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A B S T R A C T

We characterize the diffusion properties of nanocavities and their uncertainties by designing a multi-objective
optimization approach. In this work, the nanocavity diffusion on the 0.3–4 nm size range is the input of a
multi-scale simulation that is adjusted to reproduce experimental results of a systematic study of nanocavity
growth with temperature up to 1773 K. Under irradiation, in the material microstructure, the damage evolution
results from a complicated interplay of the defects and their clusters (formed from the vacancies and self-
interstitials created) which diffuse, recombine and grow. The simulation of the whole experiment, based on
an Object Kinetic Monte Carlo algorithm, can take several hours per condition which is a strong limitation
for the optimization scheme. We describe the method that succeeds for our problem. Starting from a rough
and random sampling of the space of parameters, we then consider that each simulation is one point of the
hypersurface in the high dimensional space formed by the optimized parameters and objectives. We iteratively
improve the characterization of this hypersurface where the objectives are optimum thanks to a systematic
search of patterns formed by points on the coordinate planes. The non-dominated solutions, i.e. the equally
good solutions, also named the Pareto front, are finally characterized. They draw two ‘‘valleys’’ in the subspace
of parameters, delimiting the uncertainties on the searched diffusion properties, which cannot be reduced with
the experimental data and the model in their current form.
1. Introduction

Materials are exposed to severe damaging conditions in nuclear
energy production devices: the fission reactors and the fusion tokamaks
(as ITER). The nuclear reactions produce neutrons which penetrate
the facing materials, creating transmutation and microstructure defects
(vacancies and self interstitial atoms (SIA)). The consequence is a com-
plex damage evolution and a possible material degradation, due to the
diffusion, recombination and agglomeration of these defects. In fusion
tokamaks, in particular, the formation of nanocavities increases the
retention of tritium [1] and modifies the mechanical properties [2]. To
guarantee the safety of the reactors, dedicated experimental campaigns
and multiscale modeling projects have been performed for decades to

∗ Corresponding author at: Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France.
E-mail address: charlotte.becquart@univ-lille.fr (C.S. Becquart).

understand and model the evolution of microstructures under these
conditions. Despite the amount of research already done on the subject,
few data exist on the diffusion properties of the nanocavities. The main
reasons are, on the one hand, that a significant part of the defects
is not visible with typical means, i.e. microscopes, and on the other
hand that realistic simulations of the damage evolution have to han-
dle a large range of temperature-dependent processes. The diffusion,
recombination and clustering of vacancy defects can be simulated by
the Object Kinetic Monte Carlo (OKMC) approaches reviewed in [3,4],
the diffusion equation models as in the early works [5,6] or, recently,
in [7] where the mobility of all species is included or in [8,9] where
it is not strictly included. Phase field approaches are also possible as
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in the review [10] where Li et al. show that in most of these models,
only single vacancies are mobile because vacancy clusters are rarely
considered. An exception is [11] where the migration of cavities is
possible when they are large, via the surface diffusion mechanism. With
the increase in computing power, the finite element scale is also accessi-
ble [12]. Regarding the theory of vacancy defect mobility, in the 1960s,
the motion and coalescence of pores in metals have been intensively
studied to understand the damage of materials in nuclear devices [13–
15]. A surface diffusion model was developed, detailed by Goodhew
in [14] referring to an earlier review of Nichols [13]. This pioneering
work is limited to large defects and, to our knowledge, no data was
ublished for tungsten. Interestingly, Trinkaus [15] investigated the

effect of helium on the bubbles mobility. In 2017, three theoretical
works based on atomic scale approaches in tungsten have been pub-
lished. Mason et al. calculated the migration energies of small vacancy
clusters with Density Functional Theory [16]. Castin et al. characterized
the diffusion properties of vacancy clusters using a machine learning
pproach and empirical potentials [17]. D. Perez et al. investigated
he diffusion properties of small vacancy-helium complexes with an
ccelerated molecular dynamics method [18]. In [19,20], in iron, the

migration energy of vacancy clusters of similar sizes can vary signifi-
cantly because of changes of the cluster symmetry. The atomic structure
of nanovoids in tungsten is precisely the subject of a recent paper [21].

On the experimental side, nowadays, papers report on the improve-
ent of the electron microscope performances and the development of

utomatic analysis, allowing accurate and efficient counting of small
anocavities [22,23].

In our paper, we propose to bridge the gap between the smallest
acancy clusters for which theoretical approaches are possible and
he several nanometer size cavities for which the classical surface
iffusion theory is valid but no data exists. We combine a series of
ew microscopy results detailed in [22], an Object Kinetic Monte

Carlo (OKMC) model of the creation and interaction of defects and
 multi-objective optimization approach. The preliminary results of
he multi-objective optimization have been briefly introduced in the

MaxEnt 2022 conference proceedings [24]. Several improvements of
our multiscale model have been described in a separated paper [25].
Regarding the experiment, in short, tungsten samples are first irra-
diated, which creates interstitial defects and vacancy defects (some
small nanocavities are at the limit of detection of the microscope).
Then, the samples are successively annealed at increasing temperature
nd the large density of small nanocavities turns into rarer but larger

nanocavities. For the simulations, the OKMC model mimics the whole
experiment: the irradiation and the annealing stages. The diffusion
properties are some of the input parameters. The nanocavity densities
and sizes are the outputs of the simulation, as in the experiment. We
show in [25] that their diffusion is necessary and dominant compared
to dissociation. The complexity of the optimization comes from the
large dimension of the inputs and outputs of the model and the strong
non linearity of the interactions simulated. We will describe quantita-
tively some of its properties, but sensitivity analyses (i.e. the response
of the model predictions to variations in the input data) can be found
in [25].

The first section starts with a brief summary of the physical pro-
esses, the mathematical formulation of the multi-objective optimiza-
ion, the description of the experimental data and the description of

the numerical model. In the second section, we describe the high
dimensional space made of the searched input parameters and the
objectives and the hypersurface determined by the multi-objective
optimization. We detail the search for the non-dominated solutions
which characterize the Pareto front thanks to the projections in the

space. The manuscript ends with the discussion and conclusion.

2 
2. Physical processes and methods

2.1. Physical processes

Lets consider three stages: the collision cascade (the first 10 ps after
the impact of an energetic particle), the irradiation (damage accumula-
tion) and the annealing stage (temperature increase). The high energy
on collides with atoms and transfers its kinetic energy when it kicks

them out of their position in the crystal lattice. This series of initial
vents triggers a chain of collision named the displacement cascade [26].

The number of defects reaches a maximum at the maximum expansion
f the cascades (around 0.5 ps). The cooling down phase follows with
he crystal recovery and the defect recombination or clustering. After a
ew ps, the remaining SIA and vacancy defects form the primary damage.
hey are isolated (point defects), in small clusters or form dislocation

loops and nanocavities. Under irradiation, defects accumulate. Some
iffuse and new recombinations or cluster growth can take place.

During the annealing stage (i.e. a temperature increase), the diffusion of
defects so far immobile can be activated, restarting the microstructure
evolution.

We now define the main inputs and outputs of the numerical
model, the pertinent results of the experiment and the multi-objective
optimization problem. To avoid confusion, we first start to state that

e will describe two variables related to temperatures: the annealing
emperatures and the diffusion temperatures. The annealing tempera-
ures, 𝑇𝑗 , are real temperatures at which the samples are set to during
he annealing stages. They are fixed inputs of the model. The diffusion
emperatures, 𝑡ℎ𝑒𝑡𝑎𝑖, are the temperatures at which the diffusion coef-
icients of nanocavity size classes reach a given non negligible value. It
s inspired by the expected temperature of the peak during the thermal
esorption spectrometry as used in [27,28] with the limits explained
n [29]. They are material properties which have been introduced to

simplify the optimization problem and ease the interpretation of the
simulations. They will be the model inputs that vary during the opti-
mization work but it is important to clarify that the OKMC model uses
proper diffusion coefficients (related to these diffusion temperatures).
Intuitively three cases can be imagined:

• The diffusion temperature of a nanocavity size class is much
smaller than the annealing temperature. These nanocavities dif-
fuse quickly and interact, hence they rapidly disappear. They are
actually not likely to be present at all. The sensitivity of the
simulation at this annealing temperature is likely to be weak for
this diffusion temperature.

• The diffusion temperature of a nanocavity size class is much
larger than the annealing temperature. The nanocavities do not
diffuse. If one reduces this diffusion temperature, the nanocavi-
ties, if they are present, will be set into slow motion and slightly
impact the simulation results.

• Between these extreme conditions, there is a range of values
of diffusion temperatures, close to the annealing temperatures,
where the sensitivity can be maximum. The conditions are that
the nanocavities must be present and interact with the other
elements of the microstructure, which, in principle, depends on
all the other parameters.

2.2. Mathematical formulation

The optimization will search 𝑁 (=30) diffusion temperatures on a
iscretization of the size (diameter) range of 0.3 to 4 nm nanocavities.
he relation with the thermally activated diffusion coefficient is given

n Section 2.4, and we consider here a simple increasing function,
𝜃1 for the min size
𝛿 𝜃𝑖 temperature increase (in R+)
𝜃𝑛 = 𝜃𝑛−1 + 𝛿 𝜃𝑛 𝑛 = 2 ∶ 𝑁 .

(1)
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From the experiment, we expect the 𝑚𝑒𝑎𝑛 size and 𝑡𝑜𝑡𝑎𝑙 densities of
nanocavities,

(𝑡𝑗 , 𝑇𝑗 , 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦𝑗 , 𝑠𝑖𝑧𝑒𝑗 )1≤𝑗≤𝑀 (2)

where 𝑡𝑗 , 𝑇𝑗 are the time and annealing temperature. 𝑀 = 9 is the
number of observation stages, i.e. one irradiation and 𝑀 − 1 annealing
stages. The relation between 𝑡𝑗 and 𝑇𝑗 is fixed because the observations
are realized at the end of each stage. Thus one has only,
𝑇1
𝑇𝑗 = 𝑇𝑗−1 + 𝛿 𝑇 for 𝑗 = 2 ∶ 𝑀 with 𝛿 𝑇 > 0 (3)

Note in Section 2.3 that the scattering of the experimental results is
large and we thus adjusted a likelihood function called the observed
total density and mean size,
(𝑑 𝑒𝑛𝑠𝑖𝑡𝑦𝑜𝑏𝑠(𝑇𝑗 ), 𝑠𝑖𝑧𝑒𝑜𝑏𝑠(𝑇𝑗 ))|(𝑑 𝑒𝑛𝑠𝑖𝑡𝑦𝑒𝑥𝑝, 𝑠𝑖𝑧𝑒𝑒𝑥𝑝)
= 𝑙 𝑖𝑘𝑒𝑙 𝑖ℎ𝑜𝑜𝑑 (𝑇𝑗 )|(𝑑 𝑒𝑛𝑠𝑖𝑡𝑦𝑒𝑥𝑝, 𝑠𝑖𝑧𝑒𝑒𝑥𝑝). (4)

The simulations mimic the experiment guessing the diffusion temper-
atures 𝜃1∶𝑁 of (1). The outputs are the simulated total nanocavity
densities and mean sizes for each annealing temperature:

(𝑑 𝑒𝑛𝑠𝑖𝑡𝑦𝑠𝑖𝑚(𝑇 ), 𝑠𝑖𝑧𝑒𝑠𝑖𝑚(𝑇 )) ∼ 𝑂 𝐾 𝑀 𝐶(𝑇 , 𝜃1∶𝑁 ) (5)

where 𝑇 ∈ [𝑇1 + (𝑀 − 1)𝛿 𝑇 ] ↦ OK MC(𝑇 , 𝜃1∶𝑁 ) is a stochastic process
function of temperature and time as for the experiment.

We search the optimum diffusion temperatures 𝜃1∶𝑁 which, ide-
ally, minimize simultaneously 𝑀 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑀 𝑠𝑖𝑧𝑒 objectives. We
define the error between 𝑜𝑏𝑠 and 𝑠𝑖𝑚 values, (𝑥𝑜𝑏𝑠, 𝑥𝑠𝑖𝑚) = log(𝑥𝑜𝑏𝑠) −
log(𝑥𝑠𝑖𝑚) and the error density probability, 𝐸

(

(𝑥𝑜𝑏𝑠, 𝑥𝑠𝑖𝑚)
)

∝ exp
(

−𝑆|(𝑥𝑜𝑏𝑠, 𝑥𝑠𝑖𝑚)|
)

, which is a particular case of the generalized normal
distribution [30,31]. The choice of these expressions is not unique but
reflects quantitatively the qualitative estimate when one human decides
if the agreement between simulated and experimental data, is good or
not. The 2𝑀 objectives are
𝑂𝑗

𝑑 (𝜃1∶𝑁 ) = E
{

𝐸
(

(𝑑 𝑒𝑛𝑠𝑖𝑡𝑦𝑜𝑏𝑠(𝑇𝑗 ), 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦𝑠𝑖𝑚(𝑇𝑗 ))
)

,
𝑑 𝑒𝑛𝑠𝑖𝑡𝑦𝑠𝑖𝑚(𝑇𝑗 ) ∼ OK MC(𝑇𝑗 , 𝜃1∶𝑁 )

}

𝑂𝑗
𝑠(𝜃1∶𝑁 ) = E

{

𝐸
(

(𝑠𝑖𝑧𝑒𝑜𝑏𝑠(𝑇𝑗 ), 𝑠𝑖𝑧𝑒𝑠𝑖𝑚(𝑇𝑗 ))
)

,
𝑠𝑖𝑧𝑒𝑠𝑖𝑚(𝑇𝑗 ) ∼ OK MC(𝑇𝑗 , 𝜃1∶𝑁 )

}

(6)

for 𝑗 = 1 ∶ 𝑀 where E represents a mean on OKMC simulations.

2.3. Experimental materials

First, one 33 nm thin spot is obtained with a twin-jet electropolisher
in each cut and polished sample, which makes it locally transparent for
the Transmission Electron Microscope (TEM).

Secondly, samples are irradiated with high energy ions (1.2 MeV
W+) at 773 K up to a fluence of 1.8 × 1016 m−2. The level of damage is
estimated to 0.02 dpa (displacement per atom), which means that, on
average, 2% of the atoms have been involved in defects of the 𝑝𝑟𝑖𝑚𝑎𝑟𝑦
𝑑 𝑎𝑚𝑎𝑔 𝑒. As explained above, the surviving fraction of defects is much
smaller.

Thirdly, samples are submitted to a succession of 1 h annealings
at temperature plateaus of increasing setpoints: 873, 973, 1073, 1173,
1273, 1373, 1573 and 1773 K.

At the end of the irradiation and the annealing stages, the samples
are cooled down and the microstructure are characterized by TEM.
Fig. 1a shows two pictures in over- and under-focused conditions at
the end of the irradiation stage. Nanocavities are defects whose contrast
changes from black to white. Some of them are indicated by red circles
revealing a large concentration of very small nanocavities.

The nanocavity total densities and mean sizes as a function of
temperature are plotted in Fig. 2a. The visible scattering is partly due
to the limited number of samples (micrographs per temperature) but
mainly to variations of the local transparency and the different counting
methods (human or automatic) [32,33]. On the same figure, lines
represent the likelihood function introduced by Eqs. (4). The likelihood
parameters are given in Appendix C. The lines delimit the value for
which the objective will be respectively 0.1, 0.5 and 0.9 and capture
3 
Fig. 1. One 100 nm TEM micrograph of one irradiated sample in over and under-
focused beam conditions. The cavities are defected where spots are black (resp. white)
in the over (resp. under) focus condition. Some cavities are indicated by red circles
and details of the manual and automatic methods of counting are given in [22]. (b) A
zoomed picture of one OKMC box after irradiation. Only vacancy defects are shown.
Yellow spheres, almost not visible in the picture, correspond to vacancy clusters smaller
than the visibility limit (i.e. the minimum observable and quantifiable size in TEM
pictures). The dashed lines indicate a distance of 100 nm from the box surface to help
comparison with the experimental picture.

the point scattering. In Fig. 2, the error probability density is plotted as
a function of the error and one sees that 𝑆𝑑 = 1 for 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑆𝑠 = 5
for 𝑠𝑖𝑧𝑒 strengthen the attach to 𝑠𝑖𝑧𝑒 data.

When the temperature increases, the 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 decreases and 𝑠𝑖𝑧𝑒
increases which can be explained by the progressive set into motion
of the nanocavities by ascending size order. Most agglomerate and
form larger nanocavities, in a process named coalescence, but some
are eliminated at the sample surface or by recombination with SIA
defects [22].

2.4. Simulation methods

With an OKMC approach, one easily implements many defect prop-
erties and many physical processes happening during irradiation, an-
nealing and aging of materials. As indicated by its name, it is a
stochastic model and the defects are considered as objects in a sim-
ulation box. They will be involved in processes characterized by as
many parameters. The evolution is obtained by realizing random events
following the Gillespie’s algorithm [34]. Point defects (isolated and in
clusters) are created throughout irradiation events. They are of opposite
type: (+) for the SIA and (−) for the vacancy defects. They diffuse
according to their properties. If two or more defects are found within
pre-defined capture distances, the resulting defect type is the sum of
the parent types. In principle, defect clusters can also dissociate but, as
discussed in 4, this process in not activated in this work for vacancy
defects.

The model inputs can be grouped in three categories given in
Appendix A and detailed in [25]. We simply describe the parameters for
the diffusion of vacancy defects. In real life, a significant displacement
of the center of mass of a nanocavity results from many elementary
processes [25] but, in the OKMC, it is simply simulated by random
jumps of the object to nearest neighboring lattice sites. The jump
probability is function of the defect size and temperature according to
the Arrhenius formula,

𝑓 (𝑠, 𝑇 ) = 𝑓 (𝑠) exp
(

−𝐸𝑚(𝑠)
𝑘𝐵𝑇

)

(7)

where 𝑠 is the defect size, 𝑓 (𝑠), the attempt frequency, 𝐸𝑚(𝑠), the
migration energy and 𝑘𝐵 , Boltzmann constant. Usually, experimental
temperature ramps with various rate are necessary to determine simul-
taneously the model attempt frequency and the activation energy as
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Fig. 2. (a) Experimental data: measured nanocavity total densities and mean sizes as a function of temperature, i.e. at the end of the irradiation stages and each of the 8 annealing
stages. The lines indicate the values for which the objective will be equal to 0.1 0.5 and 0.9. (b) illustration of the error probability as a function of the error between observed
and simulated results which describes how strongly the optimization should be attached to the likelihood (the top axis gives the ratio between 𝑠𝑖𝑚 and 𝑜𝑏𝑠).
with the thermal desorption spectrometry or resistivity recovery, or
at least a larger number of time versus temperature conditions than
what we have. So we will assume 𝑁 attempt frequencies, 𝑓 (𝑠𝑖), justified
in Appendix B and adjust the migration energies only. The relation
between the migration energy and the diffusion temperature introduced
in Eq. (1) is

𝐸𝑚(𝑠𝑖) = 𝑘𝐵 log(𝑓 (𝑠𝑖)) 𝜃𝑖. (8)

where, here, 𝑠1∶𝑁 is the list of 𝑁 given size. The values for the sizes
in between are interpolated. Notice that the diffusion coefficient, using
the classical formula of [35], is
𝐷 = 𝛼 𝑙2

2𝑑
𝑓 (𝑠, 𝑇 ) (9)

with, in the case of bcc crystal, 𝑙 =
√

3
2 𝑎, the jump length in our model,

𝑎 the lattice parameter, 𝑑 = 3, the dimension of the diffusion, 𝛼 = 8,
the number of possible equivalent jumps on bcc lattice sites and 𝑓 (𝑠, 𝑇 ),
the jump rate given by Eq. (7).

3. Results

Preliminary tests of optimization show that weighted loss functions
and the steepest descent approaches are particularly inefficient and the
reasons are interesting and follow:

• the complex sensitivity of our model, schematized in Section 2.1,
conditioned to the presence of nanocavities of the associated size
class, not known a priori;

• the relation between the objectives from one temperature to the
next, the quality of 𝑂𝑗

𝑑 ,𝑠 is conditioned to the one of 𝑂𝑗−1
𝑑 ,𝑠 : in

simple words, if a simulated result is far from the observed one
at 𝑇𝑗 , the chance to get it correct at 𝑇𝑗 + 𝛿 𝑇 is low;

• an unexpected relationship between the 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑠𝑖𝑧𝑒 objec-
tives: at each temperature stage, the optimization of 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦, 𝑂𝑗

𝑑
is obtained to the detriment of the 𝑠𝑖𝑧𝑒 objective, 𝑂𝑗

𝑠 .

In [24], we proposed a simple relation between the diffusion tem-
perature and the annealing temperature which simplified the optimiza-
tion and permitted to find an approached solution. In this work, we
describe how to represent the whole complexity of the data, search
for patterns and how it improves the solution. One considers the high
dimensional space formed by the 𝑁 diffusion temperatures and the 2𝑀
objectives. The optimization problem becomes the parametric equation
of one hypersurface. Each simulation is viewed as one point on the
hypersurface with its coordinates being its 𝑁 diffusion temperature
and 2𝑀 objectives. Now, the optimization method aims to efficiently
explore this space and concentrate the efforts on regions where some
4 
Fig. 3. The data accumulated during the optimization is a set of points with 𝑁
coordinates in the parameter space and 2𝑀 coordinates in the objective space, shown
here in a parallel coordinate plot. This is a graphical representation of points in a high
dimensional space: each point is depicted as a line traversing a series of parallel axes,
corresponding to, firstly, the 𝑁 diffusion temperature, secondly, the 2𝑀 objectives, by
temperature order. (The different colors help the reader to distinguish the different
points of the data set).

of the objectives are small. It can be helped by any approaches to
characterize the shape of this hypersurface and the search of patterns.
The final set of points is represented in a parallel coordinate plot in
Fig. 3. This is a graphical representation of points in a high dimensional
space: each point is depicted as a line traversing a series of parallel
axes, corresponding to, firstly, the 𝑁 diffusion temperature, secondly,
the 2𝑀 objectives, by temperature order. This arrangement is known to
allow for the reveal of relationships or trends that might be obscured in
raw data. Given that our method finally converged, the heterogeneous
sampling of the subspace of the diffusion temperature might illustrate
the efficiency of our exploration. Beside, the saw-tooth pattern in the
objective subspace is due to the third point above: near explored
regions, a good 𝑠𝑖𝑧𝑒 objective is associated to a bad 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 objective
and vice versa.

We now first look at the final set of points projected on 𝑀 planes
in the objective planes, secondly on 2𝑀 × 𝑁 planes corresponding to
one of the objectives and one of the diffusion temperatures and finally
in the parameter space.

3.1. Pareto front in the objective space

In Fig. 4 data are viewed in the (𝑂𝑠(1), 𝑂𝑑 (1)) plane, i.e. the
objectives at the end of the irradiation. An additional information, the
symbol color is the average of 𝜃3∶5. It corresponds to the diffusion
temperature of the ∼0.75 nm small clusters. The point size is the 𝑠𝑖𝑧𝑒 at
the end of the irradiation, 𝑠𝑖𝑧𝑒1. One sees three branches named 𝐴, 𝐵
and 𝐶 joining in two locations 𝑎𝑑 and 𝑎𝑠. 𝑎𝑑 is the optimum for the
𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 objective apparently for a diffusion temperature around 800
K. 𝑎𝑠 is the 𝑠𝑖𝑧𝑒 optimum obtained for a lower diffusion temperature
around 650 K. Along branch 𝐴, one has different compromises of the
𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑠𝑖𝑧𝑒 objective. An improvement of the 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 objective
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Fig. 4. The 𝑠𝑖𝑧𝑒 objective as a function of the 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 objectives corresponding to the
irradiation stage, i.e. 𝑂1

𝑑 , 𝑂1
𝑠 . The point colors correspond to the diffusion temperatures

of the ∼0.75 nm nanocavities, mean(𝜃3∶5) and the point size corresponds to the mean
size at the end of the irradiation, 𝑠𝑖𝑧𝑒1. Two optimum points are labeled 𝑎𝑠 (resp. 𝑎𝑑 )
and correspond to the best agreement with the 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 density (resp. size) but to
the detriment of the 𝑠𝑖𝑧𝑒 objective and vice versa. Points along A are non-dominated
solutions forming the Pareto Front. 𝐵 and 𝐶 branches are dominated solutions.

is accompanied by a deterioration of the 𝑠𝑖𝑧𝑒 objective. This is the
property of the Pareto optimal solutions.

This three branches pattern was globally observed on all planes of
𝑂𝑑 (𝑇𝑗 ) and 𝑂𝑠(𝑇𝑗 ), i.e. for all annealing temperatures, as illustrated for
3 cases on Fig. 5. The branches are named 𝐴𝑗 , 𝐵𝑗 and 𝐶𝑗 and limit
points are 𝑎𝑗𝑑 and 𝑎𝑗𝑠, where 𝑗 is the index of the annealing temperature.
The question is now how to determine the regions of the diffusion
temperature subspace related to the 𝑎𝑗𝑑 and 𝑎𝑗𝑠.

3.2. Projections on the crossed planes

There are 𝑁 × 2𝑀 = 540 planes each corresponding to one of the
diffusion temperatures and one of the objective. Figs. 6, show three
(𝜃𝑖, 𝑂𝑗

𝑠,𝑑), where pertinent patterns were detected. On the first one,
points draw a V shape, indicating a strong sensitivity of 𝜃7 to the
objective 𝑂2

𝑠 . Thus it is a good projection to determine the optimum
of 𝜃𝑖 for the 𝑠𝑖𝑧𝑒 objective. The second plot is more a descending cloud
of points and suggests a broad range of valid values for 𝜃7 to satisfy
the 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 objective. In Fig. 6c, one sees a broad cloud of points.
This plot is typical of the absence of strong correlation between the
objective and the parameter. It can be explained by the fact that 𝜃24
is the diffusion temperature of 3.25 nm nanocavities which are not
supposed to be formed in none of the objectives at this temperature.
The information that can be extracted from this plot is that small values
of 𝜃24 deteriorate the 𝑠𝑖𝑧𝑒 objective.

The analysis of all planes highlight the main following observations:

• If a V shape is observed for one 𝜃𝑖 at 𝑇𝑗 , the optimum value seems
to be conserved at temperature higher 𝑇𝑘, 𝑘 > 𝑗 even though the
cloud of points can become more dispersed. This suggests that
the Pareto Front can be described in the parameter space without
ambiguity.

• blind spots are possible when the explored regions of the pa-
rameter space are too limited and mislead the interpretation.

• One property is caused by the physics of the simulated process:
the indexes of 𝜃𝑖 where a V shape is observed progressively
increases with the annealing temperature, hence the index 𝑗. The
relation between 𝑖 and 𝑗 is different for 𝑠𝑖𝑧𝑒 and 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦. The
reason is that the microstructure evolution is a continuous set into
motion of nanocavities by increasing size order.

• Because of the interdependence of the objectives, the good objec-
tives at low temperature are the good view angle to efficiently
explore the good objectives at high temperature.
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3.3. Pareto front in the parameter space

We tried two simple methods to estimate automatically each 𝛩𝑖
𝑗
𝑑 ,𝑠

optimizing each 𝑂𝑗
𝑑 ,𝑠: by fitting a function in 𝑉 on the points and by

averaging the 𝜃𝑖 values for which the objectives are smaller than 0.25.
2𝑀× lines 𝛩𝑖

𝑗
𝑑 ,𝑠 are drawn in the diffusion temperature space in

Fig. 7. We observe two bundles of curves, corresponding to the 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦
and the 𝑠𝑖𝑧𝑒 objectives. Where the bundle of curves is narrow, the
optimum of 𝜃𝑖 is estimated without ambiguity. This is the case for the
small nanocavities because their diffusion impacts the beginning of the
simulation hence the whole simulation. On the contrary, the bundle of
curves broadens for the large sizes because only the last stages of the
simulation (or none of them) are sensitive to this subset of parameters.

On Fig. 7, we indicate by squares the best 𝛩𝑖 𝑑 ,𝑠(𝑗) among all 𝑗 = 1 ∶
𝑀 . Usually it is the one for which the standard deviation (represented
by a bar) is the smallest. The color point indicates the corresponding
𝑇𝑗 . We see that these temperatures increase with the nanocavity size,
differently for 𝑠𝑖𝑧𝑒 and 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 objective as explained above.

The Pareto front is now delimited in the parameter space. Additional
simulations can be performed with parameters near the 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑠𝑖𝑧𝑒
optima. To give an idea of the problem size, around five hundred simu-
lations are used for the results showed in this paper, which corresponds
to 500–1000 h of computing time. Note however that OKMC computing
times vary significantly with the input parameters.

3.4. Validation of the optimization method

A visual validation of the method is proposed using the parametric
function described in Appendix F. In Fig. 8a, the diffusion temperatures
as a function of the nanocavity sizes, obtained with expression (F.1)
and data given in Table F.1 are drawn. The blue (resp. red) curves
are for the 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 side of the Pareto front (resp. 𝑠𝑖𝑧𝑒 side). In Fig. 8b
and c, one sees the simulated 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑠𝑖𝑧𝑒 as a function of the
annealing temperature superposed on the experimental likelihood and
experimental points. The adequacy of the solutions is convincing: with
the parameters of the 𝑠𝑖𝑧𝑒 side of the Pareto front, the simulated 𝑠𝑖𝑧𝑒
is correct but the simulated 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 significantly deviates and vice
versa. The discrepancy due the Pareto front between 𝑠𝑖𝑧𝑒 and 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦
objectives is quite large and we showed in [24] that it is the main
source of uncertainty on the diffusion temperature obtained in this
work.

4. Discussion

One puzzling question raised by the optimization process is the
origin of the Pareto front which underlines the fact that it is not
possible to reproduce simultaneously the 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑠𝑖𝑧𝑒 objectives.
A plausible explanation is a missing process in our model: a source of
vacancy, probably at the interface between the bulk and oxide layer
of the sample. This process is known, for example, in the corrosion
mechanisms of zirconium alloys [36] but we explained in [24] that
its implementation in our model would actually add more unknown
parameters and not reduce the uncertainty on the nanocavity diffusion.
Reversing the problem, we stress out that the multi-objective optimiza-
tion quantified the impact of this missing process without having to
model it.

The multi objective optimization brings out two elements of analy-
sis:

• For each size class, drawing a vertical line from the lower Pareto
front 𝑠𝑖𝑧𝑒 side to the upper Pareto front 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 side can be seen
as the uncertainty on the diffusion temperature, i.e. the limit of
knowledge that can be extracted from our experimental data and
our model in their current form.

• We can compare the source of uncertainties coming from the
model and from the experimental data. At first glance, the exper-
imental data seemed quite widely dispersed, especially on 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦
data. Surprisingly, we found that the largest source of uncertainty
comes from the model.
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Fig. 5. Plots of the 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 objective as a function of the 𝑠𝑖𝑧𝑒 objective of the components 𝑗 = 2, 4 and 6 of the objective functions corresponding to 𝑇2 = 883 K, 𝑇4 = 1073 K
and 𝑇6 = 1273 K annealing stages. The point color corresponds to the diffusion temperature of the ∼0.75 nm nanocavities. Points can be distinguished as non-dominated solutions
forming the Pareto Front labeled 𝐴𝑗 and dominated solution grouped in two branches named 𝐵𝑗 and 𝐶𝑗 .
Fig. 6. Plots illustrating the optimum diffusion temperatures. For j = 2 (𝑇2 = 973 K), (a) the 𝑠𝑖𝑧𝑒 objectives as a function of 𝜃7, the diffusion temperature of 1.12 nm nanocavities.
(b) the 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 objectives as a function of 𝜃7, the diffusion temperature of 1.12 nm nanocavities. (c) the 𝑠𝑖𝑧𝑒 objectives as a function of 𝜃24, the diffusion temperature of 3.25 nm
nanocavities. The comparison of (a) and (b) shows that the optimal 𝜃7 is different for the 𝑠𝑖𝑧𝑒 and 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 objectives as the values for which the objective is minimum are 1000
K and 1100–1750 K respectively. On (c), we see that the diffusion temperature corresponding to 3.25 nm large nanocavities, 𝜃24, is not clearly indicated by the 𝑠𝑖𝑧𝑒 objective at
973 K, suggesting to search on the other temperatures.
Fig. 7. Multi-objective optimization results shown in the parameter space. The lower 𝑥
axis is the nanocavity size but the upper 𝑥 axis is the parameter index 𝑖. Lines are 𝛩𝑖

𝑗
𝑑 ,𝑠,

the estimate of 𝜃𝑖 optimizing each 𝑂𝑑 (𝑗) and each 𝑂𝑠(𝑗). Points are the 𝑏𝑒𝑠𝑡 estimate
values among 𝑗 and the bars indicate the dispersion of the calculated points around
the 𝛩𝑖

𝑗
𝑑 ,𝑠.

Our results are compared to literature in Fig. 9 and do not differ
significantly from what we obtained in [24] with a simplified approach.
They agree with Mason’s calculations of small vacancy clusters as
well as with the classical surface diffusion model from [14] for large
nanocavities. In Appendix G, this classical expression is given and
6 
adjusted on our results, which leads to an activation energy close to
𝐸𝑠 = 2.7 ± 0.3 eV. Finally, in the intermediate range of vacancy cluster
sizes, we improve the weakly justified formula we proposed in [37] and
Castin’s calculations [17] which depend strongly on the quality of the
empirical potential.

The other well known process that causes nanocavity growth is the
dissociation of small cavities and the diffusion of the 𝑟𝑒𝑙 𝑒𝑎𝑠𝑒𝑑 vacancies
toward larger cavities that thus grow. In this work, this process is not
included in the OKMC model. As discussed in detailed in [24], we
can define the 𝑑 𝑖𝑠𝑠𝑜𝑐 𝑖𝑎𝑡𝑖𝑜𝑛 temperatures as the temperature at which
the probability of dissociation is one per second and then superpose
them on the diffusion temperature in Fig. 9. In the conditions for
which present nanocavities should dissociate, their diffusion is likely
overestimated to compensate this missing process. It can happen where
the green area is superposed to the rose area and. It is not observed
for small nanocavities and it is comprised in the uncertainties on the
diffusion temperature.

A detailed discussion on the experimental results can be found
in [22] and on the limitation of our OKMC model in [25]. In this
later paper, a significant part of the information to reproduce the
results presented here can also be found: in particular, the model of
the irradiation events and the parameters related to the presence of
impurities. Note also that we are making efforts to give access to our
databases as is done for the collision cascades https://cascadesdb.iaea.
org and the point defect and the extended defect properties (https://db-
amdis.org/defectdb).

The discussion remains open regarding a fully automatic optimiza-
tion algorithm but the way we 𝑚𝑎𝑛𝑢𝑎𝑙 𝑙 𝑦 operated suggests that a genetic
algorithm could be appropriate.

https://cascadesdb.iaea.org
https://cascadesdb.iaea.org
https://cascadesdb.iaea.org
https://db-amdis.org/defectdb
https://db-amdis.org/defectdb
https://db-amdis.org/defectdb
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Fig. 8. (a) Example of optimum solutions of 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 objectives (blue) and 𝑠𝑖𝑧𝑒 objectives (red) obtained as described in the text. (b) Comparison of the corresponding simulated
𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 and 𝑠𝑖𝑧𝑒 with the likelihood and the experimental points.
Fig. 9. Comparison of the good solutions of the Pareto front (red and blue) with
Becquart [37], Castin [17], Mason [16] and De Backer [25]. It shows how, despite
its uncertainties, our results improve the data on the nanocavity diffusion in tungsten.
The grey area range of the classical surface diffusion model [14] is obtained with an
effective activation energy of 2.40–3.05 eV in Eq. (G.1).

5. Conclusion

We combined experimental results of distributions of nanocavities
formed in W at different temperatures with a multiscale model. To
obtain the diffusion properties of nanocavities as a function of their size
we had to develop a complex multi-objective optimization approach
because the simple optimization methods failed. The representations
of the results in a high dimensional space formed by the searched
parameters and the objectives help to explore the set of all possibilities.
The patterns observed on some projections on the coordinate planes
indicated where to concentrate the search of the optimum solutions.
The rewarding point of this multi-objective optimization is that on top
of the estimation of the diffusion temperatures at which cavities of
different sizes start moving, one has their uncertainty. The analysis of
what causes the Pareto Front indicates how the uncertainties can be re-
duced and provide the processes/mechanisms missing in the model and
help identifying the experimental conditions, not taken into account in
our model, such as the formation of a small oxide layers on the sample
surface which provide another source of vacancies.
7 
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Appendix A. Model inputs

Three main categories of the OKMC model inputs:

• The simulation box properties are given by the box size, temper-
ature, time and box boundary conditions.
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Fig. D.10. (a) Facet plot (figures made up of multiple subplots which have the similar set of axes) represented as a square matrix where each subplot shows the correlation
between (𝑂𝑗

𝑑 and 𝑂𝑘
𝑑 ) thanks to the data on (𝑂𝑗

𝑑 , 𝑂𝑘
𝑑 ) planes, below the diagonal (resp. (𝑂𝑗

𝑠 , 𝑂𝑘
𝑠 ) above the diagonal). (b) Schematic drawing of the qualitative correlations observed

in the subplots: near the diagonal, points tend to be correlated.
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Fig. D.11. Facet plots (figures made up of multiple subplots which have the similar set of axes) represented as a square matrix where each subplot shows the correlation between
(𝑂𝑗

𝑑 and 𝑂𝑘
𝑠 ) thanks to the projection of the data in (𝑂𝑗

𝑑 , 𝑂𝑘
𝑠 ) planes.
• The defect source, the irradiation, is simulated by introduction
of cascade debris. They are obtained combining several cascade
databases. Our method reproduces the damage flux, the defect
clustering and spatial distribution of the primary damage.

• The defect diffusion and dissociation are given by Arrhenius
formulae and the defect interactions are controlled by pre-defined
capture distances.

• The materials impurities are taken into account with a list of
traps whose properties are based on a large database of Den-
sity Functional Theory calculations. Impurities can strongly im-
pact the microstructure evolution even when they are in small
concentration.

Appendix B. Attempt frequency of the nanocavities diffusion

The attempt frequency is defined on 3 domains:

𝑓 (𝑠) =
⎧

⎪

⎨

⎪

⎩

𝑓 0 𝑠 < 0.55 nm
interpolation 0.55 nm ≤ 𝑠 < 0.95 nm
𝑓 1

𝑠4
0.95 nm ≤ 𝑠

(B.1)

where 𝑓 0 = 6.5 × 1012 s−1 is a value near Debye frequency usually taken
for small defects. For large nanocavities, the frequency is defined as the
ratio of 𝑓 1 divided by 𝑠−4 as justified by the classical theory of surface
diffusion [14]. The small and large size range are smoothly connected
with (also described in [25])

𝑓 (𝑠) = 𝑓 1
(

exp
(

− 𝑛(𝑠)
𝑛𝑐 𝑎𝑣

)

+7
(

4𝜋
)

4
3
(

1 − exp
(

− 𝑛(𝑠)
𝑐 𝑎𝑣

))2
)

(B.2)

3𝑛(𝑠) 𝑛
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with 𝑛𝑐 𝑎𝑣 = 28, 𝑓 1 a parameter equal to 6.5 × 1012 s−1 as for 𝑛 equal
1 to 5 and where the relation between 𝑛, the number of defects and 𝑠,
the defect size (diameter) is 𝑛(𝑠) = 𝜋

3

(

𝑠
𝑎

)3
.

Appendix C. Likelihood on experimental data

The likelihood is a 4 parameters function adjusted on experimental
data equal to
𝑑 𝑒𝑛𝑠𝑖𝑡𝑦𝑜𝑏𝑠(𝑇 ) = 𝑝𝑑0 +

𝑝𝑑1

1+exp

(

𝑇−𝑝𝑑2
𝑝𝑑3

)

𝑠𝑖𝑧𝑒𝑜𝑏𝑠(𝑇 ) = 𝑝𝑠0 +
𝑝𝑠1

1+
(

𝑇−𝑝𝑠2
𝑝𝑠3

)

(C.1)

with the parameters 𝑝𝑑 = [0, 1024, 1428, 105] and 𝑝𝑠 = [1.26, 773, 643, 2.8].

Appendix D. Illustrations of other projections

In our work, each simulation is considered as a point described
by 𝑁 components in the parameter space and 2𝑀 components in the
objective space, hence 30 + 2 × 9 = 48. In Section 3.1, we described some
of the projections of our data on planes defined by pairs of objectives
(𝑂𝑗

𝑑 , 𝑂
𝑗
𝑠) of same index. There are nine such planes. In principle, all

planes can be considered, i.e. 𝑀(𝑀 − 1) = 153. These projections are
illustrated by thumbnails in Figs. D.10 and D.11. The interdependence
of objective 𝑖 to objective 𝑖− 1 can be seen as well as the persistence of
the 3 branch structures in (𝑂𝑗 , 𝑂𝑘) projections.
𝑑 𝑠



A. De Backer et al.

Fig. D.12. (a) Size objectives for all 𝑗 as a function of 𝜃6 and (b) density objectives for all 𝑗 as a function of 𝜃6. Red curves are the fits using Eq. (E.1) to obtain the optimum
𝛩𝑖

𝑗
𝑑 ,𝑠 in each condition.
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Table F.1
Set of parameters for Eq. (F.1) used for Fig. 8. The type is 𝑑 for the 𝑑 𝑒𝑛𝑠𝑖𝑡𝑦 side of
he Pareto front and 𝑠 for the 𝑠𝑖𝑧𝑒 side of the Pareto front.
𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 Type

618 226 100.0 0.628 0.127 d
548 296 88.6 0.687 0.146 d
515 301 74.3 0.643 0.176 d
503 296 83.6 0.664 0.211 d
499 326 73.7 0.726 0.240 d
533 243 60.6 0.931 0.288 s
540 276 40.6 0.931 0.409 s
548 259 46.3 1.020 0.397 s
533 277 22.5 0.957 0.459 s
524 191 109.0 0.826 0.319 s

Appendix E. Fit of objectives

The two parameter (A, xmin) expression fitted on each objective as
 function of each 𝜃𝑖 is

𝑦(𝑥) = 1 − 𝑒𝑥𝑝(−𝐴|𝑥 − 𝑥𝑚𝑖𝑛|). (E.1)

The results for 𝜃6 are illustrated in Fig. D.12.

Appendix F. Parametric function for the diffusion temperature

The diffusion temperatures shown in Fig. 8 are given by

𝜃(𝑠) = 𝑝1 + 𝑝2
(

1 + 2
𝜋 atan( 𝑠−𝑝4𝑝5

)
)2

+ 𝑝3
(

1 + 2
𝜋 atan( 𝑠−1.52 )

)2 (F.1)

which has 3 parameters of temperature unit, 𝑝1, 𝑝2 and 𝑝3, 2 parameters
f length unit, 𝑝4 and 𝑝5 and uses the arc tangent to make a smooth

transition. Parameters are given in Table F.1.

Appendix G. Surface diffusion coefficient

In [14] for large nanocavities, the surface diffusion expression is

𝐷(𝑟) = 9𝛺4∕3𝐷𝑠

𝜋3𝑟4𝑛
with 𝐷𝑠 =

𝛼2𝑠
4

exp
(

−
𝐸𝑠
𝑘𝐵 𝑇

)

(G.1)

where 𝛺 is the atomic volume, 𝑟 is here the radius, 𝐷𝑠 is the surface
diffusion coefficient expressed by an Arrhenius law with 𝛼𝑠, the surface
jump distance and 𝐸𝑠 is the activation energy of the surface diffusion. In
this expression, the most important parameter is the activation energy
and there is no direct way to calculate it. Adjusting the formula on our
results, we obtain 𝐸𝑠 = 2.40–3.05 eV.

Data availability

An example of the OKMC input and the raw data to reproduce
he graphs of this articles will be available at https://data.mendeley.
om/my-data/; further inquiries can be directed to the corresponding
uthor.

References

[1] M. Oya, M. Shimada, C. Taylor, M. Kobayashi, Y. Nobuta, Y. Yamauchi, Y.
Oya, Y. Ueda, Y. Hatano, Deuterium retention in tungsten irradiated by high-
dose neutrons at high temperature, Nucl. Mater. Energy 27 (2021) 100980,
http://dx.doi.org/10.1016/j.nme.2021.100980.

[2] M. Rieth, R. Doerner, A. Hasegawa, Y. Ueda, M. Wirtz, Behavior of tungsten
under irradiation and plasma interaction, J. Nucl. Mater. 519 (2019) 334–368,
http://dx.doi.org/10.1016/j.jnucmat.2019.03.035.

[3] C. Domain, C.S. Becquart, Object kinetic Monte Carlo (OKMC): A coarse-grained
approach to radiation damage, in: W. Andreoni, S. Yip (Eds.), Handbook of
Materials Modeling : Methods: Theory and Modeling, Springer International
Publishing, 2018, pp. 1–26, http://dx.doi.org/10.1007/978-3-319-42913-7_101-
1.
11 
[4] M.J. Caturla, Object kinetic Monte Carlo methods applied to modeling radiation
effects in materials, Comput. Mater. Sci. 156 (2019) 452–459, http://dx.doi.org/
10.1016/j.commatsci.2018.05.024.

[5] P. Benoist, G. Martin, Stability of Void Lattice Under Irradiation: A Kinetic Model,
USEDA Report CONF-751006-P2, Vol. 2, 1976, p. 1236.

[6] K. Krishan, Kinetics of void-lattice formation in metals, Nature 287 (1980) 420,
http://dx.doi.org/10.1038/287420a0.

[7] J. Marian, V.V. Bulatov, Stochastic cluster dynamics method for simulations of
multispecies irradiation damage accumulation, J. Nucl. Mater. 415 (1) (2011)
84–95, http://dx.doi.org/10.1016/j.jnucmat.2011.05.045.

[8] T. Jourdan, J.-P. Crocombette, Rate theory cluster dynamics simulations includ-
ing spatial correlations within displacement cascades, Phys. Rev. B 86 (2012)
054113, http://dx.doi.org/10.1103/PhysRevB.86.054113.

[9] T. Jourdan, Influence of dislocation and dislocation loop biases on microstruc-
tures simulated by rate equation cluster dynamics, J. Nucl. Mater. 467 (2015)
286–301, http://dx.doi.org/10.1016/j.jnucmat.2015.09.046.

[10] Y. Li, S. Hu, X. Sun, M. Stan, A review: applications of the phase field method in
predicting microstructure and property evolution of irradiated nuclear materials,
npj Comput. Mater. 3 (2017) 16.

[11] S. Hu, C. Henager, Phase-field simulation of void migration in a temperature
gradient, Acta Mater. 58 (2010) 3230, http://dx.doi.org/10.1016/j.actamat.2010.
01.043.

[12] S. Benannoune, Y. Charles, J. Mougenot, M. Gaspérini, G.D. Temmerman,
Multidimensional finite-element simulations of the diffusion and trapping of
hydrogen in plasma-facing components including thermal expansion, Phys. Scr.
2020 (T171) (2020) 014011, http://dx.doi.org/10.1088/1402-4896/ab4335.

[13] F. Nichols, Kinetics of diffusional motion of pores in solids: A review, J. Nucl.
Mater. 30 (1) (1969) 143–165.

[14] P.J. Goodhew, S.K. Tyler, Helium bubble behaviour in b. c. c. metals below
0.65Tm, Proc. R. Soc. Lond. A 377151–184 (1981).

[15] V. Zell, H. Trinkaus, H. Schroeder, A simulation study of the migration and
coalescence of gas bubbles in metals, J. Nucl. Mater. 212–215 (1994) 320–324.

[16] D.R. Mason, D. Nguyen-Manh, C.S. Becquart, An empirical potential for simu-
lating vacancy clusters in tungsten, J. Phys.: Condens. Matter. 29 (50) (2017)
505501.

[17] N. Castin, A. Bakaev, G. Bonny, A. Sand, L. Malerba, D. Terentyev, On the onset
of void swelling in pure tungsten under neutron irradiation: An object kinetic
Monte Carlo approach, J. Nucl. Mater. 493 (2017) 280–293.

[18] D. Perez, L. Sandoval, S. Blondel, B.D. Wirth, B.P. Uberuaga, A.F. Voter, The
mobility of small vacancy/helium complexes in tungsten and its impact on
retention in fusion-relevant conditions, Sci. Rep. 7 (1) (2017) 2522.

[19] V. Jansson, M. Chiapetto, L. Malerba, The nanostructure evolution in Fe–C
systems under irradiation at 560K, J. Nucl. Mater. 442 (1) (2013) 341–349.

[20] B. Pannier, Towards the Prediction of Microstructure Evolution Under Irradiation
of Model Ferritic Alloys with an Hybrid AKMC-OKMC Approach (Ph.D. thesis),
University of Lille 1, 2017, URL http://www.theses.fr/2017LIL10061.

[21] J. Hou, Y.-W. You, X.-S. Kong, J. Song, C. Liu, Accurate prediction of vacancy
cluster structures and energetics in bcc transition metals, Acta Mater. 211 (2021)
116860, http://dx.doi.org/10.1016/j.actamat.2021.116860.

[22] E. Autissier, F. Farah, C.G. Mazellier, B. Decamps, R. Schäublin, M.F. Barthe,
Cavity evolution as a function of temperature in self irradiated tungsten, 2025,
in preparation.

[23] A. Chauhan, Q. Yuan, D. Litvinov, E. Gaganidze, H.-C. Schneider, D. Terentyev,
J. Aktaa, Effect of temperature on the neutron irradiation-induced cavities
in tungsten, Phil. Mag. 102 (2022) 1665–1683, http://dx.doi.org/10.1080/
14786435.2022.2079750.

[24] A. De Backer, A. Souidi, E.A. Hodille, E. Autissier, C. Genevois, F. Haddad, A.
Della Noce, C. Domain, C.S. Becquart, M.F. Barthe, Multi-objective optimization
of the nanocavities diffusion in irradiated metals, Phys. Sci. Forum 5 (1) (2022)
http://dx.doi.org/10.3390/psf2022005041.

[25] A. De Backer, A. Souidi, E.A. Hodille, E. Autissier, C. Genevois, F. Haddad, A.
Della Noce, C. Domain, C.S. Becquart, M.-F. Barthe, Readdressing nanocavity
diffusion in tungsten, Front. Nucl. Eng. 2 (2023) 1240995, http://dx.doi.org/10.
3389/fnuen.2023.1240995.

[26] C.S. Becquart, A. De Backer, C. Domain, Atomistic modeling of radiation damage
in metallic alloys, in: S. Schmauder, C.-S. Chen, K.K. Chawla, N. Chawla,
W. Chen, Y. Kagawa (Eds.), Handbook of Mechanics of Materials, Springer
Singapore, Singapore, 2019, pp. 673–701.

[27] A. Fedorov, Evolution of Point Defect Clusters During Irradiation and Thermal
Treatment (An Ion Implantation and Thermal Desorption Study) (Ph.D. thesis),
University of Delf.

[28] J. Boisse, D.B. Andree, C. Domain, C. Becquart, Modeling of the self trapping
of helium and the trap mutation in tungsten using DFT and empirical potentials
based on DFT, J. Mater. Res. 29 (2014) 2374–2386.

[29] A. Drexler, L. Vandewalle, T. Depover, K. Verbeken, J. Domitner, Critical
verification of the Kissinger theory to evaluate thermal desorption spectra, Int.
J. Hydrog. Energy 46 (79) (2021) 39590–39606.

[30] G.E.P. Box, G.C. Tiao, Bayesian Inference in Statistical Analysis, Addison-Wesley
Pub. Co., Reading, Mass, 1973.

https://data.mendeley.com/my-data/
https://data.mendeley.com/my-data/
https://data.mendeley.com/my-data/
http://dx.doi.org/10.1016/j.nme.2021.100980
http://dx.doi.org/10.1016/j.jnucmat.2019.03.035
http://dx.doi.org/10.1007/978-3-319-42913-7_101-1
http://dx.doi.org/10.1007/978-3-319-42913-7_101-1
http://dx.doi.org/10.1007/978-3-319-42913-7_101-1
http://dx.doi.org/10.1016/j.commatsci.2018.05.024
http://dx.doi.org/10.1016/j.commatsci.2018.05.024
http://dx.doi.org/10.1016/j.commatsci.2018.05.024
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb5
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb5
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb5
http://dx.doi.org/10.1038/287420a0
http://dx.doi.org/10.1016/j.jnucmat.2011.05.045
http://dx.doi.org/10.1103/PhysRevB.86.054113
http://dx.doi.org/10.1016/j.jnucmat.2015.09.046
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb10
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb10
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb10
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb10
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb10
http://dx.doi.org/10.1016/j.actamat.2010.01.043
http://dx.doi.org/10.1016/j.actamat.2010.01.043
http://dx.doi.org/10.1016/j.actamat.2010.01.043
http://dx.doi.org/10.1088/1402-4896/ab4335
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb13
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb13
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb13
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb14
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb14
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb14
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb15
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb15
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb15
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb16
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb16
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb16
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb16
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb16
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb17
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb17
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb17
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb17
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb17
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb18
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb18
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb18
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb18
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb18
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb19
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb19
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb19
http://www.theses.fr/2017LIL10061
http://dx.doi.org/10.1016/j.actamat.2021.116860
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb22
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb22
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb22
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb22
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb22
http://dx.doi.org/10.1080/14786435.2022.2079750
http://dx.doi.org/10.1080/14786435.2022.2079750
http://dx.doi.org/10.1080/14786435.2022.2079750
http://dx.doi.org/10.3390/psf2022005041
http://dx.doi.org/10.3389/fnuen.2023.1240995
http://dx.doi.org/10.3389/fnuen.2023.1240995
http://dx.doi.org/10.3389/fnuen.2023.1240995
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb26
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb26
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb26
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb26
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb26
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb26
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb26
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb27
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb27
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb27
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb27
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb27
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb28
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb28
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb28
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb28
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb28
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb29
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb29
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb29
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb29
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb29
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb30
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb30
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb30


A. De Backer et al. Computational Materials Science 248 (2025) 113570 
[31] D.B. Nelson, Conditional heteroskedasticity in asset returns: A new approach,
Econometrica 59 (2) (1991) 347–370.

[32] S. Hasanzadeh, R. Schäublin, B. Décamps, V. Rousson, E. Autissier, M.F. Barthe,
C. Hébert, Three-dimensional scanning transmission electron microscopy of
dislocation loops in tungsten, Micron 113 (2018) 24–33.

[33] Z. Hu, P. Desgardin, C. Genevois, J. Joseph, B. Décamps, R. Schäublin, M.-
F. Barthe, Effect of purity on the vacancy defects induced in self–irradiated
tungsten: A combination of PAS and TEM, J. Nucl. Mater. 556 (2021) 153175.

[34] D.T. Gillespie, A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions, J. Comput. Phys. 22 (1976) 403.
12 
[35] L.T. Kong, L.J. Lewis, Transition state theory of the preexponential factors for
self-diffusion on Cu, Ag, and Ni surfaces, Phys. Rev. B 74 (2006) 073412.

[36] C. Lin, H. Ruan, S.-Q. Shi, Mechanical–chemical coupling phase-field mod-
eling for inhomogeneous oxidation of zirconium induced by stress–oxidation
interaction, npj Mater Degrad 4 (2020) 22.

[37] C. Becquart, C. Domain, U. Sarkar, A. De Backer, M. Hou, Microstructural
evolution of irradiated tungsten: Ab initio parameterisation of an OKMC model,
J. Nucl. Mater. 403 (1) (2010) 75–88.

[38] A. Stukowski, Visualization and analysis of atomistic simulation data with
OVITO–the open visualization tool, Modelling Simul. Mater. Sci. Eng. 18 (1)
(2009) 015012.

http://refhub.elsevier.com/S0927-0256(24)00791-2/sb31
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb31
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb31
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb32
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb32
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb32
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb32
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb32
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb33
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb33
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb33
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb33
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb33
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb34
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb34
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb34
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb35
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb35
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb35
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb36
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb36
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb36
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb36
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb36
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb37
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb37
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb37
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb37
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb37
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb38
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb38
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb38
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb38
http://refhub.elsevier.com/S0927-0256(24)00791-2/sb38

	A multi-objective optimization to characterize the diffusion of nanocavities in tungsten
	Introduction
	Physical Processes and Methods
	Physical processes
	Mathematical formulation
	Experimental materials
	Simulation methods

	Results
	Pareto front in the objective space
	Projections on the crossed planes
	Pareto Front in the parameter space
	Validation of the optimization method

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Model inputs
	Appendix A. Model inputs
	Attempt frequency of the nanocavities diffusion
	Appendix B. Attempt frequency of the nanocavities diffusion
	Likelihood on experimental data
	Appendix C. Likelihood on experimental data
	Illustrations of other projections
	Appendix D. Illustrations of other projections
	Fit of objectives
	Appendix E. Fit of objectives
	Parametric function for the diffusion temperature
	Appendix F. Parametric function for the diffusion temperature
	Surface diffusion coefficient
	Appendix G. Surface diffusion coefficient
	Data availability
	Appendix . Data availability
	References


