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Objective: Predicted age difference (PAD) is a score computed by subtracting

chronological age from “brain” age, which is estimated using neuroimaging data. The

goal of this study was to evaluate the PAD as a marker of phenotypic heterogeneity and

severity among early-onset Alzheimer’s disease (EOAD) patients.

Methods: We first used 3D T1-weighted (3D-T1) magnetic resonance images (MRI) of

3,227 healthy subjects aged between 18 and 85 years to train, optimize, and evaluate

the brain age model. A total of 123 participants who met the criteria for early-onset

(<65 years) sporadic form of probable Alzheimer’s disease (AD) and presented with two

distinctive clinical presentations [an amnestic form (n = 74) and a non-amnestic form

(n = 49)] were included at baseline and followed-up for a maximum period of 4 years.

All the participants underwent a work-up at baseline and every year during the follow-up

period, which included clinical examination, neuropsychological testing and genotyping,

and structural MRI. In addition, cerebrospinal fluid biomarker assay was recorded at

baseline. PAD score was calculated by applying brain age model to 3D-T1 images of

the EOAD patients and healthy controls, who were matched based on age and sex.

At baseline, between-group differences for neuropsychological and PAD scores were

assessed using linear models. Regarding longitudinal analysis of neuropsychological and

PAD scores, differences between amnestic and non-amnestic participants were analyzed

using linear mixed-effects modeling.

Results: PAD score was significantly higher for non-amnestic patients (2.35 ±

0.91) when compared to amnestic patients (2.09 ± 0.74) and controls (0.00 ± 1).

Moreover, PAD score was linearly correlated with the Mini-Mental State Examination

(MMSE) and the Clinical Dementia Rating Sum of Boxes (CDR-SB), for both

amnestic and non-amnestic sporadic forms. Longitudinal analyses showed that the

gradual development of the disease in patients was accompanied by a significant

increase in PAD score over time, for both amnestic and non-amnestic patients.
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Conclusion: PAD score was able to separate amnestic and non-amnestic sporadic

forms. Regardless of the clinical presentation, as PAD score was a way of quantifying an

early brain age acceleration, it was an appropriate method to detect the development of

AD and follow the evolution of the disease as a marker of severity as MMSE and CDR-SB.

Keywords: brain age, deep learning, structural MRI, longitudinal analysis, early-onset Alzheimer’s disease,

phenotypic variants

INTRODUCTION

Throughout life, the brain develops and changes (Teissier et al.,
2020). The changes do not occur to the same extent in all brain
regions (Trollor and Valenzuela, 2001) and are not uniform over
the ages (Scahill et al., 2003). Brain aging does not only impact
the function of our brain, it also impacts the structures with a
decrease in white matter (WM) and gray matter (GM), and an
increase in cerebrospinal fluid (CSF) brain volumes in adulthood
(Guttmann et al., 1998). In contrast to WM, the volume decrease
in GM is less uniform, with the frontoparietal cortex being
more affected than the temporo-occipital cortex (Resnick et al.,
2003). However, the shrinkage does not necessarily result from a
decrease in the number of neurons but mainly from a reduction
in their volume (Dickstein et al., 2007). Therefore, normal cellular
brain aging is characterized more by subtle changes than a large-
scale loss of cells (Teissier et al., 2020). As a result, it is more
difficult to characterize the pace of these changes, the biological
age of the brain, and all the processes involved in brain aging
(Peters, 2006).

It is now widely assumed that Alzheimer’s disease (AD)
reflects a form of accelerated aging (Cao et al., 2010; Jones
et al., 2011; Saetre et al., 2011). For this reason, a growing
number of studies investigated both normal and AD age-related
changes (Raji et al., 2009; Beheshti et al., 2020). Brain region
volumetry may be of interest in the diagnosis of AD with a
relatively preserved prefrontal cortex region and an atrophy of
hippocampus compared to healthy people (Head et al., 2005;
Jack and Holtzman, 2013). However, significant phenotypic
heterogeneity of AD is widely recognized, as several atypical
variants are described other than the typical limbic-predominant
subtype, which is characterized by an amnestic presentation
and a pattern of brain atrophy preferentially localized to
the limbic areas (Ferreira et al., 2020). Atypical variants are
characterized by a hippocampal-sparing pattern of brain atrophy
that relatively spares the limbic structures but more severely
affects neocortical areas (Whitwell et al., 2012; Cho et al., 2013;
Risacher et al., 2017). Moreover, there is significant heterogeneity
in the locations of atrophy across individual patients (Tetreault
et al., 2020).

Magnetic resonance imaging (MRI) is a powerful non-invasive
tool to investigate brain structural changes throughout ages in
vivo (Guttmann et al., 1998; Sowell et al., 2003). These images
can show changes in GM and WM during the maturation of the
brain (Giedd et al., 1999; Paus, 1999; Sowell et al., 1999, 2001;
Courchesne et al., 2000; Thompson et al., 2000) and during aging
(Bartzokis et al., 2001; Jernigan et al., 2001). Many markers, such

as cortical thickness and volumetric measures, are associated with
brain aging in healthy controls and neurodegenerative diseases
(Raji et al., 2009). Although the brain undergoes characteristic
changes due to aging over the course of a lifetime, the impact may
be slightly different for each individual. Not only are structural
characteristics involved in brain change but also education
and occupation may be proxies for brain functional reserve,
reducing the severity and delaying the clinical expression of
AD pathology.

Deep learning techniques, such as convolutional neural
networks (CNN), have the benefits to identify MRI markers, and
they can model complex non-linear relationships without the
need for predefined traditional MRI markers (Cole et al., 2017b;
Beheshti et al., 2018). However, these models need large and
diverse samples for training the complex deep network, making
it possible only by several data sharing initiatives. A growing field
of research combining MRI markers and CNN algorithms are
focusing on brain age estimation in the healthy population (Sajedi
and Pardakhti, 2019), with a mean absolute error (MAE) of 3–5
years in age ranging from 18- to 90-year-olds using T1-weighted
(T1w) structural MRI (Cole et al., 2017a; Franke and Gaser, 2019;
Couvy-Duchesne et al., 2020). Predicted age difference (PAD),
defined as the difference between chronological age and predicted
age, is associated with disease status, including AD and mild
cognitive impairment (Franke et al., 2010; Franke and Gaser,
2012; Löwe et al., 2016).

Early-onset AD (EOAD), which is defined by an age of
onset ≤65 years, is of interest in the study of the phenotypic
heterogeneity due to the higher frequency of non-amnestic
variants than in late-onset AD (LOAD) (Palasí et al., 2015).
Atypical presentations affect language abilities, visuospatial
abilities, or executive functions (Marshall et al., 2007; Garre-
Olmo et al., 2010; Koedam et al., 2010; Balasa et al., 2011;
Sá et al., 2012). Patients with EOAD appear to exhibit faster
cognitive decline than patients with LOAD (Haxby et al., 1992;
Pettigrew et al., 2017). However, studies on LOAD tend to show
that the later onset of dementia was the only prominent variable
accelerating all cognitive and functional outcomes (de Oliveira
et al., 2018). Moreover, studies on cognitive reserve tend to show
the same result. The concept of cognitive reserve arose from the
idea that life experiences associated with cognitive stimulation
could increase brain resilience to neuropathologic lesion and
delay the onset of symptoms of functional decline (Haxby et al.,
1992; Soldan et al., 2020). However, cognitive reserve did not
have a linear effect on the development of brain injuries, and
even experienced a paradox. Previous studies suggest that while
the cognitive reserve is associated with a delayed symptom onset
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(Qiu et al., 2001; Reed et al., 2010; Roe, 2011; Soldan et al.,
2013; Pettigrew et al., 2017; Robitaille et al., 2018; van Loenhoud
et al., 2019), it could be related to more severe brain atrophy
and accelerated cognitive decline in advanced AD stages (Wilson
et al., 2000; Scarmeas, 2005; Andel et al., 2006; Bracco et al.,
2007; Hall et al., 2007; Yoon et al., 2015; Myung et al., 2016;
Soldan et al., 2017). These contradictory results may be explained
by a higher proportion of non-amnestic variants and higher
education level (which seems to be a proxy for cognitive reserve)
in EOAD patients.

Despite the growing interest to better understand the
mechanisms underlying phenotypic heterogeneity in EOAD
using MRI (Mendez, 2012; Falgàs et al., 2020a; Vanhoutte et al.,
2020), there is a potential bridge between these group-level
studies and the clinical care of individual AD patients. The aim of
this study was to investigate the PAD as a marker of phenotypic
heterogeneity in EOAD for diagnostic and follow-up purposes.
We hypothesized that (i) PADmarker would distinguish between
clinical variants of EOAD, and (ii) progression of PAD marker
would follow the functional and cognitive severity of disease for
both phenotypes.

MATERIALS AND METHODS

EOAD Population
Participants with EOAD were all recruited at the University
Hospital’s Memory Resources and Research Center in Lille,
France. The participants were part of the COhorte Malade
Alzheimer’s Jeunes (Early-onset Alzheimer’s cohort in French,
COMAJ), which was initiated in 2009.

The COMAJ study was approved by the local institutional
investigational review board [Ethic committee (CPP Nord-Ouest
I); reference: 110-05]. Written informed consent was obtained
from all participants and/or their relatives. Inclusion criteria
were as follows: (a) participants should meet National Institute
on Aging - Alzheimer’s Association (NIA-AA) criteria for
“probable AD dementia with intermediate evidence of AD patho-
physiological process” (McKhann et al., 2011) and International
Working Group (IWG) 2 criteria (Dubois et al., 2014); (b)
participants must be ≤60 years of age at the time of first
symptoms; (c) evidence of abnormal CSF biomarkers with Aβ42
below 700 pg/mL and total tau and phosphorylated tau above
400 and 60 pg/mL, respectively (Lehmann et al., 2014). The final
diagnosis of sporadic EOAD was based upon extensive reviewing
of clinical history, CSF biomarkers, and neuropsychological
and imaging data by a multidisciplinary board. Criteria for
pathological mutations were onset of symptoms< 51 years old or
family history of EOAD in the first degree. Individuals with early-
onset dementia in first-degree relatives or those with a confirmed
mutation in the PSEN1, PSEN2, or APP genes were excluded.
Out of 123 participants, 16 participants were searched for APP,
PSEN1, and PSEN2.

A total of 217 sporadic EOAD participants were included and
classified as amnestic presentation (“typical”) or non-amnestic
presentation (“atypical”) with prominent cognitive impairments
in language, visuospatial, or executive functions, based on
neuropsychological tests of 4 cognitive domains listed below:

1. Episodic memory: free and cued selective recall, the “doors”
part of the Doors and People test, and the Visual Association
Test (Lindeboom, 2002; Schoonenboom et al., 2005).

2. Language: the DO80 confrontation naming test with 80
images (Deloche and Hannequin, 1997).

3. Visuospatial function: evaluation of upper limb praxis,
evaluation of visuoconstructive abilities using the Rey-
Osterrieth complex figure test and the Beery-Buktenica
developmental test of visual-motor integration (Beery VMI
test) (Lim et al., 2015), evaluation of visual gnosis using
subtests from the Visual Object and Space Perception Battery
(the screening test, incomplete letters, and number location).

4. Executive functions: evaluation of working memory using
the forward and backward digit span task from the Wechsler
memory scale (third edition), the Frontal Assessment Battery
at bedside, category verbal fluency (animals), and lexical verbal
fluency (the letter P) (Godefroy, 2008).

Three-dimensional T1-weighted (3D-T1) images were acquired
on a 3T MRI scanner (Achieva, Philips, Best, the Netherlands),
using an 8-channel phased-array head coil and whole-body coil
transmission (field of view = 256 × 256 × 160 mm3, isotropic
voxel size 1 × 1 × 1 mm3, TR = 9.9ms, TE = 4.6ms, and flip
angle = 8◦) for initial evaluation and follow-up. In addition to
MRI, each patient was evaluated annually for a maximum of 4
years by the Mini-Mental State Examination (MMSE) (Folstein
et al., 1985) and the Clinical Dementia Rating Sum of Boxes
(CDR-SB) (Hughes et al., 1982). Predicted brain age was obtained
from participants who completed a structural MRI scan at least
for one time point during follow-up. Based on the availability
and quality of MR images of the 217 EOAD participants, 74
amnestic and 49 non-amnestic participants were finally retained
(Figure 1). Out of the total number, 70, 28, 21, 17, 8 amnestic
and 46, 49, 38, 28, 13 non-amnestic patients were finally retained
at baseline, year 1, year 2, year 3, and year 4, respectively
(Supplementary Table S1).

Healthy Population
A total of 3,227 MRI scans from 2,065 healthy participants
(48% men, mean age = 33.6 ± 12.3 years, age range from 18
to 85 years) were included in the study. Data were compiled
from publicly available sources made available via various
data sharing initiatives (Supplementary Table S2). According
to the local study protocols, all participants were free from
neurological or psychiatric disease. We retained only images
acquired at 3T MRI using 3D-T1 sequence. The subject consent
was obtained at each local study site and each contribution was
ethically approved.

These images were divided into three datasets—a control
dataset to compare with the patients from the COMAJ cohort, the
training dataset to train and optimize our model, and the testing
dataset to test its performance.

For our control dataset, we used images of 116 age- and
sex-matched healthy subjects from the Parkinson’s Progression
Markers Initiative (PPMI) (www.ppmi-info.org/data) and
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Frontiers in Aging Neuroscience | www.frontiersin.org 3 November 2021 | Volume 13 | Article 729635

http://www.ppmi-info.org/data
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Gautherot et al. Brain Age in Alzheimer’s Disease

FIGURE 1 | Flowchart of the study population.

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public–
private partnership, led by Principal Investigator, Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial MRI, positron emission tomography and other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive
impairment and early AD. These images were acquired by
scanners from the three major MRI manufacturers (General
Electric, Philips, and Siemens). These data were never used in the
training, the hyperparametrization, or the testing of our brain
age model.

The training and testing sets were composed of 3,083 MR
acquisitions from 1,955 subjects and 144 MR acquisitions
from 110 subjects obtained from 6 data sharing initiatives,
which include Information eXtraction from Images (IXI),
Human Connectome Project (HCP) (Van Essen et al., 2012),
Center Of Biomedical Research Excellence (COBRE), Mind
Clinical Imaging Consortium (MCIC), Neuromorphometry by
Computer Algorithm Chicago (NMorphCH), and enhanced
Nathan Kline Institute-Rockland Sample (NKI-RS) (more details
in Supplementary Table S2).

Data Preprocessing
Minimal preprocessing steps were performed on 3D-T1 images
(Lombardi et al., 2020). First, images were corrected for magnetic
field inhomogeneity effects and skull-stripped using VolBrain
software (volbrain.upv.es) (Manjón and Coupé, 2016). Brain
extractions were systematically checked for possible errors (brain
regions missing), and manual corrections were performed by a
neuroradiologist (GK), when deemed necessary (Fischl, 2012).
Then, preprocessed 3D-T1 images were linearly registered
into MNI space and resampled to 1 mm3 using SPM software
(fil.ion.ucl.ac.uk/spm/software/spm12). Finally, intensity
normalization was performed using min–max normalization.

Furthermore, for correlation purposes, GM, WM, and CSF
brain volumes were estimated using VolBrain software (Manjón
and Coupé, 2016).

Brain Age Prediction Model
For the prediction of chronological age using MRI from healthy
control subjects, also called “brain age,” our model was based
on 3D convolutional neural network (CNN) architecture. This
architecture, which was inspired by Cole et al. (2017a), is both
simple and efficient for the prediction of brain age using 3D-T1
images (Figure 2).

The proposed architecture took preprocessed 3D-T1 images
with dimensions of 182 × 218 × 182 voxels. The weights of the
model were determined byminimizing the cost function, here the
mean absolute error (MAE). To optimize the weights, we used
stochastic gradient descent optimization algorithm (Sutskever
et al., 2013) with a learning rate of 0.001, a momentum of 0.1, and
a learning rate decay of 5e-05. We used a batch size of 8 during
150 iterations. We performed an early stopping at the epoch 113
because it gave us the best MAE on the validation set.

During the training phase, we performed a data augmentation
strategy on-the-fly consisting of performing translation and
rotation of the MR images. This technique generated additional
artificial training images to prevent the model from overfitting
and was empirically found to yield better performance (Shorten
and Khoshgoftaar, 2019).

We used a 5-fold cross-validation procedure on our training
set for optimizing hyperparameters and for assessing how
our results would generalize to another dataset of the same
distribution. The distribution of patient ages was not uniform in
the training set, so in the cross-validation, the distribution of the
validation set was not uniform either (Figure 3A).

To test the performance of our model across the ages, we
needed a more balanced testing set. The testing set had 144
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FIGURE 2 | Schematic representation of the CNN architecture. The black box represents the 3D-T1 images as inputs of our model. Each block consisted of 3D

convolution of kernel size (3 × 3 × 3), ReLU activation, 3D convolution of kernel size (3 × 3 × 3), batch normalization, rectified linear unit activation, and max-pooling

layer of pooling size (2 × 2 × 2). The block was repeated 5 times. The output of the network (gray box) corresponds to the brain-predicted age. CNN, convolutional

neural network; ReLU, Rectified Linear Unit.

FIGURE 3 | (A) Age distribution of subjects in the training set. (B) Age distribution of subjects in our testing set. We randomly selected 10 images every 5 years to

obtain a uniform distribution of images throughout the age.

images from 110 subjects, with 10 randomly selected images
for each 5 years period from 18 to 70 years, and 10 randomly
selected images from 70 years and above. With this pseudo-
random selection, we obtained a more uniform distribution than
the training age distribution (Figure 3B).

Bias Correction in Brain Age Prediction
Like all regression methods, the brain age model is subject
to the fundamental phenomenon of “regression toward the
mean” (Galton, 1886). This bias overestimates age among
younger participants and underestimates it in older participants.
Although studies had mainly attributed the bias to inconsistency
in the distribution of noise over the life course (Cole et al., 2017a),
the reasons are still largely unknown. The bias seems rather
universal, regardless of the data, age range, sample size, and even
the particular methods used (linear machine learning or deep
learning methods) (Liang et al., 2019). To correct the regression

toward the mean phenomenon, we used the following equation
(Liang et al., 2019):

regressed age predicted = intercept + α
∗chronological age +

error (1)

α is a regression coefficient associated with the chronological age,
and in our study α = 0.13.

Patient Prediction
Weights from the training model were used for the prediction of
brain age of healthy controls and EOAD patients. This age was
regressed out using Equation 1. PAD score was calculated as the
difference between predicted brain age and chronological age at
the acquisition time. We calculated the PAD z-score for the three
groups taking the control group as standard.
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TABLE 1 | Demographic and clinical characteristics at baseline according to clinical forms of EOAD and controls.

Indicators Amnestic Non-amnestic Control Effect/p-value

N 70 46 116

CDR-SB 6.71 ± 4.25 7.21 ± 3.81 0.327a

MMSE 17.14 ± 6.71 16.13 ± 6.96 0.192a

Disease duration, years 5.45 ± 2.91 4.55 ± 2.14 0.157a

Education level, years 9.64 ± 2.82 10.41 ± 2.82 0.0357ac

Age, years 59.30 ± 4.28 58.61 ± 3.68 59.05 ± 4.05 0.611b

Female, n (%) 36 (51%) 26 (56%) 63 (54%) 0.73a

Quantitative variables were quoted as the mean ± SD (interquartile range).
a
χ
2 and Wilcoxon tests were applied to categorical and continuous variables, respectively.

bKruskal–Wallis test was applied to continuous variables for more than two populations.
cp < 0.05.

CDR-SB, Clinical Dementia Rating Sum of Boxes; MMSE, Mini-Mental State Examination.

TABLE 2 | Model performance on cross-validation datasets.

Folds 1 2 3 4 5 Mean ± SD

MAE validation (year) 3.85 2.74 3.06 2.77 3.48 3.18 ± 0.43

MAE, mean absolute error; SD, standard deviation.

Model Visualization With Gradient Class
Activation Maps
Gradient Class Activation Maps (Grad-CAM) approach uses the
final convolutional layer gradients to produce a map highlighting
the brain regions used for brain age prediction (Selvaraju et al.,
2017). Grad-CAM approach was used to create an average map
called an attention map for each group of participants (controls,
non-amnestic EOAD, and amnestic EOAD participants).

Statistical Analysis
All the analyses were conducted in Python (3.8.5) using
scipy (1.6.1) and statsmodels (0.12.1). At baseline, intergroup
differences between controls, amnestic, and non-amnestic EOAD
participants in demographic, clinical, and neuropsychological
features were assessed using Wilcoxon or Kruskal–Wallis tests
for continuous variables and chi-squared tests for categorical
variables. To quantify the magnitude of effect sizes between
groups, we used Cliff ’s delta (Cliff, 1993). Between-group
differences for neuropsychological and PAD scores were
assessed using linear models. Regarding the longitudinal analysis
of neuropsychological and PAD scores, differences between
amnestic and non-amnestic participants were analyzed using
univariate linear mixed-effects (LME) models. LME models
provide an approach for analyzing longitudinal data while
handling variable missing rates and non-uniform timing. These
models also make use of participants with a single time point
to characterize population-level regionally specific differences.
Equality of regression coefficients was assessed by the Chow test
(Toyoda, 1974).

The threshold for statistical significance was set to
p < 0.05. Bonferroni post-hoc test was used to correct for
multiple comparisons.

Code Availability
Code is available on github at https://github.com/
MorganGautherot/Brain_age_model.

RESULTS

Demographic and Clinical Data at Baseline
Baseline demographic and clinical data between amnestic
and non-amnestic EOAD forms are shown in Table 1.
The non-amnestic and amnestic EOAD groups did not
differ significantly with regard to age at inclusion, disease
duration from the first symptoms, and cognition (CDR-SB
and MMSE). The only difference was the education level,
which was higher for the non-amnestic patients (10.41 ±

3.68) when compared with the amnestic patients (9.64 ±

2.82). Overall, the EOAD participants had a moderately
severe disease (MMSE score was 17.17 ± 6.71 for amnestic,
and 16.13 ± 6.96 for non-amnestic patients). Thus,
education level was used as a covariate in the comparison
of EOAD groups.

Convolutional Neural Networks Accurately
Predict Age Using Neuroimaging Data
Analysis showed that our CNN model accurately predicted the
chronological age of healthy subjects, using 3D-T1 images. We
obtained an MAE of 3.18 ± 0.43 years on training data, after the
cross-validation approach (Table 2), and 4.34 years on the testing
set (Figure 4A).

Significant correlation was found between age and prediction
error before bias correction (r = −0.33, p < 0.001), but not after
bias correction (r = 0.00, p= 0.99) (Figures 4B,C).
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FIGURE 4 | (A) Accuracy of CNN for brain age prediction using testing set. Scatter plots depict chronological age (x-axis) and brain-predicted age (y-axis) on the

testing set subjects. The r value was the Pearson’s correlation coefficient of brain-predicted age with chronological age and p was the associated p-value. Plot of the

chronological age in function to PAD z-score (B) before and (C) after regression. CNN, convolutional neural network; PAD, predicted age difference.

FIGURE 5 | PAD z-scores distribution for controls, amnestic, and

non-amnestic EOAD patients. A Kruskal–Wallis test was applied to these

groups with a p < 0.001. Using Cliff’s delta, we showed that there was an

effect size between controls and non-amnestic population (d = 0.91), controls

and amnestic population (d = 0.90), and non-amnestic and amnestic

population (d = 0.22). PAD, predicted age difference. †, ‡; represent the

outliers of the distribution.

Comparison of Predicted Brain Age
Between Participants of EOAD Subtypes
and Controls
Predicted age difference z-scores were different for the three
groups (p < 0.01), with higher PAD z-scores for non-amnestic
patients (2.35± 0.91) when compared to amnestic patients (2.09
± 0.74, p = 0.022) and controls (0.00 ± 1, p < 0.001) (Figure 5).
PAD z-scores were higher for amnestic patients when compared
to controls (p < 0.001) (Figure 5). There was a small effect
size between amnestic patients and non-amnestic patients (Cliff ’s
delta = 0.22). For controls, there was a large effect size with
amnestic (Cliff ’s delta = 0.90) and non-amnestic (Cliff ’s delta =
0.91) population.

Predicted age difference z-scores were predictive of a low
MMSE (non-amnestic patients: α = −3.5, intercept = 22, p
< 0.001; amnestic patients: α = −2.5, intercept = 21, p =

1.7e-02) and a high CDR-SB score (non-amnestic patients:

α = 1.7, intercept = 3.1, p < 0.001; amnestic patients: α

= 2.3, intercept = 1.8, p < 0.001) for EOAD participants
(Figure 6).

The percentage of CSF brain volume was positively correlated
to PAD z-score for non-amnestic EOAD (r = 0.35, p = 0.0025),
amnestic EOAD (r = 0.35, p = 0.0025), and control participants
(r= 0.30, p< 0.001) (Figure 7A). Amnestic (p< 0.001) and non-
amnestic EOAD patients (p < 0.001) had a more rapid evolution
of PAD z-scores in relation to the percentage of CSF brain volume
when compared to control participants (Figure 7A). Amnestic
and non-amnestic EOAD patients had no statistical difference
between PAD z-scores and percentage of CSF brain volumes
(p= 0.1).

The percentages of GM volume were strongly negatively
correlated to PAD z-scores for non-amnestic EOAD (r =

−0.72, p < 0.001), amnestic EOAD (r = −0.55, p < 0.001),
and control participants (r = −0.50, p < 0.001) (Figure 7B).
Amnestic (p < 0.001) and non-amnestic EOAD patients (p <

0.001) had a more rapid evolution of PAD in relation to the
percentage of GM volumewhen compared to control participants
(Figure 7B). Amnestic and non-amnestic patients had no
statistical difference between PAD z-scores and percentage of GM
volumes (p= 0.092).

The percentages of WM volume were not correlated to PAD
z-scores for non-amnestic (r = 0.01, p = 0.94), amnestic EOAD
(r = −0.01, p = 0.89), and control participants (r = 0.11, p =

0.22) (Figure 7C).

Attention Map
For all groups, attention maps showed that mostly subcortical
white matter temporo-occipital junction and extension to
subcortical white matter middle frontal gyrus were used for
brain age prediction (Figures 8A–C). In these structures, we
noticed a more important involvement of the right hemisphere.
For amnestic and non-amnestic EOAD subtypes, attention maps
were similar but statistically took into account more information
than the controls (p< 0.05 FWE-corrected). EOAD subtypes had
the involvement of the left superior temporal gyrus and right
middle and inferior gyrus and anterior insula (Figures 9A,B).
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FIGURE 6 | (A) Plot of the MMSE in function of PAD in the EOAD population. (B) Plot of the CDR-SB in function of PAD in the EOAD population. Lines represented

linear trajectories using linear regression model (blue line: amnestic EOAD and yellow line: non-amnestic EOAD). **p < 0.05. MMSE, Mini-Mental State Examination;

PAD, predicted age difference; CDR-SB, Clinical Dementia Rating Sum of Boxes; EOAD, early-onset Alzheimer’s disease.

FIGURE 7 | Plot of the percentage of brain CSF (A), GM (B), and WM (C) volumes in function of PAD. Lines represented trajectories using linear regression model

(blue line: amnestic EOAD; yellow line: non-amnestic EOAD; and green line: control). Pearson correlation was computed between PAD and MMSE on non-amnestic

and amnestic EOAD populations. The two coefficients of the regression were not statistically different between non-amnestic and amnestic compared to GM and CSF

volumes (Chow test). The two coefficients of the regression for PAD in function of GM and CSF volumes were statistically different between controls and EOAD

subtypes (Chow test). **p < 0.05. CSF, cerebrospinal fluid; PAD, predicted age difference; GM, gray matter; WM, white matter; EOAD, early-onset Alzheimer’s

disease; MMSE, Mini-Mental State Examination.

Longitudinal Analysis of Predicted Age
Between EOAD Subtypes
The gradual development of disease in patients was accompanied
by a significant increase in PAD z-scores over time (p <

0.01) (Figure 10). Using the Chow test, there was no statistical
difference (p = 0.096) observed in the PAD z-scores evolution
between amnestic and non-amnestic EOAD patients.

DISCUSSION

In this study, we predicted the brain age of EOAD patients
based on 3D-T1 images using a 3D CNN algorithm trained
on a cohort of 1,955 healthy controls. We compared PAD z-
scores in amnestic and non-amnestic EOAD patients and healthy
controls. Although the groups of participants were matched with
their chronological age, PAD z-scores were higher for EOAD

patients when compared to controls. The brain regions used for
brain age prediction were also different between groups with the
involvement of left superior temporal gyrus and right middle and
inferior gyrus and anterior insula in EOAD patients. Moreover,
we showed that non-amnestic EOAD patients had a higher PAD
z-score than amnestic EOADpatients. Finally, we compared PAD
z-scores longitudinally over a period of 4 years and found that the
PAD z-score increased with the severity of the disease.

The atrophied regions detected in AD patients largely
overlapped with the regions showing a normal age-related
decline in healthy control subjects (Raji et al., 2009). As PAD
score was a way of quantifying an early brain age acceleration,
it was an appropriate method to detect the development of
neurodegenerative diseases such as AD. This characteristic of
PAD score had already shown its potential to provide clinically
relevant information (Franke et al., 2010). Studies showed that
PAD score longitudinally increased with the severity of the
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FIGURE 8 | Attention maps computed by Grad-CAM for control, non-amnestic, and amnestic EOAD participants. The resulting averages for each population were

overlaid on MNI template space. MNI coordinate of the red cross (25.28, −82.36, 33.42). (A) Average of the attention map on the control population. (B) Average of

the attention map on the non-amnestic EOAD population. (C) Average of the attention map on the amnestic EOAD population. R, right hemisphere; L, left

hemisphere; Grad-CAM, Gradient-weighted Class Activation Mapping; EOAD, early-onset Alzheimer’s disease; MNI, Montreal Neurological Institute.

impairment and allowed the detection of conversions from
mild cognitive impairment to AD (Franke and Gaser, 2012;
Gaser et al., 2013). However, these studies were based on the
comparisons of AD and healthy controls, while several AD
subtypes exist. In this study, we studied the EOAD which was
defined by an age of onset ≤ 65 years. Due to its early onset
and the clinical overlap between different diseases, there was a
significant delay in the diagnosis of EOAD (van Vliet et al., 2013).
One specificity of EOAD is the higher frequency of non-amnestic
variants when compared to LOAD (Palasí et al., 2015). Amnestic
and non-amnestic forms have different origins and evolution on
the cerebral degeneration (Ossenkoppele et al., 2015; Xia et al.,
2017; Phillips et al., 2018; Riedel et al., 2018; Vanhoutte et al.,
2020). We investigated PAD score as a marker of phenotypic
heterogeneity in EOAD for diagnosis.

At baseline, PAD z-scores were positively correlated with
MMSE and negatively correlated with CDR-SB. A previous
study showed similar results in AD (Beheshti et al., 2018).
The correlations of PAD with CDR-SB and MMSE mean that
PAD was correlated with the cognitive state of the patients.
They confirmed that a more impaired patient tended to have
a higher PAD. It was interesting to see that PAD was not
only useful in separating healthy population from patients with

neurodegenerative diseases, but that it was able to differentiate
amnestic and non-amnestic EOAD patients (p = 0.022). Non-
amnestic patients developed a more marked neocortical and
basal nuclei atrophy. However, they had an identical severity on
the MMSE, which could be due to a greater cognitive reserve
because of a significantly higher level of education or due to
the fact that the MMSE is less adapted to quantify the disorders
in patients with executive type disorders. One of the strengths
of our study is the fact that we analyzed the evolution of PAD
z-scores between EOAD phenotypes over a period of 4 years.
PAD z-scores increased over time similarly between amnestic
and non-amnestic EOAD forms. This result corroborated the
positive correlation between the severity of EOAD disease and
the increase in PAD z-scores. The evolution of PAD z-scores
over time was interesting because it could give a marker of
evolution that was independent of the clinical form and of any
other element such as cognitive scales that have their limits or
clinical scales such as MMSE and CDR-SB (collected subjectively
from the caregiver). This would make it possible to get rid of this
heterogeneity and show the evolution in an objective way.

One originality of our study was the search for the
interpretation of the PAD score in order to know about the
brain information on which it was based. We computed the
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FIGURE 9 | Significant T-value map (p < 0.05) computed using ANOVA corrected by the family-wise error method between the attention maps of the control group

and (A) the amnestic and (B) the non-amnestic groups. Coordinate of the slice (25.11, 18.40, 25.92). R, right hemisphere; L, left hemisphere; ANOVA, Analysis of

variance.

FIGURE 10 | Longitudinal evolution of the PAD over 4 years between

amnestic and non-amnestic patients. Lines represented trajectories using

linear-mixed-effects models (yellow line: non-amnestic EOAD and blue line:

amnestic EOAD). The two coefficients of the regression were not statistically

different (Chow test, p = 0.096). PAD, predicted age difference; EOAD,

early-onset Alzheimer’s disease. **p < 0.05.

attention maps to show the most involved regions for the
brain age prediction. For the three populations, the brain age
model took into account common area of the brain with the
involvement of the subcortical white matter temporo-parieto-
occipital junction and the extension to subcortical white matter
middle frontal gyrus. We noticed that the model took more
information on the right hemisphere than on the left hemisphere.
For the EOAD subtypes, the model statistically accounted for

additional structures such as the left superior temporal gyrus and
the right middle and inferior frontal gyrus and anterior insula.
We also looked for elements of interpretation in the interactions
of the PAD with the different tissues of CSF, WM, and GM,
which changed throughout life. As GM tissues decreased with
age (Narvacan et al., 2017), it was not surprising that PAD score
was negatively correlated with the GM volume for each group.
The GM volume did not decrease in the same way in all groups.
EOAD had lower GM volume, which was consistent with the
fact that AD experienced a faster decrease in GM volume when
compared to aging subjects (Frings et al., 2014). Even if WM
volume changed during the course of life (Guttmann et al.,
1998; Courchesne et al., 2000), our brain age model did not
use this information to compute PAD score. In aging, due to
ventricular dilatation and the decrease of GM and WM volumes,
the CSF volume increased with age (Courchesne et al., 2000).
We observed a positive correlation between CSF brain volume
and PAD score for each group. Nevertheless, EOAD patients had
higher CSF brain volume than controls, which was in agreement
with the previous studies on EOAD and LOAD patients (Anoop
et al., 2010; Teng et al., 2014; Chiaravalloti et al., 2016; Falgàs
et al., 2020b). The correlations were also consistent with the
attention maps showing the involvement of the junction between
the GM and the CSF in the brain age prediction.

To predict PAD score, we used a 3D CNN architecture which
allowed us to work directly with raw data with few preprocessing
steps. Using raw data allowed the algorithm to search itself for
the available information regarding who was the most interesting
to solve the brain age problem. There was therefore less bias
induced by the preprocessing steps, which were usually more
present during feature extraction for a classical machine learning
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algorithm. We applied field inhomogeneity correction, skull-
stripped extraction, linear registration to common space, and
min–max normalization as preprocessing steps. We obtained a
cross-validation MAE of 3.18 ± 0.43 and a test MAE of 4.34,
which are common results in brain age prediction (Franke and
Gaser, 2019; Sajedi and Pardakhti, 2019). The requirement of few
preprocessing steps and the fast calculation (around 0.36 s) make
the PAD score amarker of sporadic EOAD subtypes classification
that can be used in clinical routine.

Our study had some limitations. Even if 3,227 MR images
are considered to be a great number in medical studies, CNN
models used to be trained on a greater number of images.
More complex brain aging models exist, but we made the
choice to use a simpler and more flexible architecture to avoid
overfitting. In addition, this brain age model had already proven
its performance in a previous study (Cole et al., 2017a). Despite
the correction of the regression toward mean, the problem was
still present and was more pronounced when the model was used
on different data from the training set. However, to the best of
our knowledge, no alternative has been found to this problem
apart from the regression of the error. Our population suffered
from an attrition bias, as not all included patients completed
the 4 years follow-up. The controls used for comparison to
EOAD patients were not acquired with the same MR scanner.
We selected healthy subjects not used during the implementation
and validation of the brain age prediction model. Moreover, we
randomly paired our control with our two EOAD subtypes based
on age and sex, to remove the maximum of variability. Lastly,
further independent validation will be necessary to assess the
PAD score as a marker of global cognitive performance and
clinical status.

CONCLUSIONS

In this study, we showed that PAD score could be a valuable
marker of disease severity which can be used to distinguish
between clinical variants of EOAD. Further studies could
determine the robustness of the PAD score in prospective cohorts
and can be used in longitudinal studies for developments in
pharmacological studies to show the arrest of this progression
with treatment.
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