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Objective: Neuroimaging measurements of brain structural integrity are thought to
be surrogates for brain health, but precise assessments require dedicated advanced
image acquisitions. By means of quantitatively describing conventional images, radiomic
analyses hold potential for evaluating brain health. We sought to: (1) evaluate
radiomics to assess brain structural integrity by predicting white matter hyperintensities
burdens (WMH) and (2) uncover associations between predictive radiomic features and
clinical phenotypes.

Methods: We analyzed a multi-site cohort of 4,163 acute ischemic strokes (AIS)
patients with T2-FLAIR MR images with total brain and WMH segmentations. Radiomic
features were extracted from normal-appearing brain tissue (brain mask–WMH mask).
Radiomics-based prediction of personalized WMH burden was done using ElasticNet
linear regression. We built a radiomic signature of WMH with stable selected features
predictive of WMH burden and then related this signature to clinical variables using
canonical correlation analysis (CCA).

Results: Radiomic features were predictive of WMH burden (R2 = 0.855 ± 0.011).
Seven pairs of canonical variates (CV) significantly correlated the radiomics signature of
WMH and clinical traits with respective canonical correlations of 0.81, 0.65, 0.42, 0.24,
0.20, 0.15, and 0.15 (FDR-corrected p-valuesCV 1−6 < 0.001, p-valueCV 7 = 0.012). The
clinical CV1 was mainly influenced by age, CV2 by sex, CV3 by history of smoking
and diabetes, CV4 by hypertension, CV5 by atrial fibrillation (AF) and diabetes, CV6 by
coronary artery disease (CAD), and CV7 by CAD and diabetes.

Conclusion: Radiomics extracted from T2-FLAIR images of AIS patients
capture microstructural damage of the cerebral parenchyma and correlate with
clinical phenotypes, suggesting different radiographical textural abnormalities per
cardiovascular risk profile. Further research could evaluate radiomics to predict the
progression of WMH and for the follow-up of stroke patients’ brain health.

Keywords: stroke, cerebrovascular disease (CVD), MRI, radiomics, machine learning, brain health

INTRODUCTION

White matter hyperintensities (WMH) are a cardinal
manifestation of small vessel disease (SVD) (Wardlaw et al.,
2013). Increased WMH burden is associated with incident
ischemic stroke and worse clinical outcome (Arsava et al.,
2009). Beyond ischemic stroke, WMH are also associated
with vascular cognitive impairment and dementia (Au
et al., 2006). WMH prevalence increases with age but is
also directly influenced by individual small vessel risk factors:
the aggregation of cardiovascular risk factors leads to an
increased WMH burden (Wardlaw et al., 2015). Hence,
WMH are an imaging biomarker of brain health suggestive of

neurodegeneration beyond normal brain aging (Brugulat-Serrat
et al., 2019).

Structural injury of the brain has been shown to occur at
the macrostructural level, in the form of WMH, but also at
the microstructural level. Advanced diffusion tensor imaging
(DTI) studies have shown an age-related loss of parenchymal
microstructural integrity in normal-appearing white matter
(NAWM) (Etherton et al., 2017a). Furthermore, perfusion-
weighted imaging (PWI)-based research has also revealed age-
related alterations of the blood-brain barrier with increased
contrast agents’ leakage (Topakian et al., 2010). However, such
microstructural injuries are not visualized with conventional
structural MRI sequences, and as DTI and PWI require special
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acquisition times, the outlined imaging biomarkers are not
currently used in clinical routine for SVD patients. Consequently,
we are in need of conventional MRI-based methodologies that
better quantify SVD and brain health to ensure a widespread
application and translation to clinical practice.

Radiomic analyses cover a broad ensemble of high-
throughput quantification methods applicable to digitalized
medical images (Gillies et al., 2015). These methods
automatically extract high-dimensional data, called
radiomic features, by describing a given region of
interest by its size, shape, histogram, and relationship
between voxels. Because these techniques can capture
slight differences in intensities and patterns that would
remain undetected to a human reader, radiomics bear the
potential to describe neuroimaging beyond what meets
the naked eye, and thus might help to phenotype SVD
(Lambin et al., 2012). Conceivably, they may identify early
underlying brain injury at the individual level with rapid
clinical translatability and thus enhance personalized care
in stroke and SVD.

The aim of the current study was to assess the structural
integrity of the brain using a texture analysis approach
and to understand the infra-radiological footprint of
WMH by exploring its relationship with cardiovascular
risk profiles. To do so, we analyzed 4,163 T2 FLAIR
images from a large multi-site international collaborative
effort studying stroke and WMH. We sought to (a)
build a robust radiomic signature of the subvisible
manifestations of WMH and (b) to apply canonical
correlation analysis (CCA) to investigate the relation
between this latent textural expression in relation to
sociodemographic information and cardiovascular risk factors,
providing a potentially novel approach to improve SVD
and stroke care.

MATERIALS AND METHODS

Participants
We reviewed all ischemic stroke patients included in
the MRI-GENetics Interface Exploration (MRI-GENIE)
study, a large international multi-site collaboration of
20 sites gathering clinical, MRI imaging, and genetic
data, built on top of the NINDS Stroke Genetics
Network (SiGN) study. Both study design, data collection
protocols, and populations have been previously described
(Giese et al., 2020).

Ethics
The MRI-GENIE project has been approved by the
MGH Institutional Review Board (IRB, Protocol #:
2001P001186 and Protocol #: 2003P000836), as well
as ethics boards of the collaborating institutions. All
participants or health care proxy provided signed
informed consent.

Data Collection and Neuroimaging
Pre-processing
Clinical data were acquired within the SiGN study and
comprised information on age, sex, hypertension (HTN), history
of smoking, diabetes mellitus (DM), atrial fibrillation (AF).
Among the 6,627 patients included across 20 sites, FLAIR
images were available for 6,389 patients. Axial T2-FLAIR
images were acquired between 2003 and 2011 within 48 h
of the initial stroke. They had a mean in-plane resolution of
0.7 mm (range: 0.3–1.0 mm) and a through-plane resolution
of 6.2 mm (range: 3.0–30.0 mm). Total brain, ventricle, and
WMH segmentations were accomplished using deep learning
methods described in detail previously (Schirmer et al., 2019;
Dubost et al., 2020). Briefly, total brain segmentation was
done using a tailored 2D-convolutional neural network for
clinical T2-FLAIR data. T2-FLAIR image intensities were
normalized and scaled. Successively, WMH and ventricles were
automatically segmented using distinct convolutional neural
network frameworks. A total of 1,353 patients were excluded
after final quality control of all T2-FLAIR images and respective
segmentations; this control process is described in great detail
in a previous publication (Schirmer et al., 2019). To capture
the underlying processes of SVD in brain parenchyma not
overtly affected by WMH, we computed masks for normal-
appearing brain parenchyma by subtracting ventricles and WMH
masks from total brain masks, resulting in 5,031 masks. To
remove any stray voxels that could impact radiomics extraction,
a morphological opening operation with a 3 × 3 voxel
kernel was performed on the final masks. Among those 5,031
patients, 868 were excluded for missing major clinical data
(age and sex), remaining missing values (89 patients included,
see Supplementary Table 2) were imputed using medians of
distributions. As a result, a total of 4,163 patients were included
across 17 different sites.

Radiomic Feature Extraction
Radiomic features were extracted using the open-source
toolbox PyRadiomics V2.2.0. The full list of the radiomics
extraction parameters can be found online at https://github.com/
MBretzner/WMH_radiomicSign.

Briefly, to account for the discrepancy in voxel sizes and
to reduce unwanted variance that could be originating from
differences between centers and scanners, all features were
extracted in-plane from down-sampled 1 mm × 1 mm × 6 mm
T2-FLAIR images. Quantization was set to a fixed bin width
of 5. Features extraction was performed outside of WMH on
native and pre-filtered images. Filters included Laplacian of
Gaussian (LoG) filters (with sigmas of 1, 2, and 3 mm), wavelet
decompositions, and 2D Local Binary Patterns (2D-LBD).
For each patient, 118 features were computed including mask
statistics, shape features, first-order histogram statistics, GLCM
(Gray Level Co-occurrence Matrix) features, GLRLM (Gray
Level Run Length Matrix), GLDM (Gray Level Dependence
Matrix), and NGTDM (Neighboring Gray Tone Difference
Matrix) features. Exhaustive and didactic descriptions and
formulas of every radiomic feature and filter can be found online
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at https://pyradiomics.readthedocs.io/en/latest/features.html.
As a result, we extracted 763 rotation invariant radiomic
features per patient.

Machine Learning Approach to Build the
Radiomic Signature of the WMH
To account for cerebral size differences, each WMH volume
was divided by the corresponding brain volume to obtain a
percentage of WMH per total brain volume. As the resultant
distribution was highly skewed, it was transformed using a Box-
Cox transform and is referred to as “WMH burden” in the
next paragraphs.

To address the high dimensionality of the data, prediction
of the WMH burden was done using an ElasticNet
linear regressor. Since ElasticNet coefficient estimates
are not scale-invariant, we standardized predictors, i.e.,
radiomics variables, to be 0 centered and have variances
of the same order.

Radiomics-based predictions of WMH burden were
performed in 30-times repeated nested fivefold stratified cross-
validation scheme, resulting in a total of 24,990 out-of-sample
predictions. Predictions were plotted against ground truth values,
and R2 values were computed with standard deviation.

To better understand the role of each class of radiomics
and to rule out an association based solely on the size of
the extraction mask and thus reflecting only atrophy, an
ancillary prediction of the WMH burden was performed
using only the radiomics features that only reflected the
size and the shape of the analyzed brains. As NIHSS has
been shown to be a surrogate marker of stroke volume,
and to assess a hypothetical impact of stroke lesions
on radiomics features, residual of the WMH burden
predictions were studied per NIHSS score when available
(Tong et al., 1998). To explore the potential impact of data
heterogeneity across all sites, a second ancillary analysis was
performed predicting WMH burden in a leave-one-site-out
cross-validation scheme.

TABLE 1 | Demographic and clinical characteristics of the study population
(n = 4,163).

Age Mean (SD) 62.8 (15.0)

Female n (%) 1,748 (42.0%)

Hypertension n (%) 2,825 (67.9%)

Diabetes mellitus n (%) 687 (16.5%)

Atrial fibrillation n (%) 595 (14.3%)

Coronary artery disease n (%) 772 (18.5%)

History of smoking n (%) 1,331 (32.0%)

Prior stroke n (%) 539 (12.9%)

WMH volume Median (IQR) 4.2 mL (1.4–11.2)

NIHSS* Median (IQR) 3 (1–6)

NIHSS, NIH Stroke Scale.
*NIHSS was available for 2,234 (53.7%) patients included.
“Prior stroke” refers to a stroke preceding the one that led to the
inclusion in the study.

The shrinkage ability of the ElasticNet regressor
was leveraged to select the most predictive features
of the WMH burden. The radiomic signature of
the WMH was built with the features that were
consistently selected across each of the 30 repetitions
and therefore represented the most robust and stable
predictors of WMH burden.

Understanding the Textural Footprint of
Clinical Phenotypes
Association of clinical variables and the radiomic signature
of WMH burden were done via CCA, which allows studying
two multivariate variable sets concomitantly (Hotelling, 1936;
Wang et al., 2020). Indeed, traditional analyses explore
relationships between many to one variable, whereas CCA
can study complex many-to-many correlations, truly leveraging
the power of multivariate datasets. CCA can be conceived
as similar to principal component analyses in the way that
each side of the data (here clinical and radiomics) undergoes
a factorization into a latent representation of the variables,
called canonical variates (CV). The canonical correlation score
of a canonical function represents the correlation between
the two CV that composes it. To extract each canonical
function, CCA finds combinations of factors of the two sets
so that they are maximally correlated. Canonical loadings
represent the correlations between variables and their latent
representation (CV) and can be interpreted as the relative
contribution of variables to the variates: a variable with a large
loading has more impact on a variate than a variable with a
smaller loading.

Radiomic features and continuous clinical variable (age)
normality was assessed using the Shapiro–Wilks test and, if
needed, were transformed using the R toolbox BestNormalize
(Peterson and Cavanaugh, 2020). Significance of canonical
correlations was determined via permutation testing (1,000
permutations) and assessed using Wilks’ Lambda computed
with Rao’s F-approximation, p-values were corrected for
multiple testing with Benjamini–Hochberg procedure
(Hotelling, 1936; Wang et al., 2020). Explained variances
of the canonical functions were calculated and figured
in a scree plot. Loadings were calculated to discover and
characterize the impact of clinical and radiomic features on
each canonical function and thus to provide support for the
interpretation of the relationship between the radiomics and
clinical domains.

Overall, the goal of CCA is to find underlying representations
that best describe the correlations between the two multi-
dimensional datasets. Thus, this technique permits the
estimation of the sources of maximal covariance between
the clinical and the radiomics domains, highlighting the
subvisible contribution of cardiovascular risk factors to
T2 FLAIR imaging.

Code Availability
Radiomic features extraction, feature selection, and
machine learning analyses were performed in python
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3.7.6 using the toolbox scikit-learn (Pedregosa et al.,
2011). CCA was performed in R V1.3.1056 using
the toolboxes CCA, vegan (González et al., 2008;
Oksanen et al., 2019). The complete codes used
to perform the radiomics extraction as well as the
extraction parameters and the data analysis are
available here: https://github.com/MBretzner/WMH_
radiomicSign.

RESULTS

Population
All patients included in MRI-GENIE have suffered an ischemic
stroke. Population demographics are shown in Table 1.
The mean age was 62.8, and there were 42% females,
median WMH volume was 4.2 mL [interquartile range
(IQR): 1.4–11.2]. Admission NIH stroke scale (NIHSS)
was available for 2,234 (53.7%) patients; median NIHSS
was 3 (IQR: 1–6). Comparison of included and excluded
patients’ available clinical characteristics is shown in
Supplementary Table 2. Briefly, excluded patients were
younger, had less hypertension, less coronary artery disease
(CAD), less AF, but had more prior strokes. There was
no difference in sex or diabetes status. Importantly NIHSS
scores did not differ.

Building the Latent Radiomic Signature
of the WMH Burden
The coefficient of determination of the repeated out-of-
sample cross-validated predictions of the WMH burden
was R2 = 0.855 ± 0.011 (Figure 1). The average (SD)
number of selected features per repetition was 150.3 (5.6).
These features represented the most relevant ones in the
prediction of WMH burden. To reduce the redundancy and
multicollinearity of radiomic features, we built a signature of
the WMH burden by only including the features that were
systematically selected in every repetition. This step resulted in
the automatic selection of 68 features, which are referred to as
the “radiomic signature of WMH.” These features are listed in
Supplementary Table 1.

Prediction performance of the WMH burden using radiomics
that only capture the shape and size of the extraction mask
but not voxel intensities was substantially lower with an R2

of 0.41 ± 0.03. The analysis of the residual of the WMH
burden predictions per available NIHSS score showed no trend
suggesting an impact of stroke lesions on the predictions
(Supplementary Figure 1).

Results of the predictions recursively holding one site
out are reported in Supplementary Table 3. Distributions
of patients Age and WMH volume per site are reported
in Supplementary Figure 2. Briefly, when the center held-
out was showing large clinical differences (mainly younger
patient and/or neglectable loads of WMH), prediction
performances were lower.

FIGURE 1 | Repeated out-of-sample cross-validated predictions of WMH
burden. (A) Predictions of the WMH burden resulted in a coefficient of
determination of R2 = 0.855 ± 0.011. Predicted and true WMH burdens show
negative values due to the Box-Cox transformation of the WMH burden
distribution. The bottom panels provide an illustrative example of a radiomics
extraction mask (B) and a WMH mask (C).

Clinical Phenotypes Captured by
Radiomics
Aiming to discover possible links between clinical phenotypes
and textural features of the radiomic signature of WMH burden,
we performed a CCA.

The CCA could identify seven canonical functions (CF 1–
7) correlating the radiomics with clinical variates. All seven
canonical functions were significant (False discovery rate
corrected p-values CF1−6 < 10−3; CF7 = 0.012) with respective
canonical correlations of 0.81, 0.65, 0.42, 0.24, 0.20, 0.15, and 0.15.
Figure 2 contains the scree plot of the explained variance of each
CF and the correlation plot of the clinical and radiomic variates
of the first canonical function with patients points colored
according to their age. Loadings of the clinical and the five
most impactful radiomic variables (highest loadings) of the first
two canonical functions are reported in Table 2. The bi-loading
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plot in Figure 3 provides a graphical interpretation relationship
between the most impactful variables of the first two canonical
functions. Loadings of the clinical variate of all canonical
functions are shown in Table 3; loadings of the radiomics variate
are presented in Supplementary Table 1. Variables that share the
same direction along a given function have a positive covariance,
whereas variables that show opposing directions have negative
covariance. The magnitude of the loading reflects the strength of
the association.

DISCUSSION

Radiomic features, extracted outside of the visible WMH,
captured latent characteristics of WMH and could accurately
predict WMH burden. Upon further analysis, seven distinct
combinations of radiomics features were associated seven distinct
combinations of clinical traits relevant to WMH, such as age, sex,
hypertension, history of smoking, DM, and CAD. Therefore, the
methods presented here provide new tools to help to understand
and quantify the microstructural portion of the parenchymal
deterioration due to SVD in stroke and give a radiological
snapshot of brain health. Importantly, our analyses relied on
basic T2-FLAIR images, as commonly acquired in clinical routine
and thus do not require any advanced, more costly additional
imaging sequences.

White matter hyperintensities represent a cardinal feature
among radiological manifestations of brain aging and SVD.
However, DTI-(Etherton et al., 2016) and PWI-based
studies suggested (Promjunyakul et al., 2018) that WMH
represent an end-stage macrostructural injury, embodying a
surreptitious disease altering brain parenchyma. Our results
support the hypothesis of WMH penumbra in cerebral
SVD with a continuum between visible and invisible
parenchymal damage (Maillard et al., 2011; Wardlaw et al.,
2013). A major caveat of traditional advanced imaging
biomarkers is their acquisition. Indeed, DTI sequences are
rarely acquired routinely because of long scanning times, and
PWI necessitates the injection of Gadolinium-based contrast
agents. In contrast, our method can capture parenchymal
microstructural integrity and hence, promises to replace
additional dedicated imaging as a candidate approach to
follow-up SVD progression in the clinic.

Cerebral atrophy has been shown to be associated with
WMH burden (Aribisala et al., 2013). However, little is
known about the relationship between the texture of the
brain and WMH accumulation. By showing a twofold
improvement of predictions leveraging exhaustive textural
information compared to predictions restricted to radiomics
describing only shape and size, our findings suggest that,
beyond atrophy, textural analysis of the brain might better
document WMH related damage of the brain. Therefore, one
hypothesis would be that radiomics might be able to capture
early-stage infra-radiological abnormalities prior to their
evolution into irreversible cerebral loss, potentially bearing
implications for future studies targeting WMH progression
prevention.

FIGURE 2 | Scree plot of the explained variance per canonical function and
correlation plot between the first clinical and radiomic variates. (A) Scree plot
of the explained variance by canonical functions. (B) Correlation plot of the
first clinical and radiomics canonical variates. Each dot represents a patient
and is colored according to age. The first canonical function mainly
represented age. There was a very strong correlation between the clinical and
the radiomics variates of r = 0.81.

By means of our CCA, we estimated the associations between
the radiomic signature of WMH and SVD risk factors. The
influence of cardiovascular risk factors on brain tissue was
previously investigated in neuropathology and advanced imaging
studies yet was rarely described by analyzing the texture of
conventional imaging (Gouw et al., 2011; Wardlaw et al., 2013).
Our work complement and support previous studies on MRI
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TABLE 2 | Clinical and most impactful radiomic loadings of the first two canonical functions.

Clinical loadings Radiomics loadings

CF 1 CF 2 CF 1 CF 2

AF 0.310 0.005 LoG-1mm histogram 10 percentile −0.254 −0.128

Age 0.990 0.008 LoG-1mm GLSZM large area high gray level emphasis −0.747 −0.008

CAD 0.260 0.097 LoG-1mm GLSZM large area low gray level emphasis −0.743 −0.005

DM 0.127 0.009 LoG-2mm GLDM gray level non uniformity −0.514 0.671

Hypertension 0.381 −0.057 LoG-2mm GLRLM run variance −0.241 −0.124

Female sex 0.089 −0.993 LoG-2mm GLRLM short run low gray level emphasis 0.734 0.097

Smoking 0.069 0.180 LoG-3mm GLRLM gray level non uniformity normalized 0.300 −0.167

LoG-3mm GLRLM short run low gray level emphasis 0.767 0.073

Original histogram 10 percentile −0.733 −0.071

Original GLRLM run length non uniformity 0.662 0.221

Original GLRLM run length non uniformity normalized 0.658 0.051

Original GLRLM run variance −0.801 −0.013

Original shape major axis length −0.263 0.696

Original shape maximum 2D diameter column −0.162 0.745

Original shape mesh volume −0.608 0.581

Original shape minor axis length 0.046 0.709

Original shape sphericity −0.759 −0.172

Original shape surface volume ratio 0.778 0.044

Wavelet-LH GLSZM Small area high gray level emphasis −0.413 −0.161

AF, atrial fibrillation; CAD, coronary artery disease; DM, diabetes mellitus; LoG, Laplacian of Gaussian; GLCM, Gray Level Co-occurrence matrix; GLRLM, Gray Level Run
Length Matrix; GLDM, Gray Level Dependence Matrix; NGTDM, Neighboring Gray Tone Difference Matrix. Loadings assess the relative contribution of a variable to a
canonical function.

textural analysis applied to SVD by Valdés et al. (2017) on
gadolinium-enhanced T2-FLAIR, Bernal et al. (2020) on dynamic
spectral gadolinium-enhanced T1 weighted imaging, Tozer et al.
(2018) on T1 and T2-FLAIR cognitive textural biomarkers, and
Shu et al. (2020) and Shao et al. (2018) who could predict
the progression of WMH using radiomics extracted from,
respectively, T1-FLAIR and T2-FLAIR images. Our analyses
were based on a large collection of clinical T2-FLAIR images,
a routine MRI sequences acquired during both acute screening
and follow-up of patients with stroke and cerebrovascular disease.
Therefore, it argues for the overall clinical relevance of radiomics
in stroke and SVD.

Age was the clinical aspect correlating most strongly with the
radiomic signature of WMH burden and is a well-established
predictor of WMH (Rost et al., 2010; Giese et al., 2020).
Similarly, blood-brain barrier studies using PWI highlight
an age-associated increased leakage of contrast agents within
WMH, but also beyond, in NAWM, showcasing a possible
preclinical pathogenic step leading to cognitive decline (Wardlaw
et al., 2017). Our findings also suggest the presence of age-
related subvisible abnormalities that can notably be quantified
on structural T2-FLAIR images. Radiomic features describing
atrophy (brain size and lower sphericity) and T2-FLAIR
heterogeneity, were the most strongly correlated with age.
On the first canonical function, age was the main variable,
however, HTN, AF, and CAD were also moderately represented,
painting the picture of vascular pathological brain aging. The
heterogeneity and hyperintensities of the parenchyma could
have maybe captured lacunes, enlarged perivascular spaces, or

microbleed, which is, along with WMH, radiological hallmarks
of SVD (Wardlaw et al., 2013). Radiomics presented here
could therefore portray a representation of a pathological
brain aging process in stroke patients, depicting atrophic and
heterogeneous parenchyma.

The second canonical function illustrated sex differences in
tissue aspects in T2-FLAIR. The association of the radiomic
signature with sex was mainly driven by shape radiomics
capturing differences in brain size. This finding remains,
however, independent from age-related atrophy since canonical
functions analyze the unexplained variance from the previous
function. Nevertheless, the female sex was also associated with
greater linear edge density (GLRLM after LoG filtering), which
might indicate some sex-specific textural differences in the
loss of microstructural integrity, as suggested in DTI with
previous findings reporting sex-specific fractional anisotropy
values (Etherton et al., 2017b).

The third canonical function captured a profile representing
mainly patients with a history of smoking, and, to a lesser extent,
diabetes, which shared common textural features describing
more high spatial frequency changes in intensities which could
represent diffuse and fine heterogeneity throughout the brain.

The fourth canonical function characterized a specific relation
between hypertension and some textural features highlighting
inhomogeneity on a lower spatial frequency after wavelet
decomposition, thus describing a patchy texture. Since no other
cardiovascular risk factor was represented on this dimension, it
describes an age-independent specific textural manifestation of
hypertension on T2-FLAIR.
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FIGURE 3 | Bi-loading plot of the variables projected over the two first
canonical functions. A bi-loading plot graphically represents both the
correlation of variables with canonical functions, and the correlation between
variables of each set. The position of a variable relative to an axis describes
the strength of the correlation of that variable with the axis, the closer to the
outer circle, the stronger the correlation. Clinical variables (red dot) and
radiomic features (blue triangle) are positively correlated if close or negatively
correlated if diagonally opposed. Blue tags were positioned next to correlated
radiomic features representing common textural concepts. On T2 FLAIR
images, younger patients had larger brains and more homogeneous brain
tissue (left side of the plot) whereas older patients had more atrophic and
heterogeneous brains (right side of the plot).

Diabetes mellitus was mainly represented in the fifth
dimension, correlating with textural features that illustrated
overall less hyperintense parenchyma and especially those
obtained after filtering with LoG filters. Since those filters are
known to act as blob detectors, they potentially captured isolated
islets of damage.

The sixth canonical function related the presence of CAD
and AF to a more homogeneous texture, which was, however,
combined with a high impulse response to the LoG filters of 1,
2, and 3 mm sigma that could signify the presence of spots of
subvisible damage of varying size of presupposed embolic origin.
On the contrary, the seventh canonical function pictured the
differences separating AF from CAD and DM patients, where
AF patients seemed to exhibit more patches of high spatial
frequency intensity changes, which could represent zones of
subtly lesioned brain.

Diabetes and AF were represented by several dimensions
meaning that the diseases in question could manifest in several
distinctive aspects or stages in our data. Conditional factors
that could influence such diversity in presentations include
the relative control of disease by treatment or lifestyle, the
patient’s stage of disease severity, genetic predispositions, and
endophenotypes of varying severity.

As with any work on radiomics, the main pitfall remains the
curse of dimensionality, which refers to a very high number of
variables. Consequently, one of the strengths of our study was the

available sample size, allowing us to truly leverage both machine
learning methodologies and multivariate modeling to select and
characterize relevant radiomic variables in a data-driven fashion.
In fact, to date and to the best of our knowledge, this is the
largest radiomics study performed on any topic. Previous work
on radiomics of SVD studied smaller datasets (<250 participants)
and thus did not permit powerful unsupervised feature selections
(Valdés et al., 2017; Tozer et al., 2018; Bernal et al., 2020).
Another added value of the present study is its multicentric
design. Our study is the first to explore radiomics of SVD in
a large and multicentric population including diverse ischemic
stroke cohorts with patients presenting a large spectrum of age
and WMH burdens. While the heterogeneity of our dataset could
be perceived as a limitation for prediction performances, we think
it is on the contrary strength of our study. Indeed, our algorithm
was trained on very diverse patients therefore theoretically
increasing its chance of success if applied to an external
dataset. By implementing multiple measures, such as down-
sampling and intensity normalization, to prevent differences
originating from acquisition parameters discrepancies, we could
reach homogeneous results across all centers while capturing
relevant sources of variance, as depicted by the low error of our
WMH burden predictions. Another source of unwanted variance
in radiomics analyses is segmentation. Indeed, underestimation
of the WMH burden, brain parenchyma, or ventricles could
have impacted our radiomics based WMH burden prediction.
However, we here built upon previous results obtained with state-
of-the-art deep learning-based, fully automated segmentation
methods that could produce consistent outlines of brains, WMH,
and ventricles from T2-FLAIR (Schirmer et al., 2019; Dubost
et al., 2020). Preventive measures we implemented, especially
down-sampling and intensity normalization, may have come at
the cost of losing pertinent information. However, that impact
might have been mitigated thanks to our large sample size.
We thus emphasize the capital importance of international
collaborations, such as the MRI-GENIE consortium, to gather
large datasets, especially in the era of quantitative imaging and
personalized medicine.

Limitations and Future Directions
We acknowledge several limitations; first, stroke lesion outlines
were not available and thus not accounted for. Overall, the
median size of ischemic stroke lesions in this cohort is expected
to be small, as the median NIHSS was 3. Moreover, the radiomic
analysis conducted here provides a single value per radiomic
variable per patient, averaging the textural presentation over the
whole extraction zone and thus largely decreasing the impact
of small lesions. Regarding large lesions, the corresponding
perturbated radiomic value could have been assimilated to an
outlier and then mitigated by the ElasticNet model, which
includes an L1 regularization that improves its robustness to
extreme values. The absence of clear trend in the analysis of
the residual of WMH burden prediction per NIHSS score is in
favor of a limited impact of stroke lesions on the predictions.
Other SVD imaging features were also not accounted for, such
as microbleeds or enlarged perivascular space, which have been
previously linked to radiomic features (Valdés et al., 2017; Tozer
et al., 2018).
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TABLE 3 | Clinical loadings for all seven canonical functions.

Clinical loadings

Canonical function 1 2 3 4 5 6 7

AF 0.310 0.005 0.102 0.020 0.313 −0.596 0.663

Age 0.990 0.008 0.096 0.080 −0.045 0.034 0.017

CAD 0.260 0.097 0.169 −0.157 −0.214 −0.744 −0.521

DM 0.127 0.009 −0.443 −0.117 0.781 −0.050 −0.401

Hypertension 0.381 −0.057 0.067 −0.916 0.055 0.058 0.030

Female sex 0.089 −0.993 −0.015 0.056 −0.004 −0.030 0.039

Smoking 0.069 0.180 −0.903 −0.055 −0.347 −0.132 0.081

AF, atrial fibrillation; CAD, coronary artery disease; DM, diabetes mellitus.
A high loading coefficient implies a higher contribution to a canonical function. For instance, age was the most important variable when establishing the clinical variate of
the first canonical function.

Secondly, we could not study the relationship between
radiomics and other known WMH biomarkers such
as dyslipidemia.

Thirdly, we here suggest a novel biomarker to assess
the structural integrity of the brain on routine T2-FLAIR
imaging. However, as with every new biomarker, the results
presented here would need external validation, especially to
appreciate the robustness of the features included in the radiomic
signature of WMH.

Fourthly, a substantial number of patients were excluded from
the analysis because of failed segmentation mainly due to image
quality. While this might bias the analysis, it also highlights the
challenges of processing clinical imaging in a real-world setting.

Lastly, radiomics were extracted outside of the WMH
but not specifically within the white matter. Future research
could evaluate the impact of co-registration and resampling
on radiomics of SVD, then benchmark radiomics of NAWM
against more traditional DTI metrics in the prediction of clinical
outcomes and therefore provide a more straightforward method
to quantify microstructural integrity.

CONCLUSION

In a large cohort of ischemic stroke patients, we demonstrated
that radiomic features predicted WMH burden and were
associated with clinical factors. By applying machine learning
methods to radiomics analyses of T2-FLAIR images from a
large multi-site ischemic stroke cohort, we could characterize
the latent expression of SVD that extends beyond the visible
WMH and subsequently uncover links associating cardiovascular
risk factors to distinct textural patterns. Radiomics analysis
may hold promise to become a cost-effective tool to quantify
microstructural damage on routinely acquired images in the
follow-up of SVD and stroke patients, once externally validated.
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