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ABSTRACT
Trilinearity is a property of some chemical data that leads to unique decompositions when curve resolution or multiway de-
composition methods are used. Curve resolution algorithms, such as Multivariate Curve Resolution–Alternating Least Squares 
(MCR-ALS), can provide trilinear models by implementing the trilinearity condition as a constraint. However, some trilinear an-
alytical measurements, such as excitation–emission matrix (EEM) measurements, usually exhibit systematic patterns of missing 
data due to the nature of the technique, which imply a challenge to the classical implementation of the trilinearity constraint. In 
this instance, extrapolation or imputation methodologies may not provide optimal results. Recently, a novel algorithmic strategy 
to constrain trilinearity in MCR-ALS in the presence of missing data was developed. This strategy relies on the sequential imposi-
tion of a classical trilinearity restriction on different submatrices of the original investigated dataset, but, although effective, was 
found to be particularly slow and requires a proper submatrix selection criterion. In this paper, a much simpler implementation 
of the trilinearity constraint in MCR-ALS capable of handling systematic patterns of missing data and based on the principles of 
the Nonlinear Iterative Partial Least Squares (NIPALS) algorithm is proposed. This novel approach preserves the trilinearity of 
the retrieved component profiles without requiring data imputation or subset selection steps and, as with all other constraints 
designed for MCR-ALS, offers the flexibility to be applied component-wise or data block-wise, providing hybrid bilinear/trilin-
ear models. Furthermore, it can be easily extended to cope with any trilinear or higher-order dataset with whatever pattern of 
missing values.

1   |   Introduction

Trilinear models are mathematical representations of the de-
composition of trilinear data into three pure matrices, each 
connected to one of the modes or dimensions of the original tri-
linear data and containing the underlying components or fac-
tors, defined by a triad of distinct profiles (Figure 1A).

Each matrix corresponds to one of the modes or dimensions of 
the data array and contains the underlying components or fac-
tors of the original three-way trilinear data (Figure 1A).

Data decomposition approaches providing trilinear models 
are particularly relevant in scientific fields such as chemis-
try, spectroscopy, and environmental science due to the fact 
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that the solutions they return are unique; that is, the extracted 
component profiles do not exhibit rotational ambiguity when 
the Kruskal rank condition is fulfilled [1]. Furthermore, when 
multiblock or multiset data are handled, trilinear decompo-
sitions also yield the so-called second-order advantage and 
enable the quantification of analytes in the presence of un-
known interferents [2]. Parallel Factor Analysis–Alternating 
Least Squares (PARAFAC-ALS) [3, 4], Direct Trilinear 
Decomposition (DTD) [5], and Multivariate Curve Resolution–
Alternating Least Squares (MCR-ALS) [6, 7] with a trilinear-
ity constraint [2, 8] are three algorithms widely employed to 
obtain trilinear models. Whereas PARAFAC-ALS and DTD 
hold to the decomposition in Figure  1A, when MCR-ALS is 
used, the initial data cube is unfolded in one direction, and the 
trilinearity constraint is applied by-component to the blocks of 
the unfolded mode to ensure a common profile shape among 
them (Figure 1B) [2, 8].

Although the practical applications of trilinear data analy-
sis can be substantially diverse [9–11], the most emblematic 
example to illustrate the relevance of trilinear models in sci-
ence and, more specifically, in analytical chemistry, relates to  
excitation–emission matrix (EEM) fluorescence measurements. 
EEM measurements provide a 2D excitation–emission land-
scape per sample analyzed and represent an excellent tool to 
characterize fluorophores due to variations in their excitation 

and emission spectra [12–14]. If several samples are consid-
ered, a 3D data structure can be built (see Figure  1A), where 
three dimensions correspond to the number of samples (s), the 
number of excitation wavelength channels (�ex), the number of 
emission wavelength channels (�em), and the resulting data cube 
size 

(

s, �ex, �em
)

. A trilinear decomposition of this 3D data struc-
ture can then be carried out to obtain the pure excitation and  
emission spectra and the sample profile of components.

Similar decompositions can be achieved when dealing with ex-
citation–emission hyperspectral images (EEM-HSIs). In EEM-
HSI, every image pixel is associated with a 2D EEM landscape. 
EEM-HSI can therefore be looked at as 4D data arrays with 
dimensions equal to the number of image pixels along the x
-direction times the number of image pixels along the y-direction 
times the number of excitation wavelength channels times the 
number of emission wavelength channels 

(

x, y, �ex, �em
)

. In this 
scenario, trilinear decompositions are achieved after unfolding 
pixel-wise these 4D data arrays, thanks to the EEM dimensions.

Although EEM constitutes an ideal example to illustrate how 
trilinear decomposition methodologies operate and work, their 
actual analysis may sometimes be extremely challenging due to 
the fact that the collected measurements might be perturbed by 
signals associated with, for example, Rayleigh and Raman scat-
tering. A possible way to deal with such an issue is to remove 

FIGURE 1    |    (A) Schematic representation of the trilinear decomposition of a EEM data cube (D) enabling the retrieval of the pure concentration 
profiles (C), the pure excitation spectral profiles (B), and the pure emission spectral profiles (A) of the underlying components. (B) Schematic 
representation of the trilinearity-constrained MCR-ALS decomposition of D. Here, D is unfolded by concatenating in a row-wise augmented 
multiset all the emission spectra collected at the different excitation wavelengths. In this case, MCR-ALS provides the pure concentration profiles 
(C) and the augmented pure spectral fingerprint (S) of every component, containing the excitation and emission pure profiles. Notice that every pure 
emission spectral profile extracted at the different excitation wavelengths is forced to have the same shape.
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from the dataset under study these signal contributions not fol-
lowing a trilinear model and replace the corresponding data en-
tries with missing values. In addition, when the emission range 
and the excitation range in the EEM overlap, no emission signal 
is detected below the excitation range. These facts cause a sys-
tematic pattern of missing data in EEM measurements linked 
to the natural fluorescence phenomenon and the instrumental 
settings used that need somehow to be dealt with.

Dealing with missing data poses a substantial challenge when 
employing trilinear modeling approaches since conventional 
algorithms are not designed to directly handle them. Different 
strategies have been proposed to overcome this limitation, such 
as missing data interpolation or extrapolation based on neigh-
boring values or missing data imputation [15, 16]. However, it is 
well established that imputation algorithms may converge very 
slowly in the presence of large amounts of missing data, follow-
ing systematic patterns of absence in the data structure [17].

In trilinear MCR-ALS models, dealing with missing data im-
plies modifying the way the trilinear constraint is implemented. 
Indeed, the forced common shape in the blocks of the extended 
mode in Figure 1B is based on performing a singular value de-
composition (SVD) analysis of a matrix formed by all profiles 
linked to a single component and taking the profile of the first 
principal component calculated as the common reference [8]. If 
the profiles do not have the same number of entries (because of 
missing emission observation values), the classical implementa-
tion cannot be applied.

As an alternative to data extrapolation and imputation, Gómez-
Sánchez et al. [18] have lately proposed an innovative algorith-
mic procedure to constrain trilinearity when modeling trilinear 
data with missing values by MCR-ALS. This approach allows to 
skip missing entries by imposing the trilinearity restriction only 
on local subsets of the original data at hand. Unfortunately, the 
selection of the submatrices is dataset-dependent, and the algo-
rithm gets complex and difficult to implement.

In this work, we present a much simpler and computationally 
efficient implementation of the MCR-ALS trilinearity constraint 
capable of handling missing data and based on an adapted use 
of the Nonlinear Iterative Partial Least Squares (NIPALS) algo-
rithm [19]. As detailed in the next sections, the valuable char-
acteristic of NIPALS is that it can be adapted to handle datasets 
with missing values by skipping the missing entries during the 
Rank-1 approximation calculation [20]. This is possible because 
the calculation of the scores and loadings is performed row-by-
row and column-by-column, respectively.

The adaptability of NIPALS to work only with the available data 
information values generalizes the use of this trilinearity imple-
mentation to analyze data with a large diversity of percentage 
and pattern of missing data without the need to perform any 
step of data imputation. As for the classical implementation of 
the trilinear constraint in the MCR-ALS environment, the new 
implementation can be optionally applied per component or per 
block [21], ensuring the possibility to work with hybrid bilin-
ear–trilinear models. It is important to note that the approach 
would also apply when the multilinear constraint is applied to 
higher-order datasets.

To prove the potential of this approach, the new trilinearity con-
straint based on NIPALS has been tested in simulated data, in 
EEM from controlled pharmaceutical samples, and in EEM-HSI 
from cross-sections of rice roots as examples.

2   |   Datasets

This section includes the details of both simulated and EEM 
measurements. Simulations were conducted to replicate the spa-
tial structures and EEM fingerprints naturally found in plant 
tissue while introducing variations related to varying noise 
levels and diverse spectral overlap conditions. Real EEM-HSIs 
and EEM measurements of pharmaceutical mixture solutions 
are also analyzed to show the performance of the trilinear con-
straint under experimentally controlled conditions and for ex-
ploratory analysis.

2.1   |   EEM-HSIs of Plant Tissue

2.1.1   |   Simulated EEM-HSIs

The simulated dataset is based on an EEM-hyperspectral image, 
with distribution maps inspired by the components of a real EEM 
leaf sample. These maps exhibit a significant overlap among 
components. In total, the EEM-HSI–simulated sample surface 
encompasses 119 × 119 pixels. The emission range goes from 200 
to 500 nm, with a step size of 6 nm (51 channels). The excitation 
range goes from 200 to 500 nm, with a step size of 6 nm (51 chan-
nels), resulting in a hypercube sized 119 × 119 × 51 × 51. Since in 
EEM measurements there is no emission signal below the exci-
tation wavelength, we set as Not a Number (NaN) all emission 
values that are below the excitation wavelength to mimic the 
missing value pattern naturally found in EEM. Thus, the data-
set presents approximately 50% of the missing data. The pure 
distribution maps and pure fluorescence EEM landscapes are 
presented in Figures S1–S2 of Supporting Information.

The pattern of missing data used for the simulations can be seen 
in Figure  2A. In order to test the algorithm, two scenarios of 
low and high overlap of pure component EEM profiles, respec-
tively, were explored. In both cases, different levels of Poisson 
noise (0.5%, 5%, 15%, and 30% of the total data variance) were 
accounted for. These noise levels mimic typical conditions en-
countered when conducting EEM measurements under ex-
cellent, good, standard, and severe experimental conditions. 
Additional information on the generation of these simulated 
data is provided in the Supporting Information.

2.1.2   |   EEM-HSI of a Plant Tissue Sample

A sample of plant tissue was imaged under a fluorescence con-
focal microscope (Leica TCS SP8 STED 3X, Leica Microsystems, 
Mannheim, Germany) at five different excitation wavelengths 
(405, 470, 520, 570, and 620 nm). Emission spectra were recorded 
within five specific ranges (435–663 nm, 495–663 nm, 543–
663 nm, 591–663 nm, and 647–663) with a sampling interval and 
a bandwidth of 12 nm to avoid Rayleigh scattering due to the sen-
sor sensibility. Pixel size was set at 450 × 450 nm2, which resulted 

 1099128x, 2024, 11, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/cem

.3584 by C
ochrane France, W

iley O
nline L

ibrary on [04/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 11 Journal of Chemometrics, 2024

in a final 4D data structure of dimensions 1024 × 512 × 5 × 20 
covering a global field of view of 460 × 230 μm2 and featuring ap-
proximately 47% of missing values in each EEM landscape (see 
Figure 2B). For additional details on the data collection proce-
dure, please refer to Ref. [18].

2.2   |   EEMs of Pharmaceutical Mixtures

The EEM of nine mixtures of ibuprofen (IBU) and acetylsali-
cylic acid (ASA) was measured using an AB2 Aminco–Bowman 
spectrofluorometer within the excitation wavelength range 
200–500 nm and emission wavelength range 200–600 nm. 
Table  1 shows the concentrations of the two pharmaceutical 
compounds in each investigated mixture. The final 3D dataset 
formed by the pharmaceutical mixtures was a data cube formed 
by nine samples, 61 excitation channels, and 42 emission chan-
nels sized 9 × 61 × 42. For additional details, please refer to Ref. 
[18]. Spectral regions clearly exhibiting Rayleigh and Raman 
scattering were removed from the initial data, which resulted 
in approximately 46% of missing values in every EEM landscape 
recorded (see Figure 2C).

2.3   |   Software

Data analysis was performed by means of in-house–coded 
MATLAB scripts and routines.

3   |   Data Analysis

3.1   |   MCR-ALS

MCR-ALS is an algorithm meant to solve the mixture analy-
sis problem, and it has been widely applied in many different 
fields [6, 7]. MCR-ALS decomposes the data into pure signatures 
weighted by their contributions or concentrations, following a 

bilinear model Equation (1). This model matches the nature of 
the spectroscopic measurements, where the data can be generally 
expressed as a bilinear model following the Beer–Lambert law.

where D is the matrix sized (I , J) (usually, samples and wave-
lengths, respectively) which contains all the spectra and C and ST 
are the matrices of concentration profiles, sized (I ,N) (samples 
and components) and spectral signatures of the image constitu-
ents, sized (N , J) (components and wavelengths), respectively. E, 
sized (I , J), is the matrix of residual variation unexplained by the 
MCR model. In MCR-ALS, the matrices C and ST are estimated 
through an iterative optimization process based on alternating 
least squares and during which constraints, such as nonnegativ-
ity or trilinearity, can be optionally imposed per mode (C or ST), 
per block in a multiset arrangement and per profile (component) 
within C or ST. Calculations are stopped when the relative differ-
ence in the values of the model lack of fit expressed as

becomes lower than a user-defined threshold. In Equation (2), 
di,j represents the i,jth element of D and ei,j is the residual associ-
ated with the reproduction of di,j through the MCR-ALS model.

3.2   |   Standard Implementation of the Trilinearity 
Constraint in MCR-ALS

The standard algorithmic scheme by which trilinearity con-
straint applied during the MCR-ALS optimization procedure is 
represented in Figure 3. The cube D, formed by the EEM mea-
surement of several samples, need to be first unfolded into a data 
matrix with size s × �ex�em.

(1)D = CST + E

(2)LOF(%) = 100 ×

�

�

�

�

∑

i,j e
2
i, j

∑

i,j d
2
i, j

TABLE 1    |    Concentration of ibuprofen (IBU) and acetylsalicylic acid (ASA) in the nine pharmaceutical mixtures under study.

Pharmaceutical compound

Mixture

1 2 3 4 5 6 7 8 9

IBU (mg/L) 0.25 1.00 0.25 2.50 0.25 1.00 1.50 1.50 1.50

ASA (mg/L) 1.50 0.50 1.00 0.25 2.50 2.50 0.5 0.25 1.50

FIGURE 2    |    Missing value patterns in (A) the simulated EEM data, (B) the real EEM-HSI data, and (C) the real EEM data collected on the 
pharmaceutical mixtures of ibuprofen and acetylsalicylic acid.
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Afterwards, at each individual MCR-ALS iteration, when ST 
(N × �ex�em) is estimated, each one of its rows is refolded into 
a two-dimensional data array, Sfn, with dimensions �ex × �em 
which is subjected to an SVD. The first principal component, ex-
pressed by the scores and the loadings, serves to build a new ma-
trix Ŝfn, where all emission profiles have the same shape thanks 
to the Rank-1 SVD reconstruction. Note that, here, the score 
vector is defined as the left singular vector multiplied by its sin-
gular value for the sake of simplification. Ŝfn is finally unfolded 
again and used to replace the corresponding row of ST before 
the following MCR-ALS iterative process. Once convergence is 
achieved, the pure component excitation spectra are retrieved 
by computing the area of the respective pure emission profiles at 
each excitation wavelength.

This implementation of the trilinearity constraint in MCR-ALS, 
being based on the principles of SVD, cannot readily handle 
datasets containing missing values.

3.3   |   A NIPALS-Based Implementation 
of the Trilinearity Constraint in MCR-ALS

As stated before, it is very common to find situations where no 
emission signal is recorded below certain excitations or where 
specific scattering or Raman bands need to be removed from the 
data, yielding EEM landscapes that contain patterned missing 
data (Figure 4A,B shows the situation for a dataset based on the 
analysis of a set of mixtures and for a EEM-HSI imaging data-
set). In these cases, the MCR-ALS trilinearity constraint can 
be adapted to address the missing values following the scheme 
illustrated in Figure 4C. This algorithmic scheme basically en-
compasses the same computational steps as the one represented 
in Figure 3, but when it comes to decomposing the Sfn matrices 
resulting from the refolding of the individual rows of ST, the pro-
cedure is conducted by means of the NIPALS algorithm and not 
through SVD.

NIPALS is an iterative algorithm used in multivariate analysis 
to extract principal components, as SVD does. However, a sig-
nificant advantage over SVD regards the fact that NIPALS can 

converge in the presence of missing data to the same solution as 
SVD for Rank-1 matrix approximations [20]. NIPALS sequen-
tially calculates the scores and loadings of every component so 
that they capture the maximum variance in the data. After the 
calculation of every component, the initial data are deflated and 
the remaining information is used to estimate the following 
component until all data variance is explained [19]. When Sfn 
contains missing values, the Rank-1 approximation is done by 
performing the least squares estimation of the score and loading 
the vector row-by-row and column-by-column, respectively, as 
displayed in Figure 5.

As shown in Figure 5A, NIPALS is initialized with an estimate 
of the first-component loading vector p, obtained, for instance, 
as the column-wise average of the available entries of Sfn. Then, 
the first-component score vector t is calculated using p and Sfn. 
More specifically, every element of t is calculated independently, 
using only the respective row of Sfn and the loading vector p, as 
in Equation (3).

If missing values appear along Sfn(i, : ), only its available en-
tries and the corresponding portion of the loading vector p are 
considered. Once all the elements of t have been calculated, p 
is reestimated by using the score vector t and Sfn, as shown in 
Figure  5B. In this case, every column of p is calculated inde-
pendently, using t and the related column of Sfn, as

If the column of Sfn contains missing values, only its available 
entries and the corresponding elements of t are taken into ac-
count. This procedure is repeated for all columns of Sfn. Both 
calculations of t and p are repeated until convergence. When 
convergence is achieved, the algorithm stops providing two re-
fined vectors t and p which are finally used to obtain Ŝfn.

This NIPALS-based implementation of the trilinearity con-
straint in MCR-ALS allows skipping missing values present 

(3)t(i, 1) = Sfn(i, : )
(

pT
)+

(4)pT(1, j) = t+Sfn(: , j)

FIGURE 3    |    Schematic representation of the classical SVD-based implementation of the MCR-ALS trilinearity constraint. At each MCR-ALS 
iteration, trilinearity is imposed on each row of ST as illustrated. Notice that the decomposition and reconstruction of Sfn forces all its row profiles to 
have identical shape, while weighted by the corresponding score.
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6 of 11 Journal of Chemometrics, 2024

in the investigated data, thereby bypassing the need for impu-
tation methods and preserving the integrity of MCR-ALS de-
compositions. Due to its simplicity, it can constitute a valuable 
addition to all publicly available MCR-ALS interfaces [22] and 
can be easily adapted to be applied to higher-order multiway 
data arrays.

4   |   Results and Discussion

4.1   |   Simulated EEM-HSIs

The new implementation of the MCR-ALS trilinearity constraint 
was first tested on the simulated 4D images described before, 
which contain around 50% of the missing values. All the gen-
erated datasets were analyzed using two different approaches: 
each 4D image was first unfolded as in Figure 3B and then sub-
jected to two different MCR-ALS decomposition procedures, one 
during which only nonnegativity constraints were imposed on 
both C and ST (bilinear model) and the other during which also 
the adapted trilinearity constraint was applied (trilinear model). 

In all cases, initial spectral estimates were obtained through 
a SIMPLISMA-based algorithm  [23]. For all MCR-ALS mod-
els, the maximum number of iterations was set at 2000, while 
convergence was considered achieved if the difference between 
the LOF values resulting from two consecutive iterations was 
found to be lower than 10−11%. In order to evaluate the quality 
of these models, the final LOF percentages and the pairwise 
correlation coefficients between the pure profiles in C and ST 
and the corresponding ground-truth ones were estimated and 
assessed.

The results are summarized in Table 2.

In general, for low noise levels (0.5 and 5% of the total data 
variation) and low spectral overlap, both types of MCR-ALS 
decomposition yielded satisfactory outcomes. However, when 
the spectral overlap among pure components becomes more 
pronounced, the profiles recovered by the purely bilinear MCR-
ALS decomposition show a significant degradation due to the 
increase in rotational ambiguity. Conversely, when the NIPALS-
based trilinearity constraint is also imposed, stable and accurate 

FIGURE 4    |    Schematic representation of the NIPALS-based trilinear MCR-ALS decomposition of an EEM trilinear data array D. (A) Illustration 
of the decomposition of data resulting from EEM measurements of several samples. D is unfolded into the matrix D by concatenating the different 
excitations. Then, D is decomposed as the product of a matrix C, containing the pure component concentration profiles, and ST, containing augmented 
pure component spectral signatures. The ellipsis (three dots) represents the continuation of data across the corresponding dimension. (B) Illustration 
of the decomposition of data 4D EEM-HIS hyperspectral imaging data. In this specific situation, a preliminary pixel-wise unfolding of the 4D EEM-
HSI is required to obtain the trilinear data array D. (C) During iterations, the trilinearity constraint is applied on each row of ST, forcing Sfn to have 
the same emission shape across the excitation using NIPALS.
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MCR-ALS decompositions are obtained for both noise levels and 
all degrees of component overlap.

On the other hand, as the noise level increases (15 and 30%), the 
performance of the bilinear model degrades, as is observed in 
Table 2. This effect is inherent to least squares problems since 
the model tries to explain as much variance as possible, no mat-
ter if the variance comes from components or noise. However, 
it is worth noting that, even at high noise levels, the trilinear 
MCR-ALS model performs very well compared to the bilinear 
model since the profiles are meant to be trilinear and thus more 
robust to noise.

In summary, these results highlight that (i) the new NIPALS-
based implementation of the MCR-ALS trilinearity constraint is 
actually effective when it comes to extracting trilinear compo-
nent profiles from trilinear data containing missing values, and 
(ii) trilinear MCR-ALS models obtained through the application 
of this novel constraint provide more accurate representations 
of trilinear data (compared to their purely bilinear counterparts) 
even when the noise level and the amount of missing values are 
relatively high.

4.1.1   |   EEM-HSI of a Plant Tissue Sample

The conclusions drawn after the analysis of the simulated data-
sets are strongly corroborated by the results obtained for the 
real EEM hyperspectral image of root tissue (see Figure 6). It is 
worth noticing that here, prior to their MCR-ALS modeling, the 
investigated data were preprocessed, as described in Ref. [18].

Figure  6 shows the pure distribution maps and pure EEM 
landscapes achieved by MCR-ALS applying the NIPALS-
based trilinearity constraint. The components obtained match 
very well those described in Ref [18]. Component 1 is present 
in the surrounding tissues of the center vessel (pericycle). This 
component boasts an excitation peak at 405 nm and an emis-
sion peak at approximately 440 nm. It is specific to specialized 
cells in the center vessel (phloem companion cells) and the 
inner part of the epidermis. Component 2 appears across the 
root tissue and is likely representative of nonspecific lignin 
tissue. It is characterized by an excitation peak at 405 nm and 
an emission peak at around 500 nm. Component 3 is mainly 
associated with the outer part of the center vessel (endoder-
mis), although it can be observed throughout the root, mak-
ing it a common feature across the root tissue. Component 3 
exhibits an excitation peak at around 520 nm and an emission 
peak at around 570 nm. Component 4 appears in the center 
vessel (pith), in particular in highly lignified regions. It exhib-
its an excitation peak at around 405 nm and an emission peak 
at approximately 480 nm. This particular component is likely 
associated with the lignified cells of the pith. Component 5 
relates to specialized lignified cells of the epidermis (scler-
enchyma layer of the exodermis) and is characterized by an 
excitation peak at around 520 nm and an emission peak at 
approximately 560 nm. Similarly, Component 6 is prevalent 
in the sclerenchyma layer of the exodermis, as well as in 
the plant tissue regions where one would expect to find the 
Casparian strip (outer ring of the center vessel). The excitation 
spectral interval of this component ranges from approximately 
405 to 470 nm, while its emission occurs at around 500 and 
550 nm. Its spatial distribution across the root cross sections 

FIGURE 5    |    (A) Schematic representation of the row-by-row calculations underlying the NIPALS algorithm. The loading vector pT and a single 
row of Sfn (orange) are used to calculate the corresponding score value t(j, 1) (blue). In case this single row of Sfn contains missing values, the size of pT 
is adapted accordingly. (B) Schematic representation of the column-by-column calculations underlying the NIPALS algorithm. The score vector t and 
a column of Sfn (orange) are used to calculate the corresponding loading value pT(1, k) (blue). Once again, in case this single column of Sfn contains 
missing values, the size of t is adapted accordingly.
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is in agreement with the findings reported by Vishal et  al. 
[24], which may indicate the presence of suberin. Component 
7 appears in the outer ring of the center vessel and the root 
(endodermis and exodermis–epidermis). Interestingly, small 
vesicles within certain vessels are specifically associated with 
this component, which could evidence the existence of silica 
bodies over the surface of the plant tissue section. Component 
7 exhibits an excitation peak at around 570 nm and an emis-
sion peak at around 620 nm. Finally, Component 8 explains an 
artifact attributed to residual Rayleigh scattering with a non-
relevant signal in the model.

As mentioned above, the results reported are in very good 
agreement with those reported in Ref. [18], where a trilinear-
ity constraint for MCR-ALS based on sequential use of calcula-
tions using submatrices was proposed. Such a fact confirms the 

goodness of the new implementation of the constraint, which 
provides comparable results to those previously obtained with 
the correct but more complex and data-dependent implementa-
tion of trilinearity described in Ref. [18].

4.2   |   EEM of a Pharmaceutical Mixture

The EEM mixture data described before were also analyzed 
by means of MCR-ALS imposing uniquely nonnegativity con-
straints on C and ST (bilinear model) and forcing at the same 
time nonnegativity and trilinearity (trilinear model). In all mod-
els, we set the maximum number of iterations to 2000 and em-
ployed a convergence criterion of 10−11%.

The summarized results are shown in Table 3.

TABLE 2    |    LOF values and pairwise correlation coefficients between recovered and ground-truth profiles yielded by the bilinear and trilinear 
MCR-ALS decomposition of the simulated EEM datasets.

Noise 
level (%)

Profile 
overlap Component

MCR-ALS (bilinear model)
MCR-ALS (trilinearity 

for missing data)

C profile(+) S profile(+) LOF (%) C profile(+) S profile(+) LOF (%)

0.5 Low 1 1.000 1.000 0.5 1.000 1.000 0.5

2 1.000 0.997 1.000 1.000

3 0.996 0.999 1.000 1.000

High 1 0.994 0.999 0.5 1.000 1.000 0.5

2 0.993 0.995 1.000 1.000

3 0.997 0.951 1.000 1.000

5 Low 1 1.000 1.000 5 1.000 1.000 5

2 1.000 0.998 1.000 1.000

3 0.998 0.998 1.000 1.000

High 1 0.999 1.000 5 1.000 1.000 5

2 0.993 1.000 1.000 1.000

3 1.000 0.942 1.000 1.000

15 Low 1 1.000 1.000 15 1.000 1.000 15

2 0.999 1.000 1.000 1.000

3 0.998 1.000 1.000 1.000

High 1 0.999 0.996 15 1.000 1.000 15

2 0.989 1.000 1.000 1.000

3 0.990 0.897 1.000 1.000

30 Low 1 0.999 0.999 30 0.999 1.000 30

2 0.999 0.999 0.999 1.000

3 0.998 0.998 0.999 1.000

High 1 0.999 0.986 30 0.999 1.000 30

2 0.991 0.999 0.998 1.000

3 0.994 0.924 0.998 1.000
+Correlation coefficients between profiles recovered by MCR-ALS and simulated profiles.
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Table  3 clearly shows that both the bilinear and trilinear 
MCR-ALS models show perfect correlations (1.000) in concen-
tration profiles for ASA when they are compared to the true 

concentration profile (Figure  7). However, when the trilinear-
ity constraint is applied, the recovered concentration profile for 
IBU is slightly better for the trilinear model (0.993 vs. 0.998). 

FIGURE 6    |    Pure component spatial distribution maps and pure component EEM landscapes resulting from the trilinear MCR-ALS decomposition 
of the real EEM hyperspectral image.

TABLE 3    |    LOF values and pairwise correlation coefficients between recovered and ground-truth profiles yielded by the bilinear and trilinear 
MCR-ALS decomposition of the EEM pharmaceutical data.

Component

MCR-ALS (bilinear model) MCR-ALS (trilinearity for missing data)

C profile(+) S profile(+) LOF (%) C profile(+) S profile(+) LOF (%)

ASA 1.000 1.000 0.7 1.000 1.000 0.8

IBU 0.993 0.744 0.998 0.997
+Correlation coefficients between profiles recovered by MCR-ALS and ground-truth profiles.
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This bias is observed when the true concentration profile is plot-
ted against the recovered profile.

On the other hand, while the pure spectral profile of ASA is per-
fectly recovered in both models (1.000), a significant difference 
is observed in the recovered spectral profile of IBU for the bi-
linear model (0.744) (Figure 7). This result is expected since the 
dataset does not contain enough selectivity on the concentration 
profile, which causes the presence of rotational ambiguity in the 
related pure spectrum. In addition, the huge difference between 
the signals of ASA (major) and IBU (minor) can result in the 
degradation of the solution for the minor compound, IBU.

The LOF values yielded by the two different models are very sim-
ilar (0.7 and 0.8% for the bilinear and trilinear models, respec-
tively). This is an indicator of the fact that trilinearity holds in 
this case, since in similar situations, the model residuals should 
not vary significantly for bilinear and trilinear decompositions.

5   |   Conclusions

A novel implementation of the trilinearity constraint in MCR-
ALS capable of handling data containing missing values was 
presented. This implementation is based on the application of 
the NIPALS algorithm to force the common shape required for 
trilinear component profiles. NIPALS allows skipping missing 
values during computations through a sequence of row-by-row 
and column-by-column least squares estimation operations in-
volving only the available entries of the dataset. For this reason, 
it bypasses the use of imputation methods, and its mathemati-
cal simplicity constitutes a considerable improvement over ex-
isting approaches based, for example, on the principles of SVD. 
Besides, it is suited to cope with any kind of missing data pat-
tern and even with data exhibiting high amounts of missing 
elements. The idea behind this implementation can easily be 
extended to imposing multilinearity constraints when higher-
order multiway data are handled and incorporated in all pub-
licly available MCR-ALS interfaces.
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