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Programming notations. There is no escape. 
Text prepared for a talk at the NewCrafts conference in Paris, 25-26 may 2023. 
This  work  is  based  on  a  collaboratively  written  chapter  for  a  forthcoming  book  “What  is  a  computer  
program?”, written by the PROGRAMme collective.1 

Prepared and presented by Liesbeth De Mol. 

PROGRAMme is an open collective of people with diverse backgrounds, convinced 
that we need a more profound reflection on the programming field at large, without 
commitment  to  any  dogmatic  perspective  and  this  under  the  banner  of  anti-
disciplinarity. Our practice is to challenge one another in an environment in which the 
aim is not to undermine or oppose, but to question in order to reach new insights 
about  programs.  From  this  perspective,  PROGRAMme  stands  for  the  idea  of  re-
programming oneself, facing our own disciplinary obstacles, with the help of others, 
all considered on equal footing. 

One of the methodological  axes of our forthcoming book is the proposal to view 
programs as an open and diverse totality. That is, a program cannot be understood 
through one perspective only. We say that programs have different modalities. These 
modalities determine the main chapters of our book: in the sense that programs can 
be written down in a notation, they are textual; to the extent that programs can be 
handled as abstract objects, they are formal; in the sense that programs are stored 
and executed on a computing device, programs are physical; and to the extent that 
programs are made, shared and used in our human world, they are socio-technical. 

The following diagram prompts us to explore the dynamics and evolving relations 
between the different modalities. 

1 Active contributors to the chapter on which this text is based are: Troy Astarte, Maarten Bullynck, Felice Cardone, 
Martin Carlé, Liesbeth De Mol, Marie-José Durand-Richard, Tomas Petricek, Mark Priestley, Henri Stephanou. The 
chapter was repeatedly discussed within the PROGRAMme collective. Active members include: Nicola Angius, 
Troy Astarte, Maarten Bullynck, Selmer Bringsjord, Felice Cardone, Martin Carlé, Edgar Daylight, Liesbeth De 
Mol, Marie-José Durand-Richard, Endy Hammache, Simone Martini, Baptiste Mélès, Elisabetta Mori, Pierre 
Mounier-Kuhn, Alberto Naibo, Mael Pégny, Tomas Petricek, Mark Priestley, Giuseppe Primiero, Julian Rohrhuber, 
Henri Stephanou, Ray Turner, Nick Wiggershaus.



As can be seen from that diagram, each node, representing one of the modalities is 
in a relation to each of the other nodes.  Because of the dynamics that develops 
between the different modalities,  the meaning of programs and their relations to 
humans may constantly shift and cannot be precisely located. As such, the diagram 
does not achieve a closure and, therefore, does not provide a static structure in which 
those meanings can be fixed once and for all. Instead, it sketches a space in which 
the  open  and  diverse  totality  of  programs  can  come  to  the  fore,  escaping  any 
attempt  that  tries  to  reduce  the  question  "What  is  a  computer  program?"  to 
conventional answers. 

Let me now turn to the presentation of the chapter on the notational modality. The 
main argument I would like to make is that there is no escape to the multiplicity of 
programming  notations,  unless  we  want  to  give  up  on  “real”  programming  and 
accept  the  losses  that  would  come  with  such  an  option.  In  order  to  make  that 
argument we need to have a firmer grip on what it means to program. Is pressing a 
sequence of buttons to control a floor turtle programming? How about making a 
macro in some spreadsheet package? Or what if we could just use natural language 
to specify our desired program?  

To answer these questions we need to be a bit more liberal about our notion of a 
programming notation.  A traditional  view is  that notations are a textual  interface 
between a programmer, the expert-user, and a machine. One then writes programs in 
some programming language like Python or Rust. But such view cannot help us if we 
want to differentiate between a user programming through a notation or one who is 
merely interacting. 

To  tackle  that  problem,  we  develop  the  notion  of  notational  programmability.  It 
allows us to make a continuous and finer-grained differentiation between different 



notations,  including  the  less  conventional  ones.  Central  to  that  notion  is  that  a 
notation’s programmability is deeply connected to its ability to express new so-called 
operational  meanings  which  are  enabled  through a  notation  that  results  from a 
process  of  negociating  between  a  number  of  different  trade-offs  such  as 
programming efficiency or user-friendliness. 

The argument is developed in two parts. First, I establish the notion of notational 
programmability which will require me to jump back a couple of centuries and then 
move forward to the 1940s. This allows me to introduce the metaphor of Pandora’s 
box of notations to support, in the second part of the talk, that any succesful attempt 
at  trying  to  stop  the  never-ending  need  for  new  notations  to  solve  all  kinds  of 
problems – would be the true curse. 

In order to establish the notion of notational programmability, we need, first of all, a 
clearer  idea  of  the  meaning  of  operational  meaning.  But  how  can  we  speak  of 
meaning  with  regards  to  notations  which,  from  a  certain  viewpoint  need  to  be 
without any meaning. That is, a notation that enables so-called blind computations? 
Here we need to go back to a passage in the history of mathematics and logic in 
which the question of meaning went hand in hand with the idea of developing a 
notation without any meaning. That passage is sometimes viewed as the historical 
foundation  of  computer  science  and  it  is  by  opposing  that  viewpoint,  offering 
another  reading  of  that  passage,  that  we  can  recover  our  notion  of  operational 
meaning. 

The  idea  of  a  notation  without  meaning  was  fully  developed  by  the  english 
algebraists of the early 19th century. In earlier  practices, one relied on a notion of 
meaning that was anchored in properties of numerical quantities. I give a simplified 
example. If we have 7-3 then the meaning of that term clearly is 4, but he operation 
3-7  was  then  considered  illegitimate  since  its  meaning  would  be  an  impossible 
quantity. When we then turn to the algebraic notation a – b, it becomes impossible to 
distinguish between legitimate and illegitimate operations. The scope of the notation 
seemed to exceed its accepted semantic domain. 

In the 17th century, despite these problems, the successful practice of a symbolic 
calculus  led  to  the  idea  of  a  "blind  knowledge".  As  the  ever  more  complex 
manipulation of symbols was no longer only grounded in human intuition alone, one 
could not immediately "see" or understand the meaning of what was being done. 
Computation was considered "blind" in the sense that the correctness of the results 
was  no  longer  guided  and  controlled  by  the  meaning  and  interpretation  of  the 
symbols used. To develop a science of operations then, the English algebraists of the 
early  19th century  proposed  a  universal  symbolic  algebra  as  the  language  of 
symbolical  reasoning operating only  by  laws of  combination on arbitrary  symbols, 



independent  of  any  concrete  meanings.  This  guaranteed  the  correctness  of  the 
deductive  process,  not  the  following  of  the  intuitive  meaning  of  each  step  in  a 
demonstration. The results did not have to depend on their meanings at all, but only 
on the laws of combination which were grounded in the laws of thought. But at the 
same time, the laws could be carried out without reference to meaning at all, making 
the mechanization of symbolical calculus possible. 

This idea of a formal calculus independent of any external meaning, was then pushed 
to the extreme in the context of early 20th century mathematical logic in the works of 
people like Emil Post or Haskell Curry. Rougly speaking, their idea was to find the 
ultimate  formalisation  of  finite  symbolical  reasoning  without  any  reference  to 
meaning at all. Here, the idea of linking up mechanisation with human thinking and 
its symbolizations reached an ultimate form through what is known as the universal 
Turing  machine.  This  machine  is  both  a  formalisation  of  everything  that  can  be 
computed but, at the same time, also imposes a limit on what can be computed. In a 
sense, it is an ultimate formalization of the very idea of blind calculus. 

If we admit that any computation can be formalized in this manner, one might be 
tempted to believe that these formalizations are the perfect notation to instruct non-
human computers. But this viewpoint can only be a myth. Indeed, if that would be 
true, why then are we not using the Turing notation as a  notation for instructing the 
machines  that  are  supposed  to  be  the  materializations  of  those  very  same 
formalizations?  The answer  is  that  we need to  make a  basic  distinction between 
programmabiity and computability. 

To do that, we need to understand how we can recover meaning from meaningless 
notations.  The  fact  that  "meaningless"  notations  enabled  mechanized  symbol 
manipulations  does  not  imply  that  they  cannot  contribute  to  the  generation  of 
meaning.  On the contrary,  if  suitably  chosen,  they have the ability  to  create  new 
meanings as mediators that transfer certain properties from one domain to another in 
an open-ended network of operational analogies across different semantic domains. 
The  observation  that  notations  are  instrumental  to  establish  new  meanings  was 
supported by a longer tradition of  algebraic  practices.  To give a highly simplified 
example, these practices enable to establish a connection between, on the one hand, 
the series that you can see at the top of the slide and which concerns the domain of 
multiplication  and,  on  the  other,  the  series  1,  2,  3,  4,  etc  by  introducing  a  new 
notation:  a  to  the  n-th  power.  By  establishing  that  connection,  it  is  possible  to 
compute also with powers and, in generalizing them, with functions over integers 
and with functions as such. 

The  notation  thus  becomes  the  instrument  that  enables  to  establish  certain 
analogies to become operational, they accompany a transfer of properties. We say 



that the notation has an ability to express a new operational meaning. It is one way 
of recovering meaning from meaningless notations.

We can then also apply this to Turing’s notation for the universal machine  which 
established  an  operational  analogy  between  data  and  operations,   allowing  to 
manipulate  operations  as  if  they  were  just  numbers.  By   consequence,  the 
manipulation of symbols gets as "blind" as it can get. And the operational meanings 
one could express in that manner becomes nearly unlimited in the sense that it could 
carry out any kind of computational operation. 

Within  the  realm  of  pure  symbol  manipulation  the  operationalization  of 
symbolizations,  becomes the basic  key to an understanding of  how notations for 
blind  symbol  manipulation  can  gain  a  new  meaning  through their  use.  But  that 
"meaning" is found in the ideal world of meta-mathematics. 

As we argue here, this does not suffice for our notion of notational programmability. 
Once "true" programming happens -- that is, when we move to real machines -- then 
the purpose and concern of employing notations as well as the effect of developing 
and deploying them flips. Rather than getting as 'blind' as possible, the concerns are 
that  programs  will halt  and  the  purpose  is  to  gain  insight  and  control  of  the 
machine's behavior and to be comprehensible by and to the user. The program, by 
means of its notation, relates the user to the effectiveness of the computation set to 
work.  By exploring this  relation of  the human and the machine as  enabled by a 
notation, new meaning is created as it operationally connects different domains in 
much the same way as introduced by the principle of transfer mentioned. The effect, 
however,  namely  to  act  on  the  real world  or,  to  impose  new  laws  on  things,  is 
fundamentally different. It is here where we can start to see why such things as the 
universal Turing machine can never suffice as a notation to program real machines to 
serve real humans. 

The fundamental difference between human computors and the machines that were 
originally  built  to mimick them requires,  a different approach.  The analogies that 
need to be made between what is desired at the human end and what is possible at 
the machine's end requires a careful negotiation through the creation or use of a 
programming notation.The new meanings that can be created in that manner can 
neither be reduced to pure machine execution – the materialization of blind calculus, 
if you want -- nor to "pure thought". They are an effect of the continued interaction 
between the human and the machine through the notation. 

Now that you have an idea of our notion of operational meanings, I develop now in 
more  detail  our  notion  of  notational  programmability  by  exemplifying  it  in  the 
context of one of the first computers, the ENIAC. It was around that machine that we 
locate what we have called the initial surprise of programming and the problems it 
resulted in. 



Without going too much into the details,  the ENIAC was built  in a war context in 
which the work of human computers and analog machines was not quick enough to 
keep up with the demands of  the military.  It  was in that  setting that  Eckert  and 
Mauchly proposed to build a high speed electronic computer. The result would be the 
ENIAC. 

The reality of high speed computation made it necessary for program execution to 
become  fully automatic.  Human intervention during computation simply does not 
ake any sense in a high speed context.

But this fully automated high-speed computation became an unexpected source of 
errors, namely the failure of the human programmers to accurately anticipate the 
effects of the instructions given. An early example is given by Douglas Hartree for an 
ENIAC  problem.  In  not  having  anticipated  that  a  certain  quantity  might  become 
negative during computation, the program created an error. On that basis, Hartree 
concluded that there is a fundamental distinction to be made between human and 
machine computation.  A human computer following Hartree's computational  plan 
"faced  with  this  unforeseen  situation,  would  have  exercised  intelligence,  almost  
automatically and unconsciously". ENIAC, on the other hand, had a purely mechanical 
“understanding” of Hartree's instructions and continued to compute "blindly".  This 
initial surprise of programming for Hartree was clearly anchored in the consequences 
of having to pro-gram a high speed automatic machine. It turned programming into 
a problem for and by itself.  

The  surprise  is  analyzed  here  as  arising  from  the  interplay  of  two  different 
“meanings” latent in a program, that intended by humans and that developed by 
machines.  The  gap  between  these  two  was  to  be  negotiated  by  creating  a  new 
meaning through a notation that could be "shared" by both and was anchored in 
making desired analogies operational. This recurring situation motivates our notion 
of notational programmability.

ENIAC's original programming interface was controversial and the machine was even 
described by  its  operators  as  a  "son of  bitch  to  program".  In  electro-mechanical 
machines  such  as  the  Harvard  Mark  I  instructions  were  coded,  expressed  in  a 
machine-readable medium. The coded program thus formed a  notational interface 
between human and machine.  The operational  meanings that  are created in this 
manner are expressed through the notation, as it ties together these two sides. 

ENIAC took quite a different approach. Individual instructions, corresponding to the 
basic  operations  of  ENIAC's  many  different  functional  modules  were  set  up  on 
switches. The sequencing of operations was defined by physically connecting these 
switches to a program bus rather than by reading a sequence of instructions.  By 
consequence, ENIAC was a highly parallel machine. ENIAC programmers used various 



forms of  notation to  help  design programs,  but  the  end result  was  not  a  list  of 
instructions,  but  rather  a  plugging  diagram  that  showed  how  ENIAC  should  be 
physically set up to run the program. 

The physical  process of  setting up a program was laborious and time-consuming 
implying a fundamental incompatibility between the time it took to set-up a program 
compared  to  the  high  speed  of  the  computation  itself.  The  ENIAC  team  fully 
recognized this problem, and had been thinking about a successor machine in which 
this programming problem would be solved by storing instructions in a fast memory 
from  which  they  could  be  extracted  and  decoded  at  a  rate  compatible  with  the 
machine's electronic speed of computation. 

The canonical presentation of these ideas was given in the EDVAC design and became 
a basic feature of many later architectures. The first time instructions were made 
available  at  electronic  speeds was in  early  1948 when an EDVAC-style  instruction 
code, known as the "converter code", was provided for ENIAC. We view this episode 
as an extended and sometimes controversial  negotiation in which one of ENIAC's 
basic  attributes,  its  parallelism  and  extremely  fast  speed  of  computation,  was 
compromised in favour of providing the machine with a notational interface and the 
gains that came with it. The implementation of the converter code reduced the speed 
of computation by at least an order of magnitude, but even with this loss, ENIAC was 
still much faster than its competitors.
 
The  new  approach  enabled  novel  programming  techniques  such  as  closed 
subroutines. That is, a subroutine that can be accessed from different points in the 
main  program.  Moreover,  the  trade-off in  favor  of  the  convertor  code  made  the 
process of programming and using ENIAC as a whole more "economical".

The ENIAC conversion and the trade-offs that came with it, showcase the significance 
and  consequences  of  notational  programmability:  the  choice  for  a  particular 
notational  system  always  comes  with  a  carefully  negotiated  trade-off  between  a 
number  of  different  factors.  These  factors  imply  that  the  programmability  of  a 
particular notational system is always contextual: the gains one might have by the 
decision to use a certain notation, always need to be carefully weighed against what 
might be lost. 

This  need  to  contextualize  is  clear  from  the  ENIAC  conversion  itself.  As  well  as 
compromising ENIAC's speed, the switch to a notational interface for programming 
restricted its computational flexibility to some users of the machine. In its first life, 
ENIAC’s parallelism was exploited for number-theoretical computations by Derrick H. 
Lehmer. From his perspective, the conversion was not an improvement but "spoiled" 
the ENIAC and, in particular, its parallelism. To put it differently, from the number-



theoretic perspective of Lehmer, there was no new operational meaning to be found 
in the serialization of instructions. It was a loss. 

The initial  surprise of  programming was strongly grounded in problems resulting 
from a combination of full automation with high-speed computation. It led pioneers 
like  von  Neumann  or  Hartree  to  the  conclusion  that  programming  required  a 
panoptic foresight in which everything must be foreseen. This not only required high 
planning but also an appropriate approach to programming itself. A key realization 
was that  programming was not a static  process of  translation but of  providing a 
dynamic background for the automatic evolution of a meaning. The reason for this is 
that the initial sequence of instructions in the machine code does not represent the 
actual order of actions upon execution nor the actual instructions used, since these 
might change as the computation develops. In other words, it is because there is no 
one-to-one correspondence between the sequence of instructions and the actually 
executed sequence of actions that the relation between what we want the machine to 
do and what it actually does, becomes a dynamical one.

It  is  here  then  that  we  situate  the  original  problem  of  expressing  operational 
meanings  in  the  context  of  notational  programmability:  the  fact  that  a  notated 
program, on the one hand, expresses that which is intended by the human user of 
the notation and, on the other, needs to be such that it also provides the required 
"dynamic  background"  for  the  machine  to  develop  its  meaning,  implies  that  the 
notation  must  carry  with  it  meanings  that  can  be  expressed,  developed  and 
understood by both in their own "interpretational" systems. The ability of a notation 
to  express  such  meanings  feeds  directly  into  notational  programmability:  as 
explained before,  the choice for  or  the development of  a  notational  system, also 
involves a possible loss and gain in terms of operational meaning. 

Applying this to the case of the ENIAC order code, it becomes clear that this notation, 
while a good match to the machine's internal system was not the most suitable for 
direct use by most human coders. While it enabled new operational meanings around 
machines like ENIAC, such as the closed subroutine, it  was not very "meaningful" 
from the human perspective and so, "laid on coders an exceedingly heavy burden of  
extensive and complex efforts towards understanding,  assessing,  and reformulating in  
machine terms a problem that was presented in conventional [...] terms. In response, two 
notational techniques appeared in the 1940s. The first is the flow diagram approach 
as described by Goldstine and von Neumann, which I cannot discuss here, the other 
is the use of an assembler-like notational system that was developed around the 



EDSAC,  an  early  British  machine  developed by  Wilkes  and his  group.  The  EDSAC 
approach was to create a new notational level that was a step further away from pure 
machine code to a notation that was more amenable to human use. But it could also 
be "read" by the machine. 

I  exemplify  this  here  with  one  notational  technique  from  EDSAC,  the  so-called 
interpretive subroutine.  These "enable the programmer to write the whole, or part, of  
his program in an order code which may be quite different from the basic order code of  
the machine." The order codes used in those routines "do not enter the control circuit of  
the  machine  but  are  extracted  from  the  program,  one  by  one,  by  the  interpretive  
subroutine,  which  examines  them,  and  carries  out  the  appropriate  operations."  This 
technique affects notational  programmability  by providing a notation that  can be 
understood  and  interpreted  by  the  machine  but  also  relieved  the  human 
programmer of a number of complications. In that way they enabled new operational 
meanings, such as the notation for computation with complex numbers or indirect 
addressing.

But, as before, switching to other notational systems always comes with a number of 
trade-offs. In this case,  the gain in speed on the programming side resulted in a 
decreased efficiency of  program execution.  Because of  their  computational  costs, 
interpretive routines were "of real value only when applied to relatively simple problems  
in which the total running time is short." These kind of trade-offs between what might 
be better for different human users and what can be achieved using a particular 
machine are a recurring phenomenon in the history of programming notations. 

As shown, early attempts at bridging the gap between what the machine can do and 
what humans want it  to do,  resulted in particular notational  approaches to solve 
programming problems. This did not resolve the surprise of programming,  however.  
Many  pioneers  soon  recognized  the  numerous  specific  problems  that  particular 
notations had to address.  We argue here that this  surprise and the challenges it 
resulted in, never stopped, but continued and evolved over time. This development is 
driven by local  changes in notational  programmability:  to develop,  modify  or  use 
notations  as  the  result  of  a  negotiated  trade-off between a  number  of  different 
factors  and  the  consequent  potential  to  express  new operational  meanings  and, 
possibly, to restrict others. These trade-offs are always contextual and the gains that 
the use of a notation brings are never absolute. The different factors at play in such 
trade-offs  exemplified  in  the  previous  sections  can  be  systematized  through  a 
number of core dimensions  which together feed into notational programmability. 



1. User dimension: different users with different backgrounds, needs and preferences 
have different uses in mind when using a notation. This dimension not only relates to 
the domain of  use but  also  involves  such things as  convenience,  the ability  of  a 
notation to be re-used and modified by other humans or the comprehensibility of a 
notation.

2. Efficiency dimension: different notations might result in a loss of or gain in efficiency 
at the machine's end (memory and/or speed) and at the user’s end. 

3. Control dimension: different notations result in different levels of control over the 
users -- humans and machines -- of the notation. Some notations are better suited as 
a means to avoid error. Some notations are constructed in such a way that the user’s 
ability to change them is highly restricted. 

These three interrelated dimensions are historical. Or, to put it differently, the variety 
and depth of programming problems, one might see them as curses, occurs as a 
function of a historically developing trade-off between efficiency, use and control. The 
introduction of or choice for a particular notation is then always a local solution to 
one  or  more  of  such  "curses"  determined  by  the  particular  configuration  of  the 
different core dimensions and the weight one assigns to them locally. Clearly, the 
manner in which these dimensions are weighed and balanced against one another, 
contribute  to  a  notation’s  ability  to  explore  and  express  (shared)  operational 
meanings. 

The contextual and historical nature of this negotiating process across these core 
dimensions and the gains and losses that come with it, resulted in an ever increasing 
number of different notations. A frequently used metaphor in programming circles to 
refer to this multiplication of notations is that of the Tower of Babel and its common 
interpretation that God punished humankind by breaking up its unity of language to 
prevent  cooperation.  We  introduce  instead  the  myth  of  Pandora's  box:  because 
Prometheus  stole  fire,  a  symbol  of  technology,  from  the  Gods  to  give  it  to 
humankind, the Gods punished us by sending Pandora, the curious one, with a box 
which she should never open. She was too curious though, opened it, and sent all 
kinds of curses upon us. When seeing what happened, Pandora hastened to close the 
box and could keep one thing closed up, Hope.  

We turn this myth around to use it as a metaphor to argue that what might be seen 
as  curses,  the  ongoing  multiplication  of  notations,  is  in  fact  a  blessing  and  this 
anchored  in  notational  programmability.  That  is,  there  is  no  escaping  of  the 



multiplication  of  notations  unless  we  give  up  on  our  ability  to  explore  new 
operational meanings and so, as we say here, to give up on real programming. What 
appears then as a curse is in fact a blessing which we should accept as a gift from the 
Gods, if I can stick to the metaphor, rather than a punishment. The hope of locking up 
those apparent curses, would be the true curse, if succesful. It would give the control 
over the technology back to the Gods. 

In the second and much shorter part of this talk, I look at a number of cases from the 
history of programming which can be seen as attempts to achieve an improved if not 
ultimate notation anchored in a renegotiation between the different dimensions that 
result in new paths for exploring operational meanings and closing off others. Of 
course, I cannot give a full analysis of each of these cases but will instead use these 
to make the more general argument.

I  start  with  automatic  programming,  which  is,  generically  speaking,  the  idea  to 
automate  programming  itself.  This  idea  has  emerged  repeatedly  throughout  the 
history  of  programming  and  takes  different  forms  that  correspond  to  changing 
expectations of the computer user. But its point of origin is really when, in the late 
1940s and earlier 1950s, the use base for computers diversified, and with it, the need 
for  other  types  of  programs  and more  programmers.  The  need  for  automatic 
programming in this context was clear. If a notation was more suitable to the domain 
in  which  a  program  was  supposed  to  be  used,  then  perhaps  the  specialist 
programmer  would  no  longer  be  needed  and  the  “user”  could  become  the 
programmer. 

By the mid 1950s, the idea of automatic programming had become more common 
and notations were considered an essential aspect of such approaches. Glennie, the 
author of AUTOCODE for the Manchester Mark I believed that what "we need to do to  
make programming and coding easy" is to "make coding comprehensible" which may "be  
done only by improving the notation of programming." 

One key insight was that aspects of human coding processes could themselves be 
programmed,  thus,  establishing  an  operational  analogy  between  the  human  so-
called clerical processes and the procedure-like working of a machine, an analogy 
that  was  mediated  through  a  notational  system  that  supported  this  analogy  to 
become operational.  



Automatic programming systems made it possible to come up with notations that 
fitted different purposes. Already in the 1950s, this led to an explosion of notations 
which was seen as a major problem to be controlled. It was deepened by the fact that 
these systems were specific to particular  machines,  making it  very hard to share 
programs across different systems. The idea of a machine-independent and universal 
notation then became a major hope for closing Pandora's box of notations. 

ALGOL and COBOL are two well-known notations that appeared in the 1950s and 
aimed to be universal for a particular use. But both of these were still quite user-
specific. A natural extension of this ideal was a notation that could be general in its  
purpose,  one  that  could  be  used  by  any user  going  from  novices  to  systems 
programmers. This would bring obvious benefits: users need learn only one notation, 
only  one  compiler  would  need  to  be  maintained,  and  programs  could  be  easily 
shared.  Furthermore,  a  perfectly  universal  notation  would  stop  the  concerning 
proliferation of notations. 

A classic example of such an ‘ultimate notation’ is IBM’s PL/I which was intended to 
“meld and displace FORTRAN and COBOL”.  But its ambition would prove too big if not 
unrealistic. The fact that it was also supposed to be approachable by novice users, led 
to a syntax that was deliberately kept loose.  This led to a remarkably complicated 
notation. It is one of the reasons why it never arrived in the academic community. 
While it might increase IBM’s control over the market, it was detrimental to another 
aspect of the control dimension: writing error-free programs in PL/I turned out to be 
a huge challenge and one of the reasons why it was famously called a fatal disease bij 
Edsger Dijkstra.

Moreover, there was an assumption that people would continue to built and use so-
called mainframe computers and in particular mainframes built by IBM. It was not 
prepared for the microcomputer. 

But of course this is just one highly simplified example. It is introduced here as an 
illustration  of  a  more  structural  observation:  the  user,  efficiency  and  control 
dimensions cannot be frozen in time nor space. The dream of an ultimate notation is 
always one that is historical and so anchored in current hardwares, current needs, 
current competencies and current markets. Hence, while possibly ideal for that very 
particular context, it must fail hugely, unless we freeze history itself. It is a failure that 
we  should  celebrate:  if  we  would  stick  to  just  one  notation,  we  would  remain 
restricted to the operational meanings that can be expressed in that one notation, we 
would, essentially, limit and restrict our own thinking.



But  what  if  we  instead  had  a  notation  that  can  be  adapted  to  become an  ideal 
notation for each particular context? This became a possibility in the context of what 
we call self-programmable notations. The original idea of automatic programming 
was to have a notation that is closer to the human programmer, but is still  close 
enough to the machine operationally wise.  LISP and Smalltalk are two prominent 
programming notations that make a further abstraction step to have the notation 
appear  independent of  the actual  machine.  It  is  then no coincidence that  both of 
these were anchored in  the idea of  personalizing the computer  so that  any  user 
would have their own metamedium to work with and do whatever they want it to do.

 

LISP,  which  I  cannot  discuss  here,  was  still  very  much  focused  on  users-as-
programmers. This was very different in the context of SmallTalk which was anchored 
in the vision of Alan Kay and Adele Goldberg of the computer as a metamedium, a 
medium that can be all other media. Their ideal was a system that would work not 
just for so-called user-programmers but for any user, most notably, children. It was in 
fact at this point that they went against the idea of  time-sharing systems of the time 
and for which LISP had been key: 

The  kids  […]  are  used  to  finger-paints,  water  colors,  color  television,  real 
musical instruments, and records. If the “medium is the message,” then the 
message of low-bandwidth timesharing is “blah.”

Personal computers for millions of potential users of all ages  "meant that the user  
interface would have to become a learning environment." The complexity of the system 
would need to be reduced  "and end-user literacy would require that data and control  
structures be done away with in favor of a more biological scheme of protected universal  
cells  interacting  only  through  messages  that  could  mimic  any  desired  behavior." The 
computer became a means to liberate oneself  as a human, a view that contrasts 
deeply with the vision of the computer as a means to control and automate society.

A crucial idea that enabled such liberation was to equip the computer with a self-
adaptable notation that could be used for a variety of computer tasks, including, and 
this is core, unanticipated ones. This then had the potential of eliminating the strict 
distinction between a user and a programmer: at the simplest level, one could simply 
"play around" with buttons or icons and pictures. But it was always possible to move 
up, first to programming within a specific microworld like Turtle graphics and, later, to 
a the full power of Smalltalk. 
The exploration of the Smalltalk environment was made possible by a philosophy that 
everything is an object. Every object can be inspected, manipulated and aggregated to 
create new objects. In an ideal Smalltalk world, everything is at the same level and 
has equal access to everything else in the system. But, in that philosophy of objects, 
there is no longer any direct operational analogy between the programming notation 



and the  real  machine code.  The possibilities  of  a  structure  of  interacting objects 
which can be seen as a computer in and by themselves, also close up the actual 
computer on which they are being implemented. It is one of the losses one had to 
accept in such a framework. 

In its ambition to serve every possible user, Smalltalk opened up the possibility 
of another kind of notation which we shall call concrete notations. Such notations aim 
for a notation that  resembles particular  human worlds,  restricting the domain of 
operation to what is already familiar. For a child, it can be a turtle or a sprite moving 
around, for an electrical engineer it might be predefined circuit components that can 
be combined and parametrized; for an accountant, it might be spreadsheets as the 
computerized analog of worksheets. And indeed, based on SmallTalk a number of 
such environments was developed such as Pygmalion or ThingLab, turning Smalltalk 
into a kind of interactive programming laboratory.  

However,  many  concrete  programming  notations,  which  first  appeared  as 
Smalltalk experiments or were inspired by it, were turned into stand-alone systems 
(think of Scratch). These kind of concrete notations, in being close to the lived world 
of  particular  users  (or,  better,  the  imagined  lived  worlds  as  conceived  by  the 
developers) are by definition also limited in their use. In being so close to the familiar 
they are hard to use if one wants to explore the unfamiliar. 

The ideal of personal computing as promoted by Kay and Goldberg, the possibility of 
creating ones own personal environment through the self-programmable notation, 
then steadily evolved into another kind of personal computing. It is one that focused 
only on  concrete  notations  for  so-called  end-users  to  exclude  them  from  truly 
personalizing  those  notations  to  their  own  needs  by  restricting  their 
programmability.  It  was  the  time  when  personalization  steadily  evolved  towards 
customization through parametrization. 

Such  concrete  notations  removed  the  underlying  foundation  that  made  them 
historically possible -- the self-adaptable metamedium that SmallTalk was. What was 
considered to  be but  the first  step into  the metamedium,  the concrete  notation, 
became a main paradigm to, ultimately, restrict the users freedom, locking them out 
of the system through black boxing and code obfuscations. 

Here then we see how we moved from ENIAC, whose original programmability was, 
for most, low compared to the reworked ENIAC, towards a notational paradigm in 
which  programmability  has  been  heavily  restricted  under  the  banner  of  having 
something that is supposed to be immeidately intuitive for all. In both situations one 
can maintain that programming is happening when using the notation, but, in both, 
the shared operational meanings that can be expressed are heavily restricted by the 
systems supporting them. The consequences are clear. Just as a focus  only on the 
machine heavily restricted most people in their use of the machine, a focus only on 



having something that has to be intuitive for  all, has steadily resulted in a control 
structure which seperated end from expert user and an inability of the end-user to do 
anything  else  but  exploring  and  exploiting  what  are,  essentially,  predefined 
operational meanings. 

If high programmability is what we want, then it no longer suffices to think only in 
terms of what is familiar in human terms. Self-alientation becomes a necessary pre-
condition in order to negotiate meanings across the space between humans and 
machines. If one refuses to pay that price, that is, if one has to rely on a notational 
interface  that  is  anchored on mimicry  only  (either  at  the  machine end or  at  the 
human end), then, as we argue here, the space for negotiation shrinks and with it, 
the ability to create new meanings. 

 
I  would now like to return briefly to automatic  programming to move towards a 
conclusion and to talk about the new hype: machine learning. The main idea behind 
the original work on automatic programming in the 1950s was mostly to automate 
part of the labour involved when programming directly in machine code. But there 
was also another ideal underpinning some of these approaches: the idea that one 
could replace the expensive programmers by regular users. 

Since that time, the idea of automating the programmer has re-occurred time and 
again in the history and industry of programming, think for instance of the relatively 
recent popularity of low and no coding frameworks focused on the so-called citizen-
developer. The result has not been the end of programming but more often than not, 
the creation of a new division of labor and knowledge between the “real” developers 
and the others. 
Today, yet another pronouncement has been made about the end of programming: 
there  is  a  hope  and  a  promise  that  systems  like  ChatGPT  will  one  day  reduce 
programming to prompt engineering. We are told that the new programmers will 
only have to specify in human terms what they need, and the system will return to 
them the desired solution. Besides the many societal risks that these systems bring 
there are two basic questions to be asked here in terms of our notion of notational 
programmability. 

First  of  all,  there  is  a  question  of  feasability:  given  the  historicity  of  notational 
programmability and the fact that, hopefully, we cannot freeze change in use, control 
and efficiency, is it rational to think that finally we would have reached the end stage 
with all programming problems resolved by an AI which is fully dependent on past 
knowledge? 

Secondly, there is a question of desirability. If one day, developers and programmers 
would be reduced to end-users too, then the true curse of Pandora’s box of notations 
would be launched upon us. Given that such systems have no real means to explain 



to us what they throw at us, our ultimate notation migh become what we always 
knew, our own natural language. But such notation would be unable to provide for 
the creation of any new shared operational meanings. We would remain locked up in 
our own language, no longer having a notation that allows to negotiate meanings 
between two distinct semantic domains, that of the machine and that of the human 
world. 

In the meantime, we would give control not so much to these technologies, which are 
very capable and could be great tools, but to the businesses that call  themselves 
open but decided to close everything up. Being locked up in our own language, we 
would no longer have an ability to actually change the system but merely enable and 
feed it.  There is then a basic difference to be drawn in such contexts of automatic 
programming for a user, whether you are entitled to enact the law or whether you 
are entitled to change the law. Notational programmability, I hope to have shown to 
some  extent,  is  oriented  towards  the  latter.  If  the  hope  of  fully  automated 
programming would ever be fulfilled, then we would give up on that ability. It is then 
the only curse that should forever remain locked up inside of Pandora’s box.

It is my personal conviction that in the current discourse, more work should be done 
in  exploring  that  path:  rather  than  being  impressed  and  jump  on  the  next 
bandwagon, or just to panick about the consequences without going to the core of 
the problem, we should dare to be more outspoken and insist that programmability 
cannot and should never be given up, to become a human right for all. It requires an 
effort from all users, including developers, to become more literate about programs 
and  their  histories.  Making  that  effort  is  the  price  we  must  pay  if  we  want  to 
program, rather than being programmed. It is the price we must pay if we want to 
change the laws. 


