction with AAT, offer-
ing clear visualizations of anomalies and analysis tools, which
improves the decision-making process in manufacturing settings.

Operational Integration and Continuous Improvement: Integration
challenges, such as ensuring data compatibility and model adaptability
to the evolving manufacturing processes, are addressed through me-
thodical engineering and continuous optimization practices. Security
measures are prioritized to protect data integrity in the deployed
environment. Additionally, operator training is emphasized to ensure
proficient use of the AAT system and its associated data management
tools.

By addressing these key areas, the AAT system is rendered capable
of robust performance and seamless integration into the manufacturing
workflow, ensuring it remains responsive to the dynamic and complex
nature of industrial data.

5. Evaluating the effectiveness of AAT

In this section, we conduct an extensive performance assessment of
the proposed Adaptive Adversarial Transformer (AAT) framework, aim-
ing to provide a comprehensive evaluation through various advanced
metrics. Our analysis is meticulously structured to not only benchmark
AAT against established state of art models in the anomaly detection
field but also to explore the impact of different configurations, partic-
ularly focusing on the Peak-Over-Threshold (POT) approach and the
Support Vector Data Description (SVDD). This exploration is crucial
for understanding AAT’s adaptability and determining the optimal
setup that enhances its robustness across diverse operational scenarios.
Additionally, by employing advanced metrics tailored to time series
anomaly detection — including distance-based, range-based, and affili-
ation metrics — we delve into the precision, recall, and F1 score among
other metrics, to assess AAT’s ability to finely balance false positives
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and false negatives. This multifaceted analysis aims to elucidate AAT’s
operational effectiveness, adaptability, and comparative performance
in the broader context of anomaly detection technologies.

5.1. Detection performance

For our evaluation approach, we utilize the point adjustment tech-
nique. Here, a window is deemed abnormal if any of its points are
identified as anomalies. This methodology is particularly pertinent
in manufacturing contexts where maintaining a near-perfect quality
gate is imperative to ensure product integrity. Accepting a few false
negatives within a window is tolerable given the relatively short win-
dow size, making subsequent manual inspections manageable. Pre-
cision, recall, and Fl-score were used to measure the classification
performance.

The Precision, in the context of model evaluation, is the proportion
of true positive predictions in the set of all samples predicted as
positive. It is calculated with the following formula:

TP
TP +FP’
where TP represents the count of true positives and FP denotes the
count of false positives. Note that TN (true negatives) and FN (false
negatives) are not directly involved in the calculation of precision, but
are relevant in other performance metrics.

Precision = (23)

The Recall, also known as sensitivity, measures the fraction of
actual positive samples that are correctly identified by the model. It
is mathematically expressed as:

TP

Recall = TP-I-—FI\I

(24)

The Fl-score, a metric that harmonizes precision and recall, pro-
vided a single measure of a test’s accuracy by calculating their har-
monic mean. It is mathematically defined as:

2 x Recall x Precision

25
Recall + Precision 2%

F1-Score =

5.2. Ablation study

In this subsection, we conduct a comprehensive ablation study
to critically analyze the key components of our proposed Adaptive
Adversarial Transformer (AAT) model for anomaly detection in smart
manufacturing environments. we aim to understand the individual and
collective contributions of various model parameters and mechanisms
towards the overall performance.
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Fig. 9. Dual attention mechanism tuning parameter 6.

5.2.1. Dual attention mechanism, tuning parameter 6

We begin by dissecting the dual attention mechanism, focusing on
0, the parameter tuning the balance between Gaussian attention and
multi-head attention within our proposed anomaly detection model.
0 is defined within the range [0,1], where 6 = 1 fully activates the
multi-head attention, and 6 = 0 fully employs Gaussian attention. The
attention output is dynamically adjusted as follows:

Final Attention = 0 x Multi-head Attention+ (1 —8)x Gaussian Attention
(26)

We aim to assess how varying 6 influences the model’s sensitivity
to short-term dependencies across different datasets, including MSL,
SMAP, and SWaT, which are known for their diverse temporal char-
acteristics. We will increment 6 in steps (0.1 to 1.0) and evaluate each
setting’s impact using precision, recall, and Fl-score. Fig. 9 indicates
that the anomaly detection performance in datasets such as MSL, SMAP,
and SWaT is significantly affected by how 6 is tuned. These datasets
typically feature anomalies that are more effectively detected through
enhanced sensitivity to short-term dependencies, suggesting a higher
weighting towards Gaussian attention in these scenarios. The dynamic
tuning of ¢ strikes an optimal balance between the two attention
mechanisms, influenced by the characteristics of the training data.

These observations will guide the development of algorithms for
automatic 6 adjustment, enhancing the model’s adaptiveness and ap-
plicability in real-time anomaly detection environments.

5.2.2. Adversarial loss, tuning parameters a and f

As we combine the two loss vectors the reconstructed and the
adversarial, we can tune the impact of the adversarial effect by tuning
the « and g parameters. See Fig. 8. This analysis highlights how the
interplay between adversarial and reconstruction loss influences the
model’s efficacy in detecting anomalies. By adjusting these parame-
ters, we aim to find the optimal balance that enhances the model’s
robustness.

Our approach enables the possibility to control the contribution of
each training phase through « and g, where

combined_loss = a X Adversarial_Loss + f X Reconstruction_Loss
with a + § = 1.

We noticed that when « 0.7 and g = 0.3, we achieved the
best results, indicating that the adversarial phase contribution is higher
than the standard training, look at Fig. 10. This finding suggests that
adversarial training plays a crucial role in enhancing the model’s per-
formance in anomaly detection within smart manufacturing systems.

27)
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By allowing the flexibility to adjust these parameters, our approach
can adapt to various datasets and conditions, maintaining robust and
effective anomaly detection across different scenarios. This adaptabil-
ity is critical in addressing data drift and changing data distribu-
tions over time, ensuring the model’s continued efficacy in real-world
applications.

5.2.3. Adaptive thresholding

The adaptive thresholding component, implemented via the Support
Vector Data Description (SVDD) model, is critical for dynamically
adjusting the threshold based on the anomaly scores produced by
the model. This adaptation is key to managing varying degrees of
anomaly severities and frequencies encountered in real-world data.
Removing adaptive thresholding results in a less flexible model, poten-
tially leading to increased false positives or false negatives, depending
on the static threshold set. This diminishes the model’s practical ap-
plicability, especially in environments where operational conditions
change over time. Table 2 illustrates the impact of adaptive thresh-
olding on model performance. SVDD is used due to its effectiveness
in defining a boundary around the majority of data points, which
represents normal conditions in high-dimensional space. This choice
is particularly pertinent given the complexity and dimensionality of
the data involved. Replacing SVDD with another classifier or using a
different thresholding approach, such as Point Over Threshold (POT),
results in a degradation in the model’s sensitivity and specificity. POT,
while simpler to implement, often fails to account for the intricate
patterns present in high-dimensional data, leading to less accurate
anomaly detection. For instance, simpler classifiers might not capture
complex boundary shapes in high-dimensional space as effectively as
SVDD, potentially leading to poorer performance in anomaly detection.
Table 2 compares the performance of SVDD with other classifiers and
thresholding approaches.

5.3. Comparative evaluation

After having a look at the AAT model performance on the bench-
marked datasets and analyzing its performance against some ablations
on its main components, we juxtapose the AAT model with renowned
state-of-the-art methods [7,8,24,27,28,46], evaluating both their fea-
ture capabilities and overall detection accuracy. Table 2 presents the ef-
fectiveness of the Adaptive Adversarial Transformer (AAT) in anomaly
detection, as assessed by our developed adaptive anomaly detection
methodology, across standard benchmark datasets as well as propri-
etary internal data. Impressively, our method achieves cutting-edge
performance across both data types.
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Fig. 10. Reconstruction loss vs Adversarial loss, « and f parameters.

Table 2
Performance comparison of AAT against the state of the art methods.
Dataset
Method SMAP MSL SWAT
P R F1 P R F1 P R F1

LSTM-AE 0.852 0.733 0.788 0.629 1,000 0.772 0.778 0.511 0.617
OmniAnomaly 0.741 | 0.977 | 0.843 | 0.886 | 0.911 0.898 | 0.978 | 0.696 | 0.813
AD-GAN 0.816 | 0.922 | 0.865 | 0.852 | 0.993 | 0.917 | 0.959 | 0.696 | 0.807
USAD 0.769 0.983 0.863 0.881 0.978 0.927 0.987 0.740 0.846
TranAD 0.804 | 0.999 | 0.891 0.903 | 0.999 | 0.949 | 0.976 | 0.699 | 0.815
AnomalyTrans 0.941 | 0.994 | 0.966 | 0.920 | 0.951 0.935 | 0.915 | 0.967 | 0.941
AAT 0.884 0.990 0.934 0.901 0.963 0.930 0.936 0.892 0.913
Dynamic POT 0 * 0* 0 * 0.924 | 0.983 | 0.952 | 0.968 | 0.889 | 0.926
Thresholding | SVDD  0.946 [ 0.996 [ 0.970 | 0.920 | 0.991 | 0.954 | 0.947 | 0.938 | 0.942

In bold, the best F1 score for each dataset

(*)- In the case of the SMAP dataset, the threshold established through the POT method is excessive high, leading to both

True Positives (TP) and False Positives (FP) being zero.

Our approach does not rely on pre-existing knowledge of the data
distribution but is versatile, adapting to shifts in data distribution as
new data emerges. The synergy of the adversarial framework’s capacity
to grasp intricate data distributions and the transformer’s adeptness at
managing temporal dependencies results in a robust model, especially
proficient in high-dimensional scenarios.

In the comparative assessment, while each benchmarked technique
has its strengths in anomaly detection, our AAT model integrates
the best attributes of prior reconstruction-based models. It focuses
on boosting anomaly detection accuracy and reducing training times.
Embracing the blend of adversarial learning with transformer architec-
ture holds promise for reliable anomaly detection in high-dimensional
multivariate nonstationary manufacturing data.

Fig. 11 presents a performance evaluation of the AAT model across
various architectural configurations.

The upper-left chart 11(a), showcases the AAT model’s proficiency
in achieving high F1 scores with relatively few stacked layers. Such
architectural simplicity not only streamlines the model but also aids in
resisting overfitting. This remarkable performance can be attributed to
the dual attention mechanisms employed by AAT.

The upper-right chart 11(b), provides insights into the relationship
between the dimensionality of the attention mechanism (d_model) and
the AAT model’s performance in anomaly detection within multivariate
time series data. While a larger d,odel size can empower the model
to encapsulate a richer set of features, and potentially discern more
complex anomalous patterns, it may also introduce challenges. An in-
creased d_model dimensionality can lead to a growth in computational

requirements and memory overhead. Additionally, a more extensive
representation space might elevate the risk of overfitting if not paired
with adequate regularization or training data. In the presented results,
a d_model size of 512 appears to offer the best trade-off between
performance gains and the mentioned complexities. Thus, while there
are evident performance enhancements with an expanding d_model, it
is crucial to balance these gains against the inherent complexities and
computational considerations.

The lower char 11(c), demonstrates the AAT model’s adeptness in
leveraging multiple attention heads for enhancing anomaly detection
performance in multivariate time series data. The model’s ability to
achieve commendable results even with a limited number of attention
heads underlines the efficiency of its attention mechanisms. This is
particularly significant for time series data where both sparse and
densely occurring anomalies are present. The observed trend suggests
that AAT’s attention design is optimized to capture diverse anomalous
patterns without the necessity of an excessive number of heads, further
emphasizing the model’s architectural efficiency.

This comparative analysis not only showcases the Adaptive Adver-
sarial Transformer (AAT) model’s strengths but also affirms its position
within the anomaly detection domain, signaling a notable progression
of methodologies propelled by deep learning technologies in tack-
ling complex data challenges. Our AAT model, characterized by its
flexibility, excels without relying on pre-established data distribution
knowledge. It adeptly adapts to data distribution changes, a testament
to the adversarial framework’s capacity to model intricate distributions
coupled with the transformer’s proficiency in temporal dependencies.
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Table 3
AAT Performance on Rosenberger Internal data and two other public manufacturing datasets.
Method Dataset E-Coating PHM Rosenberger
P R F1 I3 R F1 14 R F1
TranAD 0.869 0.675 0.759 0.469 0.665 0.550 0.348 0.363 0.355
AnomalyTrans 0.671 0.845 0.748 0.535 | 0.706 0.608 0.528 | 0.608 0.565
AAT-SVDD 0.774 | 0.813 | 0.793 | 0.761 0.847 | 0.801 0.882 | 0.841 0.861

In bold, the best F1 score for each dataset.

This yields a model that is especially capable in high-dimensional,
dynamic environments.

The experimental results in Table 2 highlight the superiority of
the Support Vector Data Description (SVDD) approach in adaptive
threshold selection over the traditional Peak Over Threshold (POT)
method, as evidenced by the SVDD’s impressive F1 score of 0.970 on
the SMAP dataset, outperforming other models. Moreover, the AAT’s
overall performance, utilizing our adaptive anomaly detection method-
ology, excels on Rosenberger’s real-world shop floor dataset. It achieves
an F1 score of 0.861, which is indicative of its robustness and effective-
ness in a practical manufacturing setting. Additionally, when evaluated
against two other public industrial datasets, our AAT model not only
competes well but often surpasses other state-of-the-art models, achiev-
ing an average F1 score of 0.818 across all manufacturing datasets.
The real-world shop floor dataset from Rosenberger’s cable assembly
manufacturing. Moreover, additionally, on two other public indus-
trial datasets. These results are encapsulated in Table 3, underscoring
the AAT model’s advanced detection capabilities and the efficacy of
employing SVDD for dynamic thresholding in complex, multivariate,
non-stationary manufacturing data scenarios and surpasses the results
of state-of-the-art models.

In summary, the AAT configuration demonstrates a pronounced
improvement in adapting the threshold selection mechanism, which
is crucial for accurate anomaly detection. The framework’s ability to
maintain high performance across a variety of datasets, including high-
dimensional, multivariate, and non-stationary manufacturing data, is
evident from its superior F1 scores, heralding a significant advancement
in the field of smart manufacturing anomaly detection.
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Knowing that ATT is using the SVDD as the dynamic thresholding
part, Fig. 12 illustrates the proficiency of the Adaptive Adversarial
Transformer (AAT) in distinguishing between normal and anomalous
test samples, by finding the smallest hypersphere that encloses most of
the data points in the feature space, with the center of this hypersphere
being point ¢ and the radius R. In this depiction, test samples that
extend beyond the predefined radius of the normal class’s hypersphere
are considered anomalies. These points represent data instances that
significantly deviate from the learned distribution of normal data,
based on their feature characteristics and the relational context cap-
tured by the AAT model using the radial basis function (RBF) kernel
with gamma=0.3. Such deviations are flagged as anomalies rather than
mere noise.

Anomalies are typically contextual or collective, showing significant
deviations from normal patterns that are relevant to operational con-
ditions. Noise, however, often consists of random variations or outliers
that do not necessarily signify operational issues. These experimental
results show that our model focuses on these contextual deviations by
learning complex dependencies within the data, thereby reducing the
likelihood of misclassifying noise as anomalies.

In Figs. 13(a) and 13(b), we plot the input and the reconstructed
input from normal and anomalous samples, respectively. These recon-
structions are based on an adaptive threshold set to 0.014, as depicted
in Fig. 14.

Fig. 15 illustrates a time series example from the feasibility study,
highlighting instances where anomalies were successfully identified by
the AAT framework.
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5.4. Training time and computational complexity

This subsection elucidates the time complexity associated with the
Adaptive Adversarial Transformer (AAT) pipeline, alongside empirical
training times observed during our experiments. The computational
complexity of the AAT primarily revolves around the transformer archi-
tecture with a multi-head attention mechanism. As the number of these
layers and the attention heads are fixed and invariant to the input size,
the computation for each input with n features predominantly incurs
a time complexity of O(n). This stems from the dot product operations
in the multi-head attention. Furthermore, each output is derived from
the sum product of n input features, multiplied by a constant set
of weights, ensuring that the computation time does not scale with
n. The activation function applied subsequently also aligns with a
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Input and reconstructed input from normal (a) and anomalous (b) samples on Rosenberger Data.

linear time complexity. During our experimental analysis, the AAT-
SVDD framework demonstrated a total training time of 64.3 s for one
complete training cycle. This duration was further broken down into
approximately 35.4 s for training the AAT-Transformer for one iteration
and about 29.3 s for training the SVDD component. Testing a single
sample took approximately 0.43 s. It is important to note that these
training times are subject to variation based on several factors such as
the computational capability of the hardware used, optimization of the
implementation, and the volume of data each local model processes.
As such, these figures should be considered as indicative benchmarks
rather than absolute constants.
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6. Conclusions

In this work, we introduced the AAT, an Anomaly Detection model
tailored for Smart Manufacturing, leveraging the prowess of trans-
former architectures and built upon the principles of adaptive adver-
sarial transformers. By harnessing the capabilities of transformer-based
encoder—decoders, AAT ensures expedited model training without com-
promising on the efficacy of detection. The model’s unique fusion of
adaptivity and adversarial techniques, reminiscent of the paradigm
of Generative Adversarial Networks, accentuates its robustness and
precision, especially in challenging environments such as the shop floor
data for cable assembly manufacturing.

For the myriad datasets explored in this endeavor, AAT not only
manifested superior detection benchmarks but also evinced a marked
decrement in training durations relative to traditional paradigms. The
stability inherent to AAT, coupled with its rapid training mechanics and
adaptability, underscore its scalability and its aptitude for deployment
in demanding industrial milieus. An additional feather in AAT’s cap is
its provision to modulate sensitivity, proffering a gamut of detection
granularities from a singular model instantiation. Such versatility is
a boon in industrial scenarios, enabling operative teams to calibrate
detection sensitivities in tandem with the vicissitudes of operational
exigencies, thus optimizing the fulcrum of operational efficiencies.

Our hands-on exploration with the shop floor data for cable as-
sembly manufacturing stood a testament to AAT’s industrial aptitude,
underscoring its potential to herald a paradigm shift in the realm of
anomaly detection in smart manufacturing arenas. Despite the many
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accolades, as with any nascent approach, challenges were not in short
supply—thus delineating a roadmap replete with avenues ripe for
future exploration and refinement.

Peering into the future, we envisage augmenting the AAT frame-
work with avant-garde transformer paradigms, potentially drawing
inspirations from bidirectional neural architectures, all in a bid to
further the model’s adaptability ante across diverse temporal data
landscapes. Moreover, the odyssey to full-fledged deployment might
unravel novel infrastructure prerequisites and other considerations, all
crucial for the seamless integration and zenith performance of AAT in
a plethora of manufacturing scenarios.
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