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Abstract

The work presented in the manuscript was carried out in the framework of the Rigorous System
Design (RSD) approach. This approach emphasizes multiple levels of separation of concerns.
It enforces behavioural properties through semantics-preserving transformations. The RSD flow
involves designing an application model, verifying elementary properties, extending the model
with platform components, and generating executable code. The approach is applied to various
domains, including embedded systems, cyber-physical systems, autonomous systems, and digital
twins. The three main chapters summarise the key contributions of the author.

Chapter 2 explores the classical semantics of BIP, a robust component framework central to
the RSD methodology. It introduces the theory of architectures, a key element enabling the
combination of predefined BIP design patterns to enforce desired behavioural properties. The
design process, starting from system requirements and leading to the C++ implementation, is
illustrated using the CubETH nano-satellite on-board software case study.

Chapter 3 develops a formal algebraic framework for comparing the expressive power of
component-based frameworks. It applies this framework to analyse the expressiveness of the
BIP framework. Additionally, an alternative “offer” semantics of BIP is introduced, exploring its
relationship with the classical semantics.

Chapter 4 addresses the adaptation of the RSD approach to general-purpose software develop-
ment. It introduces JavaBIP, a Java implementation of BIP-inspired coordination mechanisms.
JavaBIP utilizes Java annotations and reflection mechanisms to define BIP models associated
with Java objects. The chapter details the coordination mechanisms, modular architecture, and
the dynamic addition/removal of components in JavaBIP. Two ongoing applications in Cloud
Computing and Software Variability, leveraging JavaBIP, are highlighted.

Future work directions are outlined, including the need for a unifying modelling framework
for self-adaptive systems, exploration of architecture styles, development of model extraction
mechanisms to address software evolution, ensuring model-software adequation through runtime
monitoring and dynamic approaches, and addressing the challenge of distributed implementation
for scalability while maintaining expressiveness in coordination mechanisms.
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Résumé

Le travail présenté dans le manuscrit a été réalisé dans le cadre de l’approche de Concep-
tion Rigoureuse des Systèmes (RSD). Cette approche met l’accent sur plusieurs niveaux de
séparation des préoccupations et impose des propriétés comportementales grâce à des transforma-
tions préservant la sémantique. Le flux RSD implique la conception d’un modèle d’application, la
vérification des propriétés élémentaires, l’extension du modèle avec des composants de plateforme,
et la génération de code exécutable. L’approche est appliquée à divers domaines, notamment
les systèmes embarqués, les systèmes cyber-physiques, les systèmes autonomes et les jumeaux
numériques. Les trois principaux chapitres résument les principales contributions de l’auteur.

Le chapitre 2 explore la sémantique classique de BIP, un cadre de composants robuste au cœur
de la méthodologie RSD. Il introduit la théorie des architectures, un élément clé permettant la
combinaison de motifs de conception BIP prédéfinis pour imposer des propriétés comportemen-
tales souhaitées. Le processus de conception, partant des exigences du système et aboutissant à
l’implémentation C++, est illustré à l’aide de l’étude de cas du logiciel embarqué du nano-satellite
CubETH.

Le chapitre 3 développe un cadre algébrique formel pour comparer la puissance expressive des
cadres basés sur les composants. Il applique ce cadre pour analyser l’expressivité du cadre BIP.
De plus, une sémantique alternative “offre” de BIP est introduite, explorant sa relation avec la
sémantique classique.

Le chapitre 4 aborde l’adaptation de l’approche RSD au génie logiciel généraliste. Il introduit
JavaBIP, une implémentation Java de mécanismes de coordination inspirés de BIP. JavaBIP
utilise des annotations Java et des mécanismes de réflexion pour définir des modèles BIP associés
à des objets Java. Le chapitre détaille les mécanismes de coordination, l’architecture modulaire,
et l’ajout/suppression dynamique de composants dans JavaBIP. Deux applications en cours de
développement dans les domaines du Cloud Computing et de la Variabilité logicielle, exploitant
JavaBIP, sont mises en avant.

Les orientations futures sont évoquées, notamment la nécessité d’un cadre de modélisation
unificateur pour les systèmes auto-adaptatifs, l’exploration des styles d’architecture, le
développement de mécanismes d’extraction de modèles pour traiter l’évolution des logiciels,
l’assurance de l’adéquation modèle-logiciel par le biais de la surveillance en temps réel et des
approches d’analyse dynamique, ainsi que le défi d’une implémentation distribuée permettant le
passage à l’échelle tout en maintenant l’expressivité des mécanismes de coordination.
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Chapter 1

Introduction

Modern software systems are inherently concurrent. They consist of components running si-
multaneously and sharing access to resources provided by the execution platform. For instance,
embedded control software in various domains, ranging from household robotics through op-
eration of smart power-grids to on-board satellite software, commonly comprises, in addition to
components responsible for taking the control decisions, a set of components driving the operation
of sensing and actuation devices. These components interact through buses, shared memories and
message buffers, leading to resource contention and potential deadlocks compromising mission-
and safety-critical operations. Similar problems are observed in various kinds of software, in-
cluding system, work-flow management, integration software, web services etc. Essentially, any
software entity that goes beyond simply computing a certain function, necessarily has to interact
and share resources with other such entities.

The intrinsic concurrent nature of such interactions is the root cause of the sheer complexity
of the resulting software. Indeed, in order to analyse the behaviour of such a software system,
one has to consider all possible interleavings of the operations executed by its components. Thus,
the complexity of software systems is exponential in the number of their components, making a
posteriori verification of their correctness practically infeasible. An alternative approach consists
in ensuring correctness by construction, through the application of well-defined design princi-
ples [BCK12; Gam+94], imposing behavioural contracts on individual components [Ben+12] or
by applying automatic transformations to obtain executable code from formally defined high-level
models [Sif12].

1.1 The Rigorous System Design approach

The Rigorous System Design (RSD) [Sif12] approach enforces multiple levels of separation of
concerns. It relies on a sequence of semantics-preserving transformations to obtain an implemen-
tation of the system from a high-level model, while preserving all the properties established along
the way.

Figure 1.1 illustrates a simplified instantiation of the RSD flow. One starts by designing
the application model. The application model is verified to prove the elementary properties that
are not assured by construction, such as absence of local deadlock, and satisfaction of basic
requirements. These elementary properties, serve as a basis for the proof of global properties,
obtained by construction.

The application model is then extended with additional components modelling the target
platform to obtain the system model, which is used to perform platform specific analyses and
the optimisation of performance through the exploration of the design space (memories, buses,
mapping of software components to hardware elements etc.).

Finally, the model is enriched with platform specific information (e.g. communication prim-
itives) and, after removing components modelling hardware elements, executable code is auto-
matically generated.

Proving that the assumptions made at the modelling level to justify the separation of concerns
hold, indeed, at the platform level, guarantees that all the properties established throughout the
design process also hold for the generated code.

1



Figure 1.1: A simplified example of the RSD flow instantiation (the blue items are the result of
the previous stage; the black ones are provided as new input at the current stage)

Thus, the RSD approach applies—on the higher abstraction level of the system design
process—the same principles as those provided by standard compilers for the generation of
machine-executable code from programs written in languages such as Java or C++. It con-
sists in decomposing the argument justifying the correctness of the entire process into several
independent arguments justifying the correctness of individual transformations. Furthermore,
it provides flexibility w.r.t. the target platforms by postponing design choices as far as possible
and allowing for different transformations of the same model to be applied at every design stage.
However, in drawing this parallel, it is appropriate to differentiate between commonly used com-
pilers such as gcc, where the public trust originates mainly from the extensive usage experience,
and verified compilers such as CompCert [Ler+16], where preservation of semantics at the various
stages is formally verified. Although the second scenario is currently preferable for RSD tool-sets
due to lack of usage history comparable to that of compilers such as gcc, both can be relevant
in practice.

Applications Although the RSD approach as formulated by Sifakis [Sif12] originates from the
development of the BIP framework for the Embedded Software design (see, for example, [BBS06;
Bas+08]), it is applicable in a much broader variety of domains, whereof I will mention below
just a few.

In [Bli+19], we have discussed the key issues of applying the RSD approach to the Cyber-
Physical Systems (CPSs), which comprise components with both discrete and continuous under-
lying dynamics. In this context, we have argued that the “objective of cyber-physical system
modeling is two-fold. Firstly, simulation of such models provides means for validating the system
design. [...] The second objective of cyber-physical systems design is to provide the means for
the generation of executable code for the discrete control sub-system.” The key point here is that
the two design artefacts, i.e. the simulator and the code of the control sub-system, are obtained
through two branches of the design flow sharing a substantial prefix. Thus, the generated control
sub-system is equivalent

1
to the corresponding components of the simulator by construction.

Expanding on the above idea, it is clear that the RSD approach can be of great benefit for
system design and operation involving the so-called Digital Twins where simulation becomes “a
core functionality of systems by means of seamless assistance along the entire life cycle” [Ros+15].

Autonomous and (self-)adaptive systems constitute another significant domain for the appli-
cation of the RSD approach. These include, for example, autonomous vehicles, Cloud and IoT
applications. Indeed, such systems must react to changing environmental constraints and user
requirements. Therefore they are characterised by high dynamicity both of their behaviour and
their structure. In particular, this implies that many of the underlying verification problems are

1
The notion of equivalence, here, implicitly refers to the same semantic equivalence of the underlying modelling

framework that is preserved by the constituent model transformations of the RSD flow.
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undecidable [EN95; Blo+15] emphasizing the need for by-construction correctness provided by
the RSD approach.

The main theme of my current research project aims for adapting the RSD approach to
the broad spectrum of general-purpose software development. This target application domain
imposes constraints that are fundamentally different from those of the embedded systems design,
which had motivated the design choices behind the original BIP framework.

1.2 Structure of the manuscript

This manuscript is structured into three chapters:

1. BIP-based Rigorous System Design flow

2. A formal study of expressiveness

3. The presentation of JavaBIP—a Java flavour of BIP

The first chapter presents and illustrates with the CubETH nanosatellite on-board software
case study the RSD approach based on the classical BIP. In the second chapter, I present an
algebraic framework for the comparison of expressiveness of component-based systems and its use
for a study of the expressiveness of BIP. This informs the choice of the coordination mechanisms
for subsequent work. The third chapter presents the design choices and the implementation of
JavaBIP.

The three chapters are mostly independent and can be read individually or out of order. The
only notable exception is that the fundamental principles of BIP are presented only in Chapter 2
(Section 2.1).

BIP-based Rigorous System Design flow

Based on the observation that a posteriori verification is not feasible for most realistic concurrent
systems, the RSD approach aims at enforcing desired behavioural properties by construction. This
is achieved, essentially, by applying a sequence of semantics-preserving model transformations
progressively realising design choices appropriate at each level. This has an additional benefit of
postponing design choices as much as possible and, thereby, ensures that optimal solutions are
not discarded arbitrarily.

Thus, the RSD approach relies on two fundamental elements:

• a unifying component-based framework with formally defined operation semantics is neces-
sary to define and reason about semantics-preserving model transformations, and

• a method for designing correct high-level models based on informal requirements to initiate
the process

In this chapter, I present 1) the classical semantics of BIP—the component framework un-
derlying the approach, 2) the theory of architectures—the key ingredient of the design approach,
which allows combining predefined BIP design patterns to enforce desired behavioural proper-
ties on the resulting system, and 3) the resulting design process going from a list of system
requirements to the C++ implementation.

A formal study of expressiveness

In order to understand the applicability limits of the proposed design approach, one has to study
the expressive power of the underlying component-based framework. However, for such a study
to be possible a proper comparison framework has to be developed. Indeed, most expressiveness

3



studies focus on two questions: 1) what can be computed? and 2) how concise is the program?
The first question is typically answered by a comparison to the computing power of Turing
machines. The answer to the second question can be summarised—admittedly in a somewhat
simplistic manner—by saying that parts of a language represent syntactic sugar w.r.t. another
language. None of these two approaches captures the essence of component-based design, where
given composition operators are applied to a set of components to build a system without changing
the components themselves.

In this chapter, I present 1) a formal algebraic framework that allows the comparison of the
expressive power of component-based frameworks, 2) its application to a study of the expressive-
ness of the BIP framework, and 3) an alternative, “offer” semantics of BIP and its relation with
the classical one.

JavaBIP

This chapter presents JavaBIP—a Java implementation of BIP-inspired coordination mechanisms
aimed at general purpose software engineering rather than the design of embedded systems.

The main challenge comes from the fact that, in the context of general purpose software engi-
neering, one cannot expect developers to take a disciplined essentially top-down approach relying
exclusively on high-level models and semantics-preserving transformations. The key reasons are

1) the complexity of the software stack and, in particular, the broad use of existing libraries and
frameworks, and 2) rapid code evolution due, for example, to the application of agile development
methodologies.

We have addressed this challenge by moving away from the code generation paradigm, relying
instead on Java annotations and reflection mechanisms to define BIP models associated to Java
objects.

In this chapter I present 1) the coordination mechanisms adopted in JavaBIP, 2) the modular
architecture used for the JavaBIP implementation, 3) the mechanism allowing to add and remove
components from the system dynamically, and 4) two applications—currently under develop-
ment—in the domains of Cloud Computing and Software Variability, respectively.

I or We?

Most of the material presented in this manuscript results from collaborations that I had
with many people. I have, therefore decided to use “we” when presenting that material
and “I” in the parts specific to this manuscript.

4



Chapter 2

BIP-based Rigorous System

Design flow

The RSD approach relies on two fundamental elements. Firstly, a unifying component-based
framework with formally defined operational semantics is necessary to define and reason about
semantics-preserving model transformations. On the one hand, such a unifying framework must
be expressive enough to allow modelling of a broad spectrum of systems. On the other hand, it
must be simple enough to facilitate the formulation and verification of proofs. Secondly, methods
and tools for the design of correct-by-construction high-level models are necessary to initiate the
process. Although it is difficult to imagine a unique approach that would fit all the various
application domains, it seems reasonable to expect that these approaches will share a common
core, comprising, at the very least, some form of 1) requirement elicitation and formalisation and
2) (semi-)automatic synthesis of parts of the models in order to discharge these requirements.

In this chapter, I present

• an overview of the Behaviour-Interaction-Priority (BIP) component-based modelling frame-
work that underlies the rest of the work discussed in this manuscript,

• an overview of the theory of architectures—the key ingredient of the design approach, which
allows combining predefined BIP design patterns to enforce desired behavioural properties
on the resulting system

• an ontology-based design process, developed in the Catalogue of System and Software Prop-
erties (CSSP) project, going from a list of system requirements to the C++ implementation.

2.1 The BIP component framework

In this section, I will provide brief overviews, first, of the classical operational semantics of BIP
as it was initially published in [BS07], then, of connectors that are used to assemble systems from
components [BS07; BS08b; BS10].

2.1.1 The basic model

We consider an algebra of components,
1

i.e. an algebraic structure

A ∶∶= C ∣ o⟨C1, . . . , Cn⟩, C ∈ C, C1, . . . , Cn ∈ A and o ∈ G,

generated by a set of composition (glue) operators G from a set of atomic components C. Se-
mantics of components is defined by a partial mapping σ ∶ A ⇀ B, where B is a behaviour
type.

2

1
A more detailed formalisation will be provided in Chapter 3.

2
The mapping is partial to account for the possibility that some syntactically correct terms might not be correct

semantically.
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Component model

The behaviour type of BIP is the set of Labelled Transition Systems (LTS).

Definition 2.1.1. A labelled transition system (LTS) is a quadruple (Q,P,−→, q0), where Q is a

set of states, P is a set of ports, q
0
∈ Q is the initial state and −→ ⊆ Q×2

P ×Q is a set of transitions
labelled by sets of ports, such that only self-loops can be labelled by the empty set of ports, i.e.

(q,∅, q′) ∈ −→ implies q = q
′
. For q, q

′
∈ Q and a ∈ 2

P
, we write q

a
−→ q

′
for (q, a, q′) ∈ −→. A label

a ∈ 2
P

is active in a state q ∈ Q (denoted q
a
−→), if there exists q

′
∈ Q such that q

a
−→ q

′
. We

abbreviate q /
a
−→

def
= ¬(q a

−→).
By abuse of notation, we define the binary relation −→ ⊆ Q ×Q as q −→ q

′ def

⇔ ∃a ⊆ P ∶ q
a
−→ q

′

and denote by
∗
−→ its reflexive transitive closure. A state q ∈ Q is reachable in the LTS if q

0 ∗
−→ q.

Intuitively, transitions labelled by ∅ represent idling: a component that remains idle should
not change state, hence the restriction to self-loops. Notice that we distinguish idling from
unobservable internal transitions, which we do not model explicitly. To model unobservable
transitions, one can use a reserved label, e.g. τ or ε, and restrict the ways it can be synchronised
with other transitions. This is the approach traditionally taken in the literature [Mil89; Hoa85].

Atomic BIP components are those defined directly as LTSs: C
def
= {(P,B) ∣B = (Q,P,−→, q0)}.

The semantics of atomic components is given by their behaviour: σ(P,B) def
= B. The set of ports

P is the interface of a component (P,B).

Note 2.1.2. When speaking of a set of LTSs Bi = (Qi, Pi,−→i, q
0
i ), for i ∈ [1, n], it is common to

assume that all Qi and Pi are pairwise disjoint, i.e. i ≠ j implies Qi ∩Qj = Pi ∩ Pj = ∅. When
the indices are clear from the context, we drop them on transition relations and simply write −→
as, for example in qi

a
−→ q

′
i.

Furthermore, for given pair-wise disjoint sets of ports Pi, with i ∈ [1, n], we will always

denote P
def
= ⋃n

i=1 Pi.

Glue operators

BIP glues consist of two layers. Interaction models define the sets of allowed interactions, i.e.
synchronisations between the transitions of their operand components. Priority models define
the conflict resolution policies, reducing non-determinism when several synchronisations allowed
by the interaction model are enabled simultaneously.

Interaction models For a set of ports P , an interaction model is a set of interactions γ ⊆ 2
P

.
A compound component γ⟨C1, . . . , Cn⟩ is obtained by applying an interaction model γ to a set
of (not necessarily atomic) components C1, . . . , Cn.

Intuitively, an interaction a allowed by the interaction model γ can be fired when all the
components involved in a are ready to fire the corresponding transitions. All the components
that are not involved in a remain in their current states.

Assuming σ(Ci) = (Qi, Pi,−→i, q
0
i ), for i ∈ [1, n], the semantics of the application of an interac-

tion model γ to components C1, . . . , Cn is defined by putting σ(γ⟨C1, . . . , Cn⟩)
def
= (Q,P,−→γ , q

0),
with Q =∏n

i=1Qi, q
0
= (q01 , . . . , q0n) and the smallest transition relation −→γ satisfying the rule

a ∈ γ {qi
a∩Pi
−−−→ q

′
i

»»»»»» i ∈ I} {qi = q′i
»»»»»» i ∉ I}

q1 . . . qn
a
−→γ q

′
1 . . . q

′
n

, (2.1)

where I = {i ∈ [1, n] ∣ a ∩ Pi ≠ ∅}.
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(d) σ(πγ⟨C1, C2⟩)

Figure 2.1: Components and behaviour for Examples 2.1.5 and 2.1.6 (γ = {p, q, r, qr}, π = {q ≺
qr, r ≺ qr})

Note 2.1.3 (How to read the rule above?). Here and below, we use Structural Operational
Semantics (SOS) rules [Plo81] to define the semantics of composition operators.

Each SOS rule consists of a set of whitespace-separated premises written above the line and
one conclusion written below the line. For the sake of clarity, we group some premises in sets.

For instance, in the rule (2.1), the second premise is, in fact, itself a set of premises qi
a∩Pi
−−−→ q

′
i,

one for each i ∈ I.
In our context, SOS rules should be read as follows. If all premises of the rule are satisfied

for a given valuation of the free variables—variables a, q1, . . . , qn and q
′
1, . . . , q

′
n for (2.1)—then

the conclusion must be satisfied as well. Thus, the rule (2.1) can be rewritten as the first order
formula

∀a ⊆ 2
P
,∀q1, q

′
1 ∈ Q1, . . . ,∀qn, q

′
n ∈ Qn,

(a ∈ γ ∧ ∃I = {i ∈ [1, n] ∣ a ∩ Pi ≠ ∅} ∶ (⋀
i∈I

qi
a∩Pi
−−−→ q

′
i) ∧ (⋀

i∉I

qi = q
′
i))

⟹ q1 . . . qn
a
−→γ q

′
1 . . . q

′
n .

Notice that we refer to the smallest transition relation that satisfies this rule. This means
that the relation −→γ contains all the transitions that are necessary to satisfy the rule, and only
those transitions.

Note 2.1.4. When the interaction model allows idling, i.e. ∅ ∈ γ, the compound component
has a self-loop labelled by ∅ in every state. The fact that components can have idling self-loops

does not introduce any ambiguity in the interpretation of (2.1), since, by Definition 2.1.1, q
∅
−→ q

′

implies q = q
′
.

Example 2.1.5. Consider the two components C1 and C2 shown in Figures 2.1a and 2.1b,
respectively.

3
We have P1 = {p, q} and P2 = {r}. Consider the interaction model γ = {p, q, r, qr}.

4

The semantics of the glue operator defined by the interaction model γ is given by the following
four rules, obtained by instantiating the rule (2.1), removing premises whereof satisfaction does
not depend on the state of the operand behaviours—e.g. when the rule is instantiated with an
interaction a ∈ γ, the corresponding premise is satisfied in all states—and replacing the primed
state variables in the conclusions with the unprimed ones whenever the premise of the form qi = q

′
i

should have been used:

q1
p
−→ q

′
1

q1q2
p
−→ q

′
1q2

,
q1

q
−→ q

′
1

q1q2
q
−→ q

′
1q2

,
q2

r
−→ q

′
2

q1q2
r
−→ q1q

′
2

,
q1

q
−→ q

′
1 q2

r
−→ q

′
2

q1q2
qr
−→ q

′
1q
′
2

. (2.2)

3
We omit the initial states, which are irrelevant for this example.

4
For the sake of clarity, we use the juxtaposition of ports γ = {p, q, r, qr} instead of the set notation γ =

{{p}, {q}, {r}, {q, r}} for interactions.
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The behaviour of the compound component γ⟨C1, C2⟩ is shown in Figure 2.1c. ◇

Priority models A priority model on an interaction model γ is a strict
5

partial order π ⊆ γ×γ
(we write a ≺ b as a shorthand for (a, b) ∈ π).

Intuitively, an interaction can be fired only if no higher-priority interaction is enabled.

The semantics of the application of a priority model π to a composite component C = γ⟨C1,

. . . , Cn⟩, such that σ(C) = (Q,P,−→, q0), is defined by putting σ(π⟨C⟩) def
= (Q,P,−→π, q

0), with
the smallest transition relation −→π satisfying the rule

q
a
−→ q

′ {q /
b
−→

»»»»»» a ≺ b}

q
a
−→π q

′
. (2.3)

Example 2.1.6. Consider again the two components C1 and C2 shown in Figures 2.1a and 2.1b,
respectively. In additiont to the interaction model γ = {p, q, r, qr} from Example 2.1.5, consider
π = {q ≺ qr, r ≺ qr}.

6
The semantics of the glue operator defined by the combination of the

interaction model γ and the priority model π is given by the following four rules, obtained by

composing the rules (2.2) with rules of the form (2.3), replacing q1q2 /
qr
−→ by q1 /

q
−→ or q2 /

r
−→ as

appropriate:

q1
p
−→ q

′
1

q1q2
p
−→ q

′
1q2

,
q1

q
−→ q

′
1 q2 /

r
−→

q1q2
q
−→ q

′
1q2

,
q1 /

q
−→ q2

r
−→ q

′
2

q1q2
r
−→ q1q

′
2

,
q1

q
−→ q

′
1 q2

r
−→ q

′
2

q1q2
qr
−→ q

′
1q
′
2

(2.4)

(the differences with (2.2) are highlighted in red).

The behaviour of the compound component πγ⟨C1, C2⟩ is shown in Figure 2.1d. Comparing
Figures 2.1c and 2.1d it is easy to see that, among the transitions labelled by q, only the transition

(2, 2) q
−→ (3, 2) is enabled and not (2, 1) q

−→ (3, 1). Indeed, the negative premise in the second rule
of (2.4), generated by the priority q ≺ qr, suppresses the interaction q when the interaction qr is

enabled. The same holds for the transition (2, 1) r
−→ (2, 2) labelled by r. ◇

The priority model in Example 2.1.6 is an instance of the so-called maximal progress priority

defined by π
def
= {a ≺ b ∣ a, b ∈ γ, a ⊂ b}. Maximal progress priorities are very common in practical

examples and, in particular, are used by default in the standard Verimag implementations of BIP.

Definition 2.1.7. An n-ary BIP glue operator is a triple ((Pi)ni=1, γ, π), where (Pi)ni=1 are pair-

wise disjoint sets of ports and, denoting P
def
= ⋃n

i=1 Pi, the remaining two elements γ ⊆ 2
P

and
π ⊆ γ × γ are, respectively, interaction and priority models on P .

We omit the sets of ports (Pi)ni=1 when they are clear from the context.

To simplify the notation, we denote the component obtained by applying the glue operator
((Pi)ni=1, γ, π) to sub-components C1, . . . , Cn, by πγ⟨C1, . . . , Cn⟩ instead of ((Pi)ni=1, γ, π)⟨C1,
. . . , Cn⟩. Furthermore, when π = ∅, we write γ⟨C1, . . . , Cn⟩, omitting π.

Priorities do not introduce deadlock

Notice that only interactions belonging to the interaction model of a BIP glue operator can be
used in the priority model. This gives the BIP glue operators an important property, which was
originally shown in [GS03]: application of a priority model does not introduce deadlocks.

5
As opposed to a (non-strict) partial order, which is a reflexive, antisymmetric and transitive relation, a strict

partial order is an irreflexive and transitive (hence also antisymmetric) one.
6
Here again, for the sake of clarity, we write π = {q ≺ r} instead of π = {(q, r)}
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(d) Hierarchical connectors

Figure 2.2: BIP connectors (below each connector, we show the set of interactions it defines)

Definition 2.1.8. Let B = (Q,P,−→, q0) be a behaviour. A state q ∈ Q is a deadlock if holds

the statement ∀a ⊆ P, q /
a
−→.

Lemma 2.1.9 ([GS03]). Let Ci, such that σ(Ci) = (Qi, Pi,−→, q0i ), for i ∈ [1, n], be a set of
components, γ and π be respectively interaction and priority models on P = ⋃n

i=1 Pi. A state
q ∈ ∏n

i=1Qi is a deadlock in σ(πγ⟨C1, . . . , Cn⟩) if and only if it is a deadlock in σ(γ⟨C1, . . . ,
Cn⟩).

Proof. The “if” implication is trivial. To prove the “only if” implication, assume that, for some

a ∈ γ, we have q
a
−→γ . Let b ⊆ P be an interaction, maximal w.r.t. π, such that b ∈ γ, a ≺ b and

q
b
−→γ . If such b exists, holds q

b
−→π. Otherwise holds q

a
−→π. In both cases, q is not a deadlock in

σ(πγ⟨C1, . . . , Cn⟩).

Notice that this proof does not rely on π being a strict partial order. The lemma can be
generalised to any acyclic relation π ⊆ γ × γ.

2.1.2 Connectors and algebras for structuring interaction

Specifying interaction models as sets of sets of ports is not practical due to their potentially
exponential size. An algebra of connectors was introduced in [BS08b] in order to structure inter-
actions in BIP models. Connectors are hierarchical, tree-like structures with component ports at
the leaves (see Figure 2.2). Connectors define sets of interactions based on the synchronisation
attributes of the connected ports, which may be either synchron or trigger (Figure 2.2a):

• if all connected ports are synchrons, then synchronisation is by rendezvous, i.e. the connector
defines exactly one interaction, which comprises all its ports (Figure 2.2b);

• if the connector has at least one trigger, the synchronisation is by broadcast,
7

i.e. the
connector defines the set of interactions comprised by all non-empty subsets of the connected
ports containing at least one of the trigger ports (Figure 2.2c).

7
Notice that our use of the terms “broadcast” and “atomic broadcast” (Figure 2.2d) is very different from the

meaning commonly used in distributed computing where messages are broadcast to a number of recipients through
a network. Here, we use the terms “rendezvous”, “broadcast” and “atomic broadcast” for the sake of homogeneity
with previous work on BIP (e.g. [BS07]) to denote different kinds of connectors. The use of the term “broadcast”
in [BS07] was inspired by previous work on Statecharts [Har87].
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Table 2.1: Algebraic representations of the connectors in Figure 2.2: graphical representation
(triggers are shown as triangles, synchrons as bullets); interaction models (sets of interactions al-
lowed by each connector); terms of the Algebra of Connectors (triggers are shown by ticks, square
brackets indicate sub-connectors); Causal Interaction Trees terms (arrows indicate dependencies,
⊕ indicates independence); Systems of Causal Rules (a valuation of all port variables corresponds
to an interaction, variables with value true are exactly those participating in it)

Connectors
Interaction

Models
Algebra of
Connectors

Causal
Interaction

Trees
Systems of
Causal Rules

p q r
{pqr} pqr pqr

p⇒ qr

q⇒ pr

r⇒ pq

p q r
{p, pq, pr, pqr} p

′
qr

p

q r

p⇒ true

q⇒ p

r⇒ p

p q r

{p, q, pq, pr, qr,
pqr} p

′
q
′
r

p

r

⊕

q

r

p⇒ true

q⇒ true

r⇒ p ∨ q

q rp

{p, pqr} p
′[qr]

p

qr

p⇒ true

q⇒ pr

r⇒ pq

q rp

{qr, pqr} p[qr]′
qr

p

p⇒ qr

q⇒ r

r⇒ q

q rp

{p, pq, pqr} p
′[q′r]

p

q

r

p⇒ true

q⇒ p

r⇒ q

The same principle is recursively extended to hierarchical connectors, where one interaction
from each subconnector is used to form an allowed interaction according to the synchron/trigger
labeling of the connector nodes. For instance the causal chain connector in Figure 2.2d has the
port p labeled as a trigger, whereas the binary broadcast subconnector q▶−−−•r is labeled as a
synchron. Thus the causal chain connector allows the singleton interaction p and any interaction
that combines p with some interaction of the subconnector q▶−−−•r. Since the latter allows
interactions q and qr, this results in three interactions allowed by the hierarchical connector: p,
pq and pqr.

The interaction model is defined as the set of all interactions allowed by at least one of the
connectors.

In previous work [BS07; BS10], we have defined and studied several algebraic structures used
to represent BIP interaction models, in particular (cf. Table 2.1)

• the Algebra of Connectors—provides a textual notation for connectors equivalent to the
graphical notation presented above;
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• Causal Interaction Trees—exhibit the causal dependencies among sub-interactions of the
interactions allowed by a connector;

• and Systems of Causal Rules—present the causal dependencies as Boolean implications.

Notice that some connectors are equivalent, denoted by the symbol ‘≃’, meaning that they
define the same sets of interactions. For example, the two rendezvous connectors shown in Fig-
ure 2.2 —using the Algebra of Connectors notation, pqr ≃ p[qr]—both allow one same interaction
pqr. A slightly more complex example is provided by the two connectors p[qr]′ ≃ [pq′]r (the
former is the Coordinated broadcast connector from Figure 2.2) both defining the set of two
interactions {qr, pqr}. This notion of equivalence is used for studying connector transformations
[BS07; BS08b].

8

Since interaction models are sets of sets of ports, one can consider their characteristic pred-
icates, associating to an interaction model γ ⊆ 2

P
the corresponding predicate ϕγ ∈ B[P ] 9

on
the port variables. The predicate ϕγ is true precisely on such valuations v ∶ P → B of the
port variables that {p ∈ P ∣ v(p) = true} ∈ γ. Characteristic predicates of interaction models
turn out to be useful for reasoning about architecture composition as presented in Section 2.2
below. Furthermore, the Boolean encoding is also useful for representing interaction models as
synchronisation constraints.

Characteristic predicates can be trivially defined in the Disjunctive Normal Form (DNF) as
a disjunction of monomials, each representing an interaction. For instance, the characteristic
predicate of the interaction model defined by one single connector p

′[q′r] (causality chain in
Figure 2.2d) is ϕ{p′[q′r]} = p q r ∨ p q r ∨ p q r. However, it turns out to be more insightful to
specify characteristic predicates as conjunctions of causal rules:

ϕp′[q′r] ≡ (p ∨ q ∨ r) ∧ (q⇒ p) ∧ (r⇒ q) .

Here, the meaning of the implications r⇒ q and q⇒ p is that the participation of the port r in
any interaction requires the participation of the port q, which, in turn, requires that of the port
p. These two implications expose the causal dependencies visible in the connector structure and,
even more so, in the corresponding causal interaction tree (see the last row in Table 2.1). The
first conjunct simply states that at least one port must participate in any interaction.

In [BS10], we have shown that the set of interactions defined by any connector can be char-
acterised by a Boolean formula as above, where the implications in each conjunct take the form

p⇒ a1 ∨ ⋅ ⋅ ⋅ ∨ an ,

with p being a port variable and each ai being a conjunction of any number of port variables. We
call p the effect, whereof a1, . . . , an are the causes. Indeed, for p to participate in an interaction,
all the ports belonging to at least one of a1, . . . , an must participate. Thus, we can say that the
participation of ai, for some i ∈ [1, n], in an interaction is the reason why p can participate.

2.2 Architectures: Design patterns for BIP

In this section, I will provide an overview of the theory of architectures—formal design patterns
that compositionally enforce properties on BIP models—and the RSD flow instantiation based on
that theory developed in the Catalogue of System and Software Properties (CSSP) project. The
objective of the CSSP instantiation of the RSD flow is to provide means for early prototyping of
on-board nanosatellite software based on a set of system requirements.

“Architectures depict design principles, paradigms that can be understood by all, allow think-
ing on a higher plane and avoiding low-level mistakes. They are a means for ensuring global

8
Omitted in this manuscript for the sake of brevity.

9
I denote B def

= {true, false} and B[P ] the Boolean algebra generated by the set P .
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properties characterising the coordination between components—correctness for free. Using ar-
chitectures is key to ensuring trustworthiness and optimisation in networks, OS, middleware, HW
devices etc.” [Att+14; Att+16]

Given an algebra of components A (see Section 2.1.1) and some formalism LA for the spec-
ification of properties (typically, a logic with the corresponding satisfaction relation), property
enforcement consists in applying architectures to restrict the behaviour of a set of components
so that the resulting behaviour meets a given property. Depending on the expressiveness of the
glue operators, it may be necessary to use additional components to achieve a coordination to
satisfy the property.

Thus, an architecture is an operator A ∶ A
n
→ A, imposing a characteristic property Φ ∈ LA.

It is defined by a glue operator gl and a finite set of coordinating components D ⊂ A,
10

such
that:

• A transforms a set of components C1, . . . , Cn into a composite component A(C1, . . . , Cn)
def
=

gl⟨C1, . . . , Cn,D⟩;

• if A(C1, . . . , Cn) is semantically valid, it meets the characteristic property Φ (recall, Sec-
tion 2.1.1, that the semantic mapping σ is partial).

Application and platform restrictions entail reduced expressiveness of the glue operator gl
that must be compensated by using the additional set of components D for coordination. For
instance, glue operators defined by BIP connectors (cf. Section 2.1) are memoryless. Hence, they
can only be used to impose state properties. Imposing more complex safety properties requires
additional coordinating behaviour. Similarly, for distributed architectures, interactions are point-
to-point by asynchronous message passing. Synchronisation among the components is achieved
by stateful protocols.

An architecture-based design process providing correctness by construction relies on libraries
of architectures, each proven to enforce its corresponding characteristic property. Ideally,

11
the

design of a system then consists in 1) formalising the system specification as a set of properties;
2) identifying the atomic components that provide the business-specific functionalities; 3) for
each property from the system specification, identifying an architecture that enforces that or
a stronger property; 4) applying the combination of the identified architectures to the atomic
components. Thus, a key fundamental question is how to combine several architectures while
preserving all their corresponding characteristic properties? Consider two architectures A1, A2,
enforcing respectively properties Φ1,Φ2 on components C1, . . . , Cn. That is, A1(C1, . . . , Cn) and
A2(C1, . . . , Cn) satisfy respectively the properties Φ1,Φ2. Is it possible to find an architecture
A(C1, . . . , Cn) that meets both properties?

In the remainder of this chapter, I will present the instanciation of the notion of architectures
for the BIP component framework.

2.2.1 The basic model

As discussed above, an architecture can be seen as an operator that transforms a set of components
into a new composite component. In the context of BIP, it generalises interaction models, by
introducing stateful coordinating components. The interface of an architecture is a set of ports
that comprises both the ports of the coordinating components and additional dangling ports that
must belong to operand components, to which the architecture is applied.

Definition 2.2.1 (Architecture). An architecture is a tuple A = (D, PA, γ), where D is a finite
set of coordinating components with pairwise disjoint sets of ports, PA is a set of ports, such

10
In all examples that we have encountered, coordinating components were atomic, i.e. D ⊂ C (see Section 2.1.1).

However, there is no reason to impose this restriction in general.
11

We discuss the deviations from this ideal and their impact on the design process later in the section.
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coordinating
Ports of the

components

Architecture interface

Operand component ports

Figure 2.3: A diagram illustrating the relation between ports of an architecture and of its operand
components: the inner circle represents the ports of the coordinating components, the “ears”
represent the ports of operand components, the representation of the architecture interface is
delimited by the solid line

that ⋃D∈D PD ⊆ PA, and γ ⊆ 2
PA is an interaction model over PA. The ports belonging to

PA \⋃D∈D PD are the dangling ports of the architecture.

Definition 2.2.2 (Application of an architecture). Let A = (D, PA, γ) be an architecture and

let C be a set of components, such that ⋃C∈C PC ∩⋃D∈D PD = ∅ and PA ⊆ P
def
= ⋃C∈C∪D PC .

The application of the architecture A to the set of components C is the component A(C) def
=

(γ ⋉ P )(C ∪D), where γ ⋉ P
def
= {a ⊆ P ∣ a ∩ PA ∈ γ} is the extension of the interaction model γ

to the set of ports P .

Intuitively, an architecture enforces coordination constraints on the components in C. The
interface PA of an architecture A contains all ports of the coordinating components D and some
additional ports, which must belong to the components in C as illustrated in Figure 2.3. In the
application A(C), the ports belonging to PA can only participate in the interactions defined by the
interaction model γ of A. Ports that do not belong to PA are not restricted and can participate
in any interaction. In particular, they can join the interactions in γ.

Proposition 2.2.3. For an architecture A = (D, PA, γ) and a set of components C ⊂ A such
that PA ⊆ ⋃D∈D PD ∪⋃C∈C PC , the application of A to C is valid, i.e. σ(A(C)) is defined.

Clearly, if the interface of the architecture covers all ports of the system, i.e. P = PA, the only
interactions allowed in A(C) are those belonging to γ.

Finally, the definition of γ ⋉ P requires that an interaction from γ be involved in every
interaction belonging to γ⋉P . To allow the ports from P \PA to be fired independently in A(C),
one must have ∅ ∈ γ.

Note 2.2.4 (Data). In order to improve their syntactic expressiveness [Fel90], all the formal
notions presented so far—namely, BIP components, glue operators and architectures—have been
extended to allow the use of local variables in atomic components as well as data transfer among
them [Bli+14; BHM19]. However, I will not present these extensions here formally for the sake
of conciseness.

The Failure Monitor architecture example In [BHM19], we have introduced the following
refined version of the Failure Monitor architecture from [Mav+16].

We assume given a set of operand components realising a certain business functionality that
can fail and—following a failure—resume operation. When a failure occurs, the Failure Monitor
architecture initialises a timer and waits for a duration comprised between Min and Max, which

13
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Figure 2.4: The BIP specification of the Failure Monitor architecture

Table 2.2: Interfaces of the coordinating components of the Failure Monitor architecture

Component
Local

variables Ports
Export
function

Timer {t, z} {tick, cancel, timeoutT } {tick↦ {t, z}}

Control {zone} {reset, fail, resume, timeoutC} {fail↦
{zone}}

are the parameters of the architecture. If by that time the functionality has not been resumed,
the architecture issues a request (ask) for the system reset to be triggered externally.

12
These

four actions correspond to the four dangling ports of the architecture.

Figure 2.4 shows the coordinating components T (Timer) and C (Control) with the interfaces
described in Table 2.2. The export function specifies the local variables that are accessible through
each port: variables t and z of the Timer component are accessible only through the port tick.
Similarly, variable zone of the Control component is accessible only through the port fail.

Variable t is implicitly assumed to be of type Integer. Variables z
def
= [z.l, z.u] and zone

def
=

[zone.l, zone.u] are of type Integer Interval.

The initial states t1 and s1, and valuations σ
0
T = {t↦ 0, z ↦ ⊤}, σ

0
C = {zone ↦ [Min,Max]}

are shown by the incoming arrows
t∶=0,z∶=⊤
−−−−−−−→ t1 and

zone ∶=[Min,Max]
−−−−−−−−−−−−→ s1 with ⊤ = (−∞,+∞).

Transitions are labelled with ports of the corresponding components, Boolean guards and

update assignments on local variables. For instance, the loop transition t1
tick,[t<z.u],t∶=t+1
−−−−−−−−−−−−→ t1

is labelled by the port tick. It is enabled only when the guard [t<z.u] is satisfied by the local
variables of the component. Upon firing, this transition increments the value of the local variable
t by 1. The guards and update assignments of the transitions of C are omitted. By default, an
omitted guard is true and an omitted assignment is empty ∅.

The connector T .tick▶−−−•(fail▶−−−•C.fail) of Figure 2.4 defines three interactions (cf. bottom
row of Table 2.1), each involving a guard (true) and a transfer of data between the two coordinat-
ing components (see the “T.z ∶= . . . ” expression in Figure 2.4). The meaning of the expression
C.fail ? C.zone ∶ ⊤ is the choice between C.zone and ⊤ depending on whether the port C.fail
participates in the interaction or not. Observe that ⊤ + T.t = ⊤ and T.z ∩⊤ = T.z. Thus, the
three interactions can be written as follows, simplifying the update assignment of T.z for each

12
This example originates from the CubETH nanosatellite on-board software case study, where the system reset

is performed by the battery sub-system.
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interaction separately:

({T.tick}, true,∅),
({fail, T.tick}, true,∅),

({C.fail, fail, T.tick}, true, T.z ∶= T.z ∩ (C.zone + T.t)),

where ∅ denotes the absence of assignment (the relation between variables and assignment ex-
pressions is empty).

In this example—as in all practical implementations—we implicitly assume the application of
the maximal progress priority µ, where (a, g, u) ≺µ (b, h, w) if a ⊂ b and a ≠ b. For instance, the
port T.tick will never fire alone if the port fail is also enabled.

2.2.2 Preservation of properties by architecture composition

As discussed in the openning of this section, we need a way of combining several architectures
while preserving their respective characteristic properties. Below, we proceed by 1) defining the
composition operator, 2) defining the properties, and 3) stating the desired preservation result.

Definition 2.2.5 (Composition of architectures). Let Ai = (Di, PAi
, γi), for i = 1, 2, be two

architectures. The composition of A1 and A2 is the architecture A1⊕A2
def
= (D1∪D2, PA1

∪PA2
,

γ), where

γ = {a ⊆ PA1
∪ PA2

∣ a ∩ PAi
∈ γi, for i = 1, 2} . (2.5)

Every interaction allowed by A1 ⊕ A2 must comprise both an interaction allowed by A1 and
an interaction allowed by A2. To allow architecture A1 to progress independently from A2, one
must have ∅ ∈ γ2 and vice-versa.

Proposition 2.2.6 (Properties of ⊕). Architecture composition ⊕ is commutative and asso-
ciative; it is idempotent if all coordinating components are deterministic; Aid = (∅,∅, {∅}) is

its neutral element, i.e. for any architecture A, we have A ⊕ Aid = A.
13

Furthermore, for any
component C, we have Aid(C) = C.

Note 2.2.7 (n-ary composition of architectures). Notice that while⊕ is defined in Definition 2.2.5
as a binary operator, its associativity allows us to speak of the n-ary composition of architectures.

Definition 2.2.8 (Properties). Let C be a component with σ(C) = (Q,P,−→, q0). A property
on C is a state predicate Φ ∶ Q → B. A state q ∈ Q satisfies Φ, written q ⊧ Φ, if Φ(q) = true. A
property Φ is initial if q

0
⊧ Φ. An initial property is an invariant if it is satisfied by all reachable

states, i.e. holds the formula ∀q, (q0 ∗
−→ q ⟹ q ⊧ Φ).

The main idea of our approach is that an architecture enforces its characteristic property on
the set of its operand components. From this point of view, the set of coordinating components
is not relevant, neither are their states. Thus, to talk about properties enforced by architectures,
we consider properties on the unrestricted composition of the operand components as formalized
by the following definition.

Definition 2.2.9 (Enforcing properties). Let A = (D, PA, γ) be an architecture, let C be a set of
components and let Φ be a property of their parallel composition Aid(C) (see Proposition 2.2.6).

The lifting of Φ to A(C) is defined as A(Φ) def
= {(qc, qd) ∣ qc ∈ Φ, qd ∈∏D∈D Qσ(D)}.

We say that A enforces Φ on C if, A(Φ) is an invariant of A(C).
13

Here—and below in similar contexts—we assume given an equivalence relation on the behaviour type B, which
is then canonically extended to components and architectures. For the sake of simplicity, we write ‘=’ implying
equality up to this semantic equivalence. Explicit formalisation will be provided in Chapter 3.
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Figure 2.5: Components (a) and architecture (b) for the Mutual Exclusion architecture example

According to the above definition, when we say that an architecture enforces some property
Φ, it is implicitly required that Φ be initial on the coordinated components. Below, we omit
mentioning this explicitly.

Theorem 2.2.10 (Preserving enforced properties). Let C be a set of components; let Ai =
(Di, PAi

, γi), for i = 1, 2, be two architectures enforcing on C the properties Φ1 and Φ2 respectively.
The composition A1 ⊕A2 enforces on C the property Φ1 ∧ Φ2.

Safety or invariants?

For the sake of clarity I follow here the original papers [Att+14; Att+16], in speaking of
invariants rather than of safety properties in full generality. However, the proof of this
theorem [Att+16, Theorem 1] is also valid for linear-time safety properties. Furthermore,
it can be straightforwardly generalised to branching-time safety.
As a consequence, our definition of properties does not limit the formalisms that can be
used for their specification. For instance, in our case studies, we use Computation Tree
Logic (CTL).

Consider the special case, where the architecture A = (D, PA, γ) is expected to be applied to
a set of components implementing certain interfaces. Formally, this means that the set of the
dangling ports PA \⋃D∈D PD is partitioned into sets of ports P1, . . . Pn belonging to different
operand components. It is common for the characteristic property of A to be specified in some
logic as an implication of the form ⋀n

i=1 Φn ⇒ Ψ, where each of Φi is a formula over Pi.
14

In such
case, the properties Φi are called the assumptions of the architecture, whereas Ψ is the guarantee
it provides. This separation is useful, since it allows decomposing the design process into two
phases: 1) the assumptions Φi of the architecture are asserted on the operand components—either
they are enforced by previous application of architectures or verified by model checking, which, in
such case, only concerns a small sub-system of the entire system; 2) the guarantee Ψ is enforced
by the application of the architecture.

The Mutual Exclusion architecture example In order to illustrate property enforcement
and architecture composition, we take a simpler example of an architecture enforcing the mutual
exclusion of critical sections of two processes.

Consider the components C1 and C2 in Figure 2.5a. In order to ensure mutual exclusion
of their work states—Φ12 = (s1 ≠ work ∨ s2 ≠ work), where s1 and s2 are, respectively, state
variables of C1 and C2—we apply the architecture A12, shown in Figure 2.5b. This architecture
comprises a coordinating component D12, and the interaction model γ12 = {b1t12, b2t12, f1r12,
f2r12}.

14
More precisely, one should speak of the occurrence of events modelled by the ports in Pi or the fact of their

being enabled or not.
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Figure 2.6: Compound behaviour σ(A12(C1, C2)) (we abbreviate sleep, work, free and taken

to s, w, f and t respectively)

The compound behaviour σ(A12(C1, C2)) is shown in Figure 2.6. Assuming that the initial
states of C1 and C2 are sleep, and that ofD12 is free, neither of the two states (work, work, free)
and (work, work, taken) is reachable, i.e. the mutual exclusion property Φ12 holds in A12(C1, C2).

Notice that, as discussed above, this claim assumes that, in both operand components, the
critical section—modelled by the state work—is “delimited” by the events bi and fi. Thus, the
characteristic property of the architecture A12 can be written in the general case as follows, using
CTL:

((s1 = sleep ∧ s2 = sleep) ∧
2

⋀
i=1

AG (fi ⇒ A [si ≠ work W bi] ))⇒ AG (s1 ≠ work ∨ s2 ≠ work) .

This allows one to abstract from the precise behaviour of the operand components (e.g. as shown
in Figure 2.5a). The first conjunct (s1 = sleep ∧ s2 = sleep) formalises the global assumption
that both components are sleeping in the initial state.

Let C3 be a third component, similar to C1 and C2, with the set of ports {b3, f3}. We
define two additional architectures A13 and A23 similar to A12: they consist, respectively, of
coordinating components D13 and D23, which, up to the renaming of ports, are the same as
D12 in Figure 2.5b, γ13 = {b1t13, b3t13, f1r13, f3r13} and γ23 = {b2t23, b3t23, f2r23, f3r23}. As
above, A13 and A23 enforce on A13(C1, C3) and A23(C2, C3), respectively, the mutual exclusion
properties Φ13 = (s1 ≠ work ∨ s3 ≠ work) and Φ23 = (s2 ≠ work ∨ s3 ≠ work).

Consider the application of architectures A12 and A23 to the three components C1, C2 and
C3. The former enforces the property Φ12 = (s1 ≠ work) ∨ (s2 ≠ work) (the projection of
reachable part of the compound behaviour σ(A12(C1, C2, C3)) onto the state-space of the atomic
components is shown in Figure 2.7a), whereas the latter enforces Φ23 = (s2 ≠ work) ∨ (s3 ≠
work) (the projections of reachable states of A23(C1, C2, C3) onto the state-space of the atomic
components are shown in Figure 2.7b). By Theorem 2.2.10, the composition A12 ⊕A23 enforces
Φ12∧Φ23 = (s2 ≠ work)∨ ((s1 ≠ work)∧ (s3 ≠ work)), i.e. mutual exclusion between, on the one
hand, the work state of C2 and, on the other hand, the work states of C1 and C3 (see Figure 2.7c).
Mutual exclusion between the work states of C1 and C3 is not enforced. Furthermore, it is easy
to check that A12 ⊕A23 ⊕A13 enforces mutual exclusion between the work states of C1, C2 and
C3 as Φ12 ∧ Φ13 ∧ Φ23 = ((s1 ≠ work) ∧ (s2 ≠ work)) ∨ ((s1 ≠ work) ∧ (s3 ≠ work)) ∨ ((s1 ≠
work) ∧ (s3 ≠ work)).

2.2.3 Additional verifications

Contradictory requirements A common problem in practical system design is that of contra-
dictory requirements. For example, the following two properties can be required from an elevator
cabin [DG08; PR01]:
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Figure 2.7: Projections of reachable states of the compound behaviours onto σ(Aid(C1, C2, C3))
(for ease of reading, I omit the transitions indicated by dotted blue arrows; furthermore, for ease
of comparison between sub-figures, I additionally label each state with a red number, whereof
the main label is the binary representation with s = 0 and w = 1)
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1. If the elevator is full, it must stop only at floors selected from the cabin and ignore outside
calls.

2. Requests from the second floor have priority over all other requests.

Clearly these two requirements are contradictory, since they cannot be jointly satisfied when
the elevator is called from the second floor while it is full. Applying the composition of two
architectures enforcing respectively these two properties on the components forming the elevator
cabin would generate deadlocks. Thus, although architecture composition ⊕ preserves safety
properties, it does not preserve deadlock-freedom. However, deadlock-freedom of BIP models can
be verified compositionally [Ben+11].

Liveness properties The treatment of liveness properties is based on the idea that each coordi-
nator must be “invoked sufficiently often” for the corresponding liveness properties to be imposed
on the system as a whole. For each coordinator, one designates the set of its “idle states”. It is
then required that each coordinator be executed infinitely often, unless, from some point on, it
remains forever in an idle state [Att+14]. In [Att+14], it is shown that this notion of liveness is
preserved by the composition of architectures, provided that the composed system is deadlock-free
and the composed architectures are pairwise non-interfering in the following sense. Architecture
A1 is non-interfering with architecture A2 w.r.t. a set of components C1, . . . , Cn if each path
in (A1 ⊕ A2)[C1, . . . , Cn], which executes transitions of the coordinators of A1 infinitely often,
either executes transitions of the coordinators of A2 or visits their idle states infinitely often.

15

Notice that the non-interference relation is not commutative.

Verifying liveness in a composed system is reduced to checking the deadlock-freedom and
pairwise non-interference of architectures, both of which can be performed compositionally.

2.3 From specifications to a system model

In this section, we briefly discuss the design process and tool developped in the Catalogue of
System and Software Properties (CSSP) project funded by the European Space Agency (ESA).
The CSSP design process is a specification and verification process that aims for the early es-
tablishment of behavioural correctness throughout the different specification abstraction levels
and across the phases of the lifecycle of the satellite on-board software system development. It
relies on an ontology-based catalogue of boilerplate requirements and property patterns [Sta+18],
as well as on the architecture-based design approach implemented in the BIP framework (Sec-
tion 2.2). Figure 2.8 provides a high-level illustration of the CSSP process that we have defined
in the project; a detailed view is provided in Figure 2.9.

The CSSP tool is a GUI front-end for the specification of requirements and properties based
on the Catalogue of Requirement Categories implemented on top of the CSSP Ontology. It is
integrated with the Architecture Manipulation Library (AML) used to support the application
and composition of formal architectures for property enforcement. From this perspective, the
CSSP tool provides also a means for the manipulation of BIP design models.

The CSSP Ontology provides the semantic model for the definition of boilerplates and property
patterns. This semantic model includes a representation of the various concepts and entities of
the system’s domain, which supports the semantic search and reasoning over the repository of
requirement and property specifications. Requirement categories may be associated with selected
boilerplates on the basis of empirical evidence.

To effectively use the CSSP Ontology and the Catalogue of Requirement Categories, we foresee
specific engineering roles (Section 2.3.2) associated with concrete responsibilities and interactions.

15
I refer the reader to [Att+16] for details and examples of architecture (non-)interference.
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Figure 2.8: High-level illustration of the CSSP design process

2.3.1 The design flow of the CSSP process

The complete CSSP process is illustrated in Figure 2.9. It is built around the CSSP tool, which
allows the engineers to 1) query the CSSP Ontology and Catalogue during the requirements
and properties specification, 2) progressively define the design model, used for verification of
properties, simulation and potential generation of C++ code for (parts of) software. The system
model is defined in the BIP language with the assistance of the Architecture Manipulation library.

The definition of ontologies and population of the catalogue activities (in the top-left “Re-
quirement Engineering Domain” box) has been performed as part of the CSSP project and can
be later repeated by Requirement Engineers, based on more extensive case studies. The CSSP
Ontology and Catalogue of Requirement Categories can be enriched at any time, when new
categories, boilerplates and Domain-Specific Ontology (DSO) classes or instances are identified.
Instantiation of requirements from boilerplates is a cross-domain activity (Requirement, System
and Verification Engineering), which can be performed at any abstraction level, followed by the
instantiation of elementary (atomic) components.

All the other activities of the two blocks in the right-hand side of the diagram (“System
Engineering Domain” and “Verification Engineering Domain”) are performed iteratively, with
the exception of Code generation, which may be only performed in Phase C of a space project.
Finally, notice that formal architecture application (both in top-down and bottom-up fashion)
takes as input system components and desired properties and generates both new components
and new properties. Hence, the double arrows in the diagram.

The activities comprising the CSSP process can be roughly grouped into the following main
steps, which are performed iteratively, refining the model until all the derived properties are
satisfied and all the requirements are discharged:

1. Requirements are instantiated from boilerplates available in the CSSP Ontology and
Catalogue.

(Requirement instantiation and Requirement refinement activities in Figure 2.9, using the
integrated CSSP tool.)
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Figure 2.9: The CSSP process

2. Completeness and consistency of the instantiated requirements is validated by
semantic queries to the CSSP Ontology.

(Completeness & consistency check activity in Figure 2.9, using the integrated CSSP tool.)

3. Elementary components are identified based on the specified requirements and the
CSSP Ontology; they are used as atomic BIP components in the initial BIP design model.

(Identification and design of elementary components activity in Figure 2.9, using the inte-
grated CSSP tool and a text editor for the BIP design model.)

4. Properties are instantiated from the available property patterns

(Property instantiation activity in Figure 2.9, using the integrated CSSP tool.)

5. Architecture application step: Formal architectures are applied to elementary compo-
nents, in order to enforce properties, which are derived from requirements and marked as
enforceable. This step comprises the following sub-steps:

(a) Validation of architecture assumptions: Some of the formal architectures have
associated properties that must be satisfied by operand components, in order for the
architecture to be applicable. In such case, model checking is applied to the individual
operand components (not the entire model) to verify whether these properties are
satisfied.

(Validation of architecture assumptions part of the Architecture application activity in
Figure 2.9, using the nuXmv

16
model checker.)

(b) Design refinement (top-down): If the above validation (Step 5a) shows that a
property is not satisfied, the operand component must be refined. This can involve

16
https://nuxmv.fbk.eu/
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• behaviour refinement, i.e. introducing new ports, states and transitions in the
finite state machine specifying the component behaviour;

• structural refinement, i.e. replacing the operand component by a combination of
two or more smaller components (and any necessary connectors among these).

(Design refinement part of the Architecture application activity in Figure 2.9, using a
text editor.)

(c) Property enforcement (bottom-up): Once the operand components satisfy the
assumptions of the selected architecture, this latter is applied by adding the coordi-
nating components to the model and modifying the connectors appropriately.

(Property enforcement part of the Architecture application activity in Figure 2.9, using
the AM library within the integrated CSSP tool.)

6. Additional verification is performed to ensure that:

(a) the composed system is free from deadlocks;

(b) the applied architectures are mutually non-interfering.

Together, these two analyses ensure that all the enforceable properties associated to the
requirements are, indeed, satisfied. More specifically, deadlock-freedom must always be
verified, when composing several architectures. Non-interference is only relevant for archi-
tectures with associated liveness properties.

(Property verification activity in Figure 2.9, using the D-Finder tool.)

7. The BIP model is transformed into the input format of the nuXmv model checker, which
is used to check the satisfaction of the properties that cannot be enforced by architectures

(Property verification activity in Figure 2.9, using the BIP-to-NuSMV
17

and the nuXmv
tools.)

It should be noted that only safety properties were encountered in the case studies realized in
the project. Furthermore, there are reasons to believe that the use of liveness properties may not
be appropriate in the Space Software and Systems domain. In particular, instead of requiring
that an event X shall happen eventually—after an unspecified delay—it is preferable to explicitly
define the actions that shall lead to the occurrence of X, or another bounding event Y , such that
X must happen before Y . In such case, the property becomes a safety one. For the above
reasons, we did not implement the mutual non-interference check of Step 6b above, leaving such
an implementation for future work.

2.3.2 Engineering roles involved in the CSSP process

The CSSP process involves well-defined roles that are shown in Figure 2.10. Ontology Engineers
define the CSSP Ontology and Catalogue, as well as the used boilerplates and property patterns.
Requirements Engineers define new requirements based on the predefined boilerplates from the
CSSP Ontology and Catalogue. Specification Verification Engineers define new properties based
on property patterns and obtain representations of the properties of interest in the BIP language.
System Software Engineers develop a BIP design model.

Tables 2.3 and 2.4 list the responsibilities associated to the roles involved in the CSSP process.
The responsibilities pertaining to the initial preparation of the CSSP Ontology and Catalogue,
adaptation to new mission types and occasional maintenance (e.g. enriching the catalogue in
exceptional cases when existing patterns are not sufficient) are listed in Table 2.3. The CSSP
approach relies, fundamentally, on the assumption that, at use-time, the CSSP Ontology and

17
https://archiveweb.epfl.ch/risd.epfl.ch/bip2nusmv.html
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Figure 2.10: Graphical illustration of the engineering roles involved in the CSSP approach

Table 2.3: Preparation and maintenance responsibilities associated with the CSSP process roles

Role Responsibilities

Ontology Engineer

- Create a CSSP Ontology and Catalogue of Requirement Categories.

- Manage the CSSP Ontology by adding new boilerplates and/or property patterns,
in particular to adapt to new types of missions.

- Extend the CSSP Ontology by defining new domain-specific ontologies for different
application domains.

(Only Ontology Engineers can edit the CSSP Ontology and Catalogue.)

Requirements &
Specification
Verification Engineers

- Specify the set of property patterns, from which the properties, needed to cover a
requirement, will be derived.

- Obtain a formal representation of the property patterns in BIP and/or in CTL.

Catalogue have already been populated by experts contributing non-trivial information that
cannot—within reasonable costs—be obtained by automated analysis. When the CSSP Ontol-
ogy and Catalogue has to be extended, similar expertise is unavoidably required. Therefore,
responsibilities in Table 2.3 correspond to exceptional activities that are to be carried out as
seldom as possible since the completion of the CSSP project.

Table 2.4 lists the responsibilities associated to the various CSSP process roles during the
space system project.

2.3.3 Refinement process

Two types of refinement are involved in the process: refinement of requirements and refinement
of the design.
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Table 2.4: Design-time responsibilities associated to the CSSP process roles

Role Responsibilities

Requirements Engineer

- Choose from a list of predefined boilerplates for a category of an abstraction level
to create a new requirement.

- Fill in the placeholders of the boilerplate with instances of the DSO sub-ontology.

- Edit existing requirements based on boilerplates.

- Refine requirements based on the input from Completeness & consistency check
and Property verification activities.

(Requirements Engineers cannot create new or edit existing boilerplates.)

Specification
Verification Engineer

- Create new properties that will cover a requirement by choosing from the list of
property patterns.

- Replace the placeholders of the property pattern with instances of the DSO sub-
ontology.

- Verify the complete system software model for deadlock-freedom to ensure that
the applied formal architectures have not over-constrained the model.

- When a deadlock is detected in the BIP model, identify a property that can be
responsible for the deadlock and attempt replacing it with a weaker alternative,
using a different property pattern for the same requirement.

- Verify the satisfaction of verifiable properties.

- When a verifiable property is not satisfied,

(i) notify a System Software Engineer and attempt component refinement (see
joint System Software & Specification Verification Engineers responsibilities
below);

(ii) if component refinement is not possible, replace the property with a weaker
alternative, using a different property pattern for the same requirement.

- When behaviour refinement and property relaxation are not sufficient for suc-
cessful validation, notify a Requirement Engineer and request a refinement of
requirements.

System Software &
Specification
Verification Engineers

- Verify that the operand components, to which formal architectures are applied,
satisfy the properties assumed by these architectures.

- When an assumed property of a formal architecture is not satisfied by an operand
component or—upon request from a Specification Verification Engineer—when a
verifiable property is not satisfied by the design model, refine component behaviour
to ensure property satisfaction.

System Software
Engineer

- Provide a design model by specifying behaviour at the required abstraction level.

- In particular, using semantic queries, identify the elementary components that
appear in the requirements and provide BIP components implementing their be-
haviour.

- Enforce properties using the BIP correctness-by-construction techniques: instan-
tiate formal BIP architectures and apply them to the design model.

Refinement of requirements is performed by a Requirement Engineer—in collaboration
with an Ontology Engineer if the CSSP Ontology and/or Catalogue need be updated (see Fig-
ure 2.10)—when a set of requirements is found to be inconsistent. Such inconsistencies can either
be detected through the semantic queries to the CSSP Ontology, or manifest themselves through
deadlocks, which are detected during property validation. In the former case, the semantic query
directly identifies the conflicting requirement. In the latter, an inconsistency is associated to a
set of properties. Each property can be traced to the requirement, from which it arose upstream
in the process.

An inconsistency can be due either to a mistake during the requirement specification phase
(wrong requirement) or to an overly weak assumption on the environment of the involved entities
(thus leading to overly strong, hence, inconsistent requirements). In the first case, the wrong
requirement is dropped, starting the next design iteration (completeness analysis, additional
requirements, property validation etc.). In the second case, where none of the requirements can
be identified as outright wrong, additional assumptions must be made on the environment in order
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Figure 2.11: Behavior refinement to ensure the validity of architecture assumptions

to weaken the existing requirements. This process can be assisted by exploiting the ontological
knowledge about the semantics of the entities relevant to the requirements in question.

Design refinement is performed by a System Software Engineer (see Figure 2.10) in two
situations: 1) validation of architecture assumptions during the application of formal architectures
and 2) when moving to a more detailed requirement specification level.

For instance, the standard ESA procedure separates requirement formulation into several
phases, among which the first Requirement Baseline (RB) specification is refined by the Technical
Specification (TS) one.

Validation of architecture assumptions: Before an architecture is applied, the assumptions
that it makes on the operand components have to be validated. Such assumptions are
formulated as CTL properties referring to the behaviour of the operand components; they
are verified by model checking.

When an assumed property of a formal architecture is not verified by a corresponding
operand component, the behaviour of this component must be refined. An example of such
a refinement is provided in [Bli+16, Section 2.6.1]. An Action Flow with Abort architecture
is applied to the TC Management component shown in Figure 2.11a. The behaviour of this
component violates the following assumed property of the architecture:

AG (put → AX A [¬put W (acqSg e ∨ acqFail e)] ) .

In Figure 2.11b, this property is enforced by introducing the additional state 3.
18

Moving to a new requirement specification level: When moving to a finer specification
level, some actions (e.g. services) are usually specified in more detail than on the previ-
ous level. In such cases, an action a in the abstract component is replaced by a sequence
of several actions, potentially involving branching and loops. Although, in principle, this
can be done directly in the finite state machine defining the corresponding component be-
haviour, it is recommended, instead, to introduce a new component, whereof the behaviour
realizes precisely the action a. Such a component would have two dedicated ports, say
begin and end, corresponding to the invocation and to the termination of a. With this
latter approach, the only modification that is necessary in the component under refine-
ment, consists then in replacing each occurrence of a with a sequence of two actions a b

and a e synchronized, respectively with the actions begin and end of the new component.

18
Depending on whether the CSSP process is used for early requirement validation or for the design of system

software, this refinement could take place during different phases: RB or TS definition, respectively.
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To ensure that such refinement does not introduce deadlocks or violate previously validated
properties, one has to verify that the newly added component satisfies the following two
derived properties:

AF end — the action always terminates,
AG (end → AX A [¬end W begin]) — once the action terminates, nothing happens unless

it is invoked again.

In order to guarantee the preservation of already established properties, one must—in addition
to the verification of the above assumed or derived properties—check an appropriate refinement
relation between the initial and the refined component behaviours. This is achieved by establish-
ing a simulation relation [Mil89] or by checking action refinement [GG01], respectively, for the
first and the second case of design refinement above.

Notice that the CSSP process does not impose any particular techniques for the verification
of properties, nor for the refinement checking discussed in this section.

2.4 Key contributions

The work presented in this chapter spans a period over 10 years long. It starts with two founda-
tional papers that we have co-authored with Joseph Sifakis during my post-doc at Verimag—the
EMSOFT paper [BS07] and its extended journal version [BS08b]—which formalise the BIP opera-
tional semantics and, in particular, connectors used for the structured specification of interactions.
The journal paper [BS10] explores the idea of exhibiting implicit interaction causality, whereby
participation of some ports depends on that of the others. In particular, the Boolean encoding
defined in that paper underlies the notion of Require and Accept macros used in [Boz+12a]
and in JavaBIP presented in Chapter 4.

The notion of architectures, embodying BIP design patterns, was proposed in [Att+14;
Att+16] (co-authored, in particular, with my former PhD student Eduard Baranov). It was
then applied in the context of two collaborations to set up the architecture-based design flow.
In collaboration with the EPFL Space Engineering Center we have realised the first case study
[Mav+16]. In a collaborative project with the Aristotle University of Thessaloniki and Thale-
sAlenia Space (France) funded by the European Space Agency, we have generalised this approach
extending it with the ontology-based tooling for the elicitation of requirements and generation
of BIP models [Sta+18]. The latter two papers were co-authored, in particular, with my former
PhD student Anastasia Mavridou.

The above papers study interaction and architectures purely from the structural perspective,
disregarding data transfer among the local variables of the components. A formalisation of data
transfer is proposed in [Bli+14], whereas [BHM19] extends the architecture composability results
to architectures involving data.
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Chapter 3

A formal study of expressiveness

In order to understand the applicability limits of a design approach, one has to study the ex-
pressive power of the underlying component-based framework. However, for such a study to be
possible a proper comparison framework has to be developed. Indeed, most expressiveness stud-
ies focus on two questions: 1) what can be computed? and 2) how concise is the program? The
first question is typically answered by a comparison to the computing power of Turing machines.
The answer to the second question can be summarised—admittedly in a somewhat simplistic
manner—by saying that parts of a language represent syntactic sugar w.r.t. another language.
None of these two approaches captures the essence of component-based design, where given com-
position operators are applied to a set of components to build a system but they cannot change
the components themselves.

In this chapter, I present

• a formal algebraic framework that allows the comparison of the expressive power of
component-based frameworks,

• its application to a study of the expressiveness of the BIP framework,

• an alternative, offer semantics of BIP and its relation with the classical one.

3.1 Algebraic formalisation

3.1.1 Basic definitions

I will start by refining the basic model used in Section 2.1.1 of the previous chapter. Essentially,
this boils down to equipping the semantic domain of an algebra of components with an equivalence
relation.

Indeed, as I have implicitly suggested in the previous chapter, every component-based design
framework can be viewed as an algebra of components equipped with a semantic mapping. The
algebra of components syntactically defines the composite components that can be assembled
from a given set of the atomic ones. The semantic mapping associates to each component its
corresponding behaviour. The codomain of the semantic mapping, which we call the semantic
domain consists of a behaviour type—defined in terms of Labelled Transition Systems or a similar
formalism—and an associated equivalence relation. This can be formalised as follows:

Definition 3.1.1. A component-based framework is a tuple (G,C,B,≃, σ), where

• G is a set of composition (glue) operators, we denote by G
n
⊆ G, with n ∈ N, the subset

of n-ary operators,

• C is a set of atomic components,

• (B,≃) is a semantic domain, consisting of a behaviour type B and an equivalence relation
≃ ⊆ B ×B,
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• σ ∶ A⇀ B is a partial semantic mapping from the algebraic structure

A ∶∶= C ∣ f⟨C1, . . . , Cn⟩, C ∈ C, n ∈ N, C1, . . . , Cn ∈ A and f ∈ G
n
,

generated by G from C, which we call the algebra of components of the framework. (Notice
that A does not appear explicitly in the tuple, since it is fully defined by G and C.)

We call the elements of A components and the elements of B behaviours. The algebraic
structure A represents the set of all systems constructible within the framework.

The behaviour type B defines the semantic nature of the components manipulated by the
framework. The equivalence relation ≃ ⊆ B × B allows comparing components in terms, for
example, of their functionality, observable behaviour or capability of interaction with the envi-
ronment. It is canonically lifted to A by putting, for any C1, C2 ∈ A,

C1 ≃ C2

def

⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

both σ(C1) and σ(C2) are defined,

and

σ(C1) ≃ σ(C2).
(3.1)

The semantic mapping σ ∶ A ⇀ B assigns to each component its meaning in terms of the
behaviour type B: for any C ∈ A, we say that σ(C) is the behaviour of C.

Example 3.1.2. Consider the framework CCS
−
= (G−

,C,B,≃, σ
−), taking both C and B to

be the subset of purely sequential processes in CCS [Mil89]:

C = B ∶∶= 0 ∣ l.P ∣ P1 + P2, l ∈ L, P, P1, P2 ∈ B,

where L = {τ} ∪ {a, ā ∣ a ∈ A}, for some given set of actions A. Although the specific choice of
the equivalence relation is irrelevant for the purposes of this example, we can take ≃ to be the
branching bisimilarity relation [Bas96]. Take G = {∥, \A}, where ∥ is the classical binary CCS
parallel composition (replacing the synchronisation of a and ā, for any a ∈ A, with τ) and \A
is the unary restriction operator, which hides all actions in the set A ⊆ A by replacing them
with τ . The semantic mapping σ is defined trivially for restriction \A and through the expansion
lemma [Mil89], for parallel composition ∥. ◇

Definition 3.1.3. The semantic mapping is called structural, if it is defined by associating to
each n-ary glue operator f ∈ G

n
a corresponding partial mapping f̂ ∶ B

n
⇀ B and putting

σ(f⟨C1, . . . , Cn⟩)
def
= f̂(σ(C1), . . . , σ(Cn)),

for all n ∈ N, C1, . . . , Cn ∈ A.

We call {f̂ ∣ f ∈ G} the set of defining mappings of σ.

Example 3.1.4. Clearly, the semantic mapping in Example 3.1.2 is structural with the following
defining mappings.

We adopt the usual simplifying notation by postulating ¯̄a = a, for all a ∈ A. We then take the
defining mapping ∥̂ ∶ B

2
→ B for the parallel composition operator to be symmetrical, defined

by putting

∥̂(B1, B2)
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

B1, if B2 = 0,

∥̂(B1, P1) + ∥̂(B1, P2), if B2 = P1 + P2,

l1.∥̂(P1, B2) + l2.∥̂(B1, P2), if B1 = l1.P1 ∧B2 = l2.P2,with l1 ≠ l2,

l.∥̂(P1, B2) + l̄.∥̂(B1, P2) + τ.∥̂(P1, P2), if B1 = l.P1 ∧B2 = l̄.P2,with l, l̄ ≠ τ.
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The semantic mapping \̂A ∶ B→ B for the restriction operator is defined by putting

\̂A(B) def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if B = 0,

l.\̂A(P ), if B = l.P ∧ l /∈ A,
τ.\̂A(P ), if B = l.P ∧ l ∈ A,

\̂A(P1) + \̂A(P2), if B = P1 + P2.

Alternatively, any semantic mapping defined using Structural Operational Semantics
rules [Plo81] is, indeed, structural. ◇

3.1.2 Properties of component-based frameworks

Ideally, glue operators used to compose systems in a component-based design framework must
possess the following properties, most of which have been initially stated in a less formal manner
in [Sif05].

Incrementality This property represents a generalised form of associativity. It requires that
it be possible to view the sub-systems of a system in separation:

∀n ∈ N, ∀i ∈ [1, n], ∀C1, C2, . . . , Cn ∈ A, ∀f ∈ G
n
, ∃g ∈ G

2
, h ∈ G

n−1
∶

f⟨C1, C2, . . . , Cn⟩ ≃ g⟨Ci, h⟨C1, . . . , Ci−1, Ci+1, . . . , Cn⟩⟩ . (3.2)

Flattening This property is complementary to incrementality. It requires that, for any system
obtained by hierarchically applying two glue operators to a finite set of sub-systems, there must
exist an equivalent system obtained by applying a single glue operator to the same sub-systems:

∀n ∈ N, ∀i ∈ [1, n], ∀j ∈ [i, n],
∀C1, C2, . . . , Cn ∈ A, ∀f ∈ G

n−j+i
, ∀g ∈ G

j−i+1
, ∃h ∈ G

n
∶

f⟨C1, . . . , Ci−1, g⟨Ci, . . . , Cj⟩, Cj+1, . . . , Cn⟩ ≃ h⟨C1, . . . , Cn⟩ . (3.3)

In other words, G must be closed under composition. Flattening enables model transfor-
mations, e.g. for optimising code generation or component placement on multicore platforms
[Bon+10; BJS09].

Uniform flattening This property strengthens the previous one by requiring the operator h
to be the same, independently of the choice of C1, . . . , Cn.

∀n ∈ N, ∀i ∈ [1, n], ∀j ∈ [i, n],
∀f ∈ G

n−j+i
, ∀g ∈ G

j−i+1
, ∃h ∈ G

n
, ∀C1, C2, . . . , Cn ∈ A ∶

f⟨C1, . . . , Ci−1, g⟨Ci, . . . , Cj⟩, Cj+1, . . . , Cn⟩ ≃ h⟨C1, . . . , Cn⟩ . (3.4)

Compositionality This property requires that glue operators preserve the equivalence of their
operands:

∀n ∈ N, ∀i ∈ [1, n], ∀C1, . . . , Cn, C
′
i ∈ A, ∀f ∈ G

n
,

Ci ≃ C
′
i ⟹ f⟨C1, . . . , Ci, . . . Cn⟩ ≃ f⟨C1, . . . , C

′
i, . . . Cn⟩ . (3.5)
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Relaxed compositionality A weaker version of compositionality requires that glue operators
only preserve the equivalence of atomic components:

∀n ∈ N, ∀i ∈ [1, n], ∀C1, . . . , Cn, C
′
i ∈ C, ∀f ∈ G

n
,

Ci ≃ C
′
i ⟹ f⟨C1, . . . , Ci, . . . Cn⟩ ≃ f⟨C1, . . . , C

′
i, . . . Cn⟩ . (3.6)

Notice that, combined with flattening, this relaxed notion of compositionality is already quite
strong: essentially, compositionality allows replacing sub-systems, whereas relaxed composition-
ality with flattening allow replacing atomic behaviours.

Proposition 3.1.5. If the semantic mapping is structural and its defining mappings preserve the
equivalence ≃ then the framework has compositionality:

Proof. Take n ∈ N and consider C1, . . . , Cn ∈ A and f ∈ G
n
. Without loss of generality, let

i = 1 and take C
′
1 ∈ A, such that C1 ≃ C

′
1. We then have

σ(f⟨C1, . . . , Cn⟩) = f̂(σ(C1), . . . , σ(Cn)) ≃ f̂(σ(C ′1), . . . , σ(Cn)) = σ(f⟨C ′1, . . . , Cn⟩) .

The central subject of this manuscript is the BIP framework. Glue operators in BIP are n-ary.
Hence, we will focus our attention on compositionality and flattening, disregarding incrementality.
Indeed, as mentioned above, incrementality can be viewed as generalised associativity, which is
mainly useful, in our context, to be able to reason about binary operators and generalise the
results to n-ary ones.

3.1.3 Comparing the expressiveness

In order to define the notions necessary for comparing the expressiveness of component-based
frameworks, we first introduce the following technical definition.

Definition 3.1.6. Given a framework F = (G,C,B,≃, σ) and a set of variables Z, we will
denote by G[Z] the set of expressions on variables in Z, defined by the following grammar:

G[Z] ∶∶= Z ∣ f⟨E1, . . . , En⟩, Z ∈ Z, n ∈ N, E1, . . . , En ∈ G[Z] and f ∈ G
n
.

Comparing the expressiveness of two component-based frameworks is only possible when their
semantic domains coincide. Indeed, two component-based frameworks with distinct semantic
domains can be compared by mapping to a common behaviour type and taking an appropriate
equivalence relation consistent with those of the frameworks. However, this essentially boils down
to a substitution of the semantic domains, i.e. considering a different pair of frameworks.

Below, we define two preorders—strong and weak—that allow us to compare component-
based frameworks with the same semantic domain. Intuitively, one framework has strong full
expressiveness w.r.t. another if any operator of the second has an equivalent one in the first.
Weak full expressiveness allows an expression, i.e. a composition of several operators, to be used
instead of a single equivalent operator in the first framework.

Definition 3.1.7. Given two frameworks Fi = (Gi,Ci,B,≃, σi)i∈{1,2} with the same semantic
domain, we say that F1 has strong full expressiveness w.r.t. F2, denoted F2 ◂ F1 if

∀n ∈ N, ∀f ∈ G
n
2 , ∃f̃ ∈ G

n
1 ∶ ∀C

i
1, . . . , C

i
n ∈ Ai,

n

⋀
k=1

σ1(C1
k) ≃ σ2(C2

k) ⟹ σ1(f̃⟨C1
1 , . . . , C

1
n⟩) ≃ σ2(f⟨C2

1 , . . . , C
2
n⟩) . (3.7)
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Table 3.1: Expressiveness comparison relations (three “less expressive” relations indicated in grey
are symmetric to the “more expressive” ones; the two relations in the second row are not used in
this manuscript—they are only presented for the sake of completeness)

F2?F1

F1?F2 ◂ ◃ ∧ /◂ /◃

◂ F1 and F2 have strongly
equivalent expressiveness

F1 is weakly more expressive
than F2

F1 is strongly more expressive
than F2

F1 ⇔ F2 F2 → F1 F2 ⇒ F1

◃ ∧ /◂ F1 is weakly less expressive
than F2

F1 and F2 have weakly
equivalent expressiveness

F1 is slightly more expressive
than F2

F2 ← F1 F1 ↔ F2 F2 ⇢ F1

/◃ F1 is strongly less expressive
than F2

F1 is slightly less expressive
than F2

F1 and F2 are incomparable

F2 ⇐ F1 F2 ⇠ F1 F1 ¾ F2

We say that F1 has weak full expressiveness w.r.t. F2, denoted F2 ◃ F1 if,

∀n ∈ N, ∀f ∈ G
n
2 , ∃f̃ ∈ G1[Z1, . . . , Zn] ∶ ∀Ci1, . . . , Cin ∈ Ai,

n

⋀
k=1

σ1(C1
k) ≃ σ2(C2

k) ⟹ σ1(f̃[C1
1/Z1, . . . , C

1
n/Zn]) ≃ σ2(f⟨C2

1 , . . . , C
2
n⟩) , (3.8)

where f̃[C1
1/Z1, . . . , C

1
n/Zn] ∈ A1 is the component obtained by substituting in f̃ the variables

Zk by components C
1
k , for all k ∈ [1, n].

Example 3.1.8. In addition to CCS
−

from Example 3.1.2, consider the framework CCS = (G,
C,B,≃, σ), where C, B and ≃ are the same as in CCS

−
, whereas G = G

− ∪ {+}, with the

extension from σ
−

to σ being trivial: σ(C1 +C2)
def
= σ(C1)+ σ(C2), i.e. +̂ = +. We trivially have

CCS
− ◂ CCS .

It is easy to show that the + operator cannot be encoded by any combination of parallel
composition and restriction, essentially because the choice represented by + has to be main-
tained throughout the subsequent execution of the process, whereas both parallel composition
and restriction are “memoryless”. Hence, CCS /◃ CCS

−
. ◇

As mentioned above, both strong and weak full expressiveness are preorders, i.e. they are
reflexive and transitive. Strong full expressiveness trivially implies the weak one.

Definition 3.1.9. Based on the full expressiveness relations, we introduce six comparison re-
lations, presented in Table 3.1. For instance (second cell of the first row), if F1 has strong full
expressiveness w.r.t. F2, whereas F2 has only weak—but not strong—full expressiveness w.r.t.
F1, we say that F1 is weakly more expressive than F2 (alternatively, F2 is weakly less expressive
than F1) and denote this by F2 → F1.

If F2 does not even have weak full expressiveness w.r.t. F1 (third cell of the first row), we say
that F1 is strongly more expressive than F2, denoted F2 ⇒ F1, etc.

Example 3.1.10. The full expressiveness relations from Example 3.1.8 mean that CCS is
strongly more expressive than CCS

−
, i.e. CCS

−
⇒ CCS . ◇

The intuitive meanings of the three relations in the first row of Table 3.1 are the following:
given two frameworks Fi = (Gi,Ci,B,≃, σi), if for any operator in G2 we can find a corresponding
operator in G1 such that its application to an equivalent set of components would result in
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equivalent components, then F1 has at least equivalent expressiveness or is more expressive than
F2. There are three options for the converse. If there is a corresponding operator in G2 for any
operator in G1, then their expressiveness are equivalent. If every operator in G1, which does not
have a corresponding one in G2, can be represented by a composition of operators in G2, then
F1 is weakly more expressive than F2. Finally, if there exists an operator in G1 that cannot be
represented by any combination of operators in G2, then F1 is strongly more expressive than F2.
If such inexpressible operators exists in both G1 and G2 then F1 and F2 are incomparable (third
row of Table 3.1). The intuition behind the relations in the second row of Table 3.1 is similar.

Notice that the relations shown in Table 3.1 are mutually exclusive. For instance, contrary
to the usual intuition behind the use of the symbols ‘⇔’ and ‘⇒’ in predicate logics, F1 ⇔ F2

implies F1 /⇒ F2. In particular, a framework is never more expressive than itself, i.e. F /⇒ F
and F /→ F .

Intuitively, one should read the symbols in Table 3.1 as follows: F1 ⇔ F2 means that there
is a strong correspondence between F1 and F2, F2 ⇒ F1 means that going from F2 to F1 makes
a big difference in expressiveness etc.

3.1.4 Properties of the comparison relations

Let me now provide some key properties of the relations defined in the previous subsection. Here,
I will only summarise the key results necessary for the subsequent sections. Full details are
provided in [BB20].

Proposition 3.1.11. The relations ⇒, → and ⇔ are transitive.

In particular, transitivity of ⇔ implies that this relation is, indeed, an equivalence. Further-
more, all the relations introduced above are preserved by ⇔.

Proposition 3.1.12. For any frameworks F1, F2, F3, such that F1 ⇔ F2 and any R ∈ {⇔,→,
⇒,↔,⇢,¾ }, we have F1RF3 if F2RF3.

The third proposition is consistent with the intuitive interpretation of the symbols ‘⇒’ and
‘→’ given at the end of the previous subsection: if going from one of F1 and F2 to the next
framework (resp. F2 or F3) makes a big difference in expressiveness, then there also is a big
difference between F1 and F3.

Proposition 3.1.13. For any frameworks F1, F2, F3, hold the following implications:

1. F1 ⇒ F2 → F3 implies F1 ⇒ F3,

2. F1 → F2 ⇒ F3 implies F1 ⇒ F3.

Notice that relation combinations other than those in the three propositions above do not
provide immediate “shortcut” relations. This is mostly due to the fact that the complement
relations /◂ and /◃ are not transitive. For instance, given F1, F2 and F3, such that F1 ◃ F2 ◃ F3

but F1 /◂ F2 /◂ F3, we can proceed as follows:

1. Take all composition operators from F1 that do not have corresponding ones in F2 and add
them to F3 as “syntactic sugar” for the corresponding expressions, which necessarily exist
since F1 ◃ F3.

2. Add two completely new operators two F3 and another completely new operator to F2 with
the semantics defined as the composition of those for the two new operators in F3.

Denoting the extended frameworks by F
′
2 and F

′
3, we have F1◃F

′
2◃F

′
3, F1 /◂ F ′2 /◂ F ′3 but F1◂F

′
3.

Without constituting a formal proof, this manipulation does provide an intuition for the reason
why other relation combinations do not have generic shortcuts.

As mentioned above, strong full expressiveness trivially implies weak full expressiveness. The
converse holds in presence of uniform flattening.
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Proposition 3.1.14. For two frameworks F1 and F2, such that F1 has uniform flattening, F2◃F1

implies F2 ◂ F1.

Sketch of the proof. Weak full expressiveness guaranties that any operator f ∈ G2 is expressible
as a composition of operators in G1. Uniform flattening applied several times to such a compound
expression can “flatten” it to a single operator corresponding to f . Thus, the requirement for
strong full expressiveness is satisfied.

Proposition 3.1.14 simplifies the expressiveness comparison. For instance, if both F1 and
F2 have uniform flattening, the ◃ and ◂ relations coincide. This eliminates the second column
and row in Table 3.1, leaving only three possibilities: either the two frameworks are strongly
equivalent, or one is strongly more expressive than the other, or they are incomparable.

According to Definition 3.1.7, in order to establish that one framework has strong (resp. weak)
full expressiveness w.r.t. another, we have to prove the existence of the corresponding operator
(resp. compound expression) that preserves the semantic equivalence (see (3.7) and (3.8)). Below,
we show that, under additional assumptions, it is sufficient to only check the preservation of the
behaviour equality.

Theorem 3.1.15. For two frameworks Fi = (Gi,C,B,≃, σi)i∈{1,2}, whereof F1 is compositional,
with the same atomic components, the same semantic domain, and such that, for any C ∈ C,
holds σ1(C) = σ2(C), we have

1. F2 ◂ F1 if

∀n ∈ N, ∀f ∈ G
n
2 , ∃f̃ ∈ G

n
1 ∶ ∀C

i
1, . . . , C

i
n ∈ Ai,

n

⋀
k=1

σ1(C1
k) = σ2(C2

k) ⟹ σ1(f̃⟨C1
1 , . . . , C

1
n⟩) = σ2(f⟨C2

1 , . . . , C
2
n⟩) , (3.9)

2. F2 ◃ F1 if

∀n ∈ N, ∀f ∈ G
n
2 , ∃f̃ ∈ G1[Z1, . . . , Zn] ∶ ∀Ci1, . . . , Cin ∈ Ai,

n

⋀
k=1

σ1(C1
k) = σ2(C2

k) ⟹ σ1(f̃[C1
1/Z1, . . . , C

1
n/Zn]) = σ2(f⟨C2

1 , . . . , C
2
n⟩) , (3.10)

where all notations are as in Definition 3.1.7.

Proof. We prove the proposition for F2 ◂ F1—the proof for F2 ◃ F1 is similar.

Let us denote A
m
i the set of components C ∈ Ai, such that the maximal chain of applications

of composition operators in the construction of C has the length m. In particular, A
0
i = C.

The proof is by induction on the structural depth of the components involved. The induction
hypothesis is the following: with the restriction of the last quantification to ∀Ci1, . . . , C

i
n ∈ A

m
i ,

(3.9) implies (3.7) and

∀C ∈ A
m
2 ,∃C

′
∈ A

m
1 ∶ σ1(C ′) = σ2(C). (3.11)

The induction step will consist in proving that if this statement holds for all m
′
< m, then it

also holds for m. The base case is m = 0, i.e. the quantification is over atomic components only.

Consider a pair of operators f and f̃ , which satisfy (3.9) with the last quantification being
replaced by ∀Ci1, . . . , C

i
n ∈ C, and two sets of atomic components C

i
1, . . . , C

i
n ∈ C (for i = 1, 2),

such that σ1(C1
k) ≃ σ2(C2

k), for all k ∈ [1, n]. Since, by the assumption of the proposition,
σ1(C2

k) = σ2(C2
k), we have, by applying (3.9) to C

2
1 , . . . , C

2
n only (rather than to C

1
1 , . . . , C

1
n and

C
2
1 , . . . , C

2
n),
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σ1(f̃⟨C2
1 , . . . , C

2
n⟩) = σ2(f⟨C2

1 , . . . , C
2
n⟩).

Since σ1(C1
k) ≃ σ2(C2

k) = σ1(C2
k), by compositionality of F1, we have

σ1(f̃⟨C1
1 , . . . , C

1
n⟩) ≃ σ1(f̃⟨C2

1 , . . . , C
2
n⟩)

and, combining the two,

σ1(f̃⟨C1
1 , . . . , C

1
n⟩) ≃ σ2(f⟨C2

1 , . . . , C
2
n⟩).

Notice that, for m = 0, (3.11) holds trivially by the assumption of the proposition, taking C
′
= C.

Let us now prove the induction step. First of all, consider a component C ∈ A
m
2 . Since m > 0,

we have C = f⟨C1, . . . , Cl⟩, for some f ∈ G2 and C1, . . . , Cl ∈ A
m−1
2 . Hence, by the induction

hypothesis, there exist C
′
1, . . . , C

′
l ∈ A

m−1
1 , such that σ1(C ′k) = σ2(Ck), for all k ∈ [1, l]. By

(3.9), there exists f̃ ∈ G1, such that σ1(f̃⟨C ′1, . . . , C ′l⟩) = σ2(f⟨C1, . . . , Cl⟩) = σ2(C). Denoting

C
′
= f̃⟨C ′1, . . . , C ′l⟩ ∈ A

m
1 , we obtain the proof of the induction step for (3.11).

Consider now a pair of operators f and f̃ , which satisfy (3.9) with the last quantification
replaced by ∀Ci1, . . . , C

i
n ∈ A

m
i . Consider, furthermore, two sets of components C

i
1, . . . , C

i
n ∈

A
m
i , such that σ1(C1

k) ≃ σ2(C2
k), for all k ∈ [1, n]. By (3.11) (as proven above), there exist

C
2
1

′
, . . . , C

2
n

′
∈ A

m
1 , such that σ1(C2

k

′) = σ2(C2
k), for all k ∈ [1, n]. By (3.9), we have

σ1(f̃⟨C2
1

′
, . . . , C

2
n

′⟩) = σ2(f⟨C2
1 , . . . , C

2
n⟩).

Since σ1(C1
k) ≃ σ2(C2

k) = σ1(C2
k

′), by compositionality of F1, we have

σ1(f̃⟨C1
1 , . . . , C

1
n⟩) ≃ σ1(f̃⟨C2

1

′
, . . . , C

2
n

′⟩)

and, combining the two,

σ1(f̃⟨C1
1 , . . . , C

1
n⟩) ≃ σ2(f⟨C2

1 , . . . , C
2
n⟩),

which proves the induction step for (3.7) and thereby concludes the proof of the proposition.

All the frameworks mentioned in this chapter have structural semantics and follow SOS for-
mats that preserve bisimilarity. Since we will consider a bisimilarity-based equivalence relation on
the behaviour type, all these frameworks are compositional by Proposition 3.1.5. Furthermore,
all these frameworks have the same set of atomic components and, up to a canonical extension
(see Section 3.3), the same semantic domain. Hence, they satisfy all the assumptions of Theo-
rem 3.1.15, which means that we can prove the positive results about their relative expressiveness
by studying the defining mappings of the matching composition operators and showing that their
application preserves the equality of behaviours. Negative results are proven by counterexamples.

3.2 Expressiveness of BIP

In this section, we present key results obtained by studying the expressiveness of the BIP frame-
work and comparing it to some of its variations.

3.2.1 BIP-like SOS

Recall from Chapter 2, Rule (2.1) that, in BIP, the semantics of composition with an interaction
model γ is defined by the SOS rule

a ∈ γ {qi
a∩Pi
−−−→ q

′
i

»»»»»» i ∈ I} {qi = q′i
»»»»»» i ∉ I}

q1 . . . qn
a
−→γ q

′
1 . . . q

′
n

,
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where I = {i ∈ [1, n] ∣ a ∩ Pi ≠ ∅}. We can “normalise” this rule, transforming it into a set of

rules whereof premises refer only to state predicates of the forms q
a
−→ q

′
and q = q

′
:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

{qi
a∩Pi
−−−→ q

′
i

»»»»»» i ∈ I
a} {qi = q′i

»»»»»» i ∉ I
a}

q1 . . . qn
a
−→γ q

′
1 . . . q

′
n

»»»»»»»»»»»»
a ∈ γ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (3.12)

with the notation I
a def
= {i ∈ [1, n] ∣ a ∩ Pi ≠ ∅}.

The premises of the form q = q
′

are there for notational convenience. The premises of the

form q
a
−→ q

′
, however, are essential for the definition of the composition semantics. They are

called positive because they specify what the components have to be able to do in the current
state in order to enable the corresponding action in the composed system.

1

Trivially, any composition operator that can be defined by a set of rules with positive premises
of this form, can also be specified as a BIP interaction model. In this section, we will focus instead

on composition operators that can be expressed using negative premises of the form q /
a
−→ q

′
, which

specify what the components must not be able to do.

Indeed, every BIP glue operator is a combination of a (possibly trivial) interaction model with
a (possibly trivial) priority model. After some simplifications (see e.g. [BB20]), merging rules of
forms (2.3) and (2.1), the semantics of any given BIP operator can be defined by a set of SOS
rules of the form

⎧⎪⎪⎪⎨⎪⎪⎪⎩

{qi
a∩Pi
−−−→ q

′
i

»»»»»» i ∈ I
a} {qi = q′i

»»»»»» i ∉ I
a} {qj /

b
−→

»»»»»» (j, b) ∈ H}

q1 . . . qn
a
−→ q

′
1 . . . q

′
n

»»»»»»»»»»»»
Φ(a,H)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (3.13)

where, Φ(a,H) is some predicate imposing constraints on a ⊆ P and H ⊆ [1, n] × 2
P

such that

∀(j, b) ∈ H, b ∈ 2
Pj . As above I

a def
= {i ∈ [1, n] ∣ a ∩ Pi ≠ ∅}. For instance, in (3.12), we put

Φ(a,H) def
= a ∈ γ ∧H = ∅.

Notice that several distinct sets H can satisfy Φ(a,H) with the same a, i.e. there can be
several rules in the set (3.13) with the same label in the conclusion.

Notice also that, for each component, there is at most one positive but possibly many negative
premises in the same rule. The reason for that is that all positive premises must contribute to
the transition in the conclusion of the rule and there is at most one transition that any given
component can take. There is, of course, no such restriction on the negative premises.

Below we call the format (3.13) BIP-like SOS.

3.2.2 The problem of flattening

Before proceeding to the results about the expressiveness of BIP, let me first present an example
explaining that there is an object to study in the first place.

Recall (Section 2.1.1) that application of a priority model does not introduce deadlocks.

Example 3.2.1 ([BB15]). Consider the compound component f⟨g⟨C1, C2⟩, C3⟩ (Figure 3.1a),
with the glue operator g defined by the interaction model γ1 = {p, q, r, s} and priority model
π1 = {p ≺ r}; f defined by the interaction model γ2 = {p, q, s, rt} and the empty priority model.
The LTS of the compound behaviour is shown in Figure 3.1b with the transitions, suppressed as
the result of applying priority in g, shown as dashed arrows. Composing the rules corresponding

1
Technically speaking, this statement is not precise: these premises are called positive because they refer to

the positive form of the predicate −→ and not to its negation /−→. However, in our context, this definition appears
to be tautological and not really useful.
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Figure 3.1: BIP component that cannot be flattened (Example 3.2.1)
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to these operators, we obtain the four rules

q1
p
−→ q

′
1 q2 /

r
−→

q1q2q3
p
−→ q

′
1q2q3

,
q1

q
−→ q

′
1

q1q2q3
q
−→ q

′
1q2q3

,
q2

s
−→ q

′
2

q1q2q3
s
−→ q1q

′
2q3

,
q2

r
−→ q

′
2 q3

t
−→ q

′
3

q1q2q3
rt
−→ q1q

′
2q
′
3

.

(3.14)

Assume that an interaction model γ and a priority model π are such that πγ⟨C1, C2, C3⟩ is

equivalent to f⟨g⟨C1, C2⟩, C3⟩. By the first rule in (3.14), the transition 14x
p
−→ 24x is possible

in f⟨g⟨C1, C2⟩, C3⟩, for any x ∈ {5, 6}. Hence, p ∈ γ. Clearly, 136 is a deadlock state in f⟨g⟨C1,
C2⟩, C3⟩. Hence, 136 must be a deadlock state in πγ⟨C1, C2, C3⟩ and, by Lemma 2.1.9, also in
γ⟨C1, C2, C3⟩, which is not possible, since the only premise of the rule

q1
p
−→ q

′
1

q1q2q3
p
−→ q

′
1q2q3

,

corresponding to p in the semantics (2.1) of γ, is satisfied for q1 = 1 and q
′
1 = 2. ◇

Example 3.2.1 shows that the classical semantics of BIP does not possess flattening. Moreover,
since the rules defining the semantics of the composition of the operators f and g can, indeed,
be flattened (3.14), classical BIP does not possess strong full expressiveness w.r.t. BIP-like SOS
either. Thus, there is difference in the expressiveness of the classical BIP and the framework
that would allow any composition operator definable using BIP-like SOS. In particular, this
means that the often encountered informal statement: “BIP possesses the expressiveness of the
universal glue” (or its equivalent in slightly different formulations) is false. Indeed, it is based
on an erroneous proposition in our previous work [BS08a, Proposition 4]. The objective of this
expressiveness study was to provide a correction to that erroneous proposition and to characterise
the coordination mechanisms lying on the spectrum between the expressiveness of the classical
BIP and that of BIP-like SOS.

3.2.3 The semantic domain

We will consider component based frameworks of the form (G,C,B,≃, σ), with the same semantic
domain (B,≃) and set of atomic components C.

We take B to be the set of LTSs as defined in Chapter 2 (Definition 2.1.1). The equivalence
of LTS is defined using the notion of bisimulation [Par81].

Definition 3.2.2. Let B1 = (Q1, P1,−→1, q
0
1) and B2 = (Q2, P2,−→2, q

0
2) be two LTS, and let

R ⊆ Q1 ×Q2 be a binary relation.

• R is a simulation if, for all q1Rq2, q1
a
−→1 q

′
1 implies q2

a
−→2 q

′
2 for some q

′
2 ∈ Q2 such that

q
′
1Rq

′
2.

• R is a bisimulation if both R and R
−1

are simulations.

We say that B1 and B2 are bisimilar if there exists a bisimulation relation R relating their
initial states, i.e. such that q

0
1Rq

0
2 .

2

We focus on bisimilarity due to two of its properties that are particularly important in our
context:

2
In previous work, we have mostly refrained from explicitly specifying initial states, implicitely considering that

all states are initial. In such case, this requirement boils down to the bisimulation relation being total on both Q1

and Q2.

39



1. Bisimilar behaviours satisfy exactly the same CTL properties (see e.g. [BK08, Theorem
7.20]).

2. Bisimilarity is a congruence for any composition operator defined by SOS rules in a “rea-
sonable” format [Ver95].

With respect to the second item above, I will not delve into the precise meaning of the word
“reasonable” as I use it here—this is not the term used by Verhoef [Ver95]—but only say that the
key condition is that the SOS format be stratifiable. In the case of BIP-like SOS, this stratifiability
is obtained trivially, since any transition relation can appear in at most one level of a derivation
tree: the conclusion of a rule always refers to a transition relation of a compound component
completely encapsulating all of its sub-components.

Definition 3.2.3. The equivalence relation ≃ ⊆ B×B is defined by putting, for two behaviours
B1 and B2 as in the previous definition, B1 ≃ B2 if P1 = P2 and the two LTS are bisimilar.

As in Chapter 2, we take the atomic components to be those defined directly as LTSs:

C
def
= {(P,B) ∣B = (Q,P,−→, q0)}.

The semantics of atomic components is given by their behaviour: σ(P,B) def
= B.

All the semantic mappings σ will be compositional, i.e. defined by associating to each compo-
sition operator a corresponding defining mapping as discussed in Section 3.1. Thus, we can say
that the component-based frameworks considered in the next section will only differ in their sets
of glue operators G.

3.2.4 From BIP to BIP-like SOS

The example in Section 3.2.2 shows that there is difference in the expressiveness of the classical
BIP and the framework that would allow any composition operator definable using BIP-like SOS.
Let us now discuss the details of the expressiveness spectrum that lies in-between.

We denote by CBIP = (GCBIP,C,B,≃, σ) (Classical BIP) the framework with C, B and ≃
defined as in the previous section, and the set GCBIP comprising all BIP composition operators
as defined in Definition 2.1.7 with their corresponding semantics defined by the rules (2.1) and
(2.3).

Similarly, we will denote by BSOS = (GBSOS,C,B,≃, σ) the framework with GBSOS com-
prising all BIP-like SOS glue operators: the composition operators defined as ((Pi)ni=1,R), where
(Pi)ni=1 are pair-wise disjoint sets of ports and R is a set of BIP-like SOS rules (3.13) inductively
defining its semantics.

Besides CBIP and BSOS, we will define four additional frameworks: RBIP and XBIP will
extend CBIP, while AcBSOS and SiBSOS will restrict BSOS. Figure 3.2 shows the com-
parison of expressiveness among these six frameworks. This expressiveness hierarchy is extended
with additional frameworks in [BB20].

RBIP (Relaxed BIP) extends CBIP by allowing priority models to be arbitrary relations on

sets of ports, i.e. π ⊆ 2
P × 2

P
, without requiring that these be strong partial orders nor limiting

them to interactions provided by the components.
XBIP (Complex BIP) is a further extension of RBIP, which allows sets of interactions—as

opposed to single interactions in CBIP and RBIP—to be used as inhibitors in the priority
model. For instance, in RBIP, we can have the priorities a ≺ b and a ≺ c—meaning that the
interaction a is inhibited whenever at least one of the interactions b and c is enabled—or a ≺ bc—
meaning that a is inhibited whenever the combined interaction bc is enabled. In addition, in
XBIP, we can have a differnt kind of priority, a ≺ {b, c}, meaning that a is inhibited when both
interactions b and c are enabled. Depending on the port partition (Pi)ni=1, this may or may not
be the same as a ≺ bc.
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Figure 3.2: Expressiveness relations among the considered frameworks

Table 3.2: Examples of inhibiting relations

Partition of
ports

SOS rules Inhibiting relation

a ⊆ P1,
b, c ⊆ P2

q1
a
−→ q

′
1 q2 /

b
−→ q2 /

c
−→

q1q2
a
−→ q

′
1q2

π = {(a, {b}), (a, {c})}

a ⊆ P1,
b, c ⊆ P2

q1
a
−→ q

′
1 q2 /

bc
−−→

q1q2
a
−→ q

′
1q2

π = {(a, {bc})}

a ⊆ P1,
b, c ⊆ P2

q1
a
−→ q

′
1 q2 /

b
−→

q1q2
a
−→ q

′
1q2

,
q1

a
−→ q

′
1 q2 /

c
−→

q1q2
a
−→ q

′
1q2

π = {(a, {b, c})}

a ⊆ P1, b ⊆ P2,
c ⊆ P3

q1
a
−→ q

′
1 q2 /

b
−→

q1q2q3
a
−→ q

′
1q2q3

,
q1

a
−→ q

′
1 q3 /

c
−→

q1q2q3
a
−→ q

′
1q2q3

π = {(a, {bc})}

(Notice that the last premise in the fourth example refers to q3 as opposed to q2 in the third example.)

It is relatively straightforward to define the semantics of the priority models in RBIP and
XBIP using BIP-like SOS rules (see [BB20] for details).

In order to determine whether a given set of BIP-like SOS operators can be expressed as
a combination of an interaction and a priority model in one of the CBIP, RBIP and XBIP

frameworks, we have defined a notion of the inhibiting relation π ⊆ 2
P × 2

2
P

[BB20]. Intuitively,
the set π(a) comprises all possible sets of interactions, formed by combining negative premises
from all the rules with conclusion a, which would inhibit a if enabled simultaneously.

Table 3.2 shows four examples of sets of rules with their corresponding inhibiting relations.
In the first example, π(a) = {{b}, {c}} contains two singleton sets comprising interactions b and
c, respectively. In the second and fourth examples, the set π(a) = {{bc}} contains one singleton
set comprising the interaction bc. Finally, in the third example, π(a) = {{b, c}} contains one set
comprising two interactions b and c.

Definition 3.2.4. If, for each a in the domain of π, all sets in π(a) are singleton, we say that
the inhibiting relation π is simple.

In Table 3.2, the first, second and fourth examples have simple inhibiting relations, whereas
that of the third example is not simple.

A simple BIP-like SOS operator is a composition operator defined as ((Pi)ni=1,R), where
(Pi)ni=1 are disjoint sets of ports and R is a set of BIP-like SOS rules (3.13) with a simple
inhibiting relation. SiBSOS (Simple BSOS) is a restriction of BSOS, with GSiBSOS comprising
only simple BIP-like SOS operators.

Since all sets in the codomain of a simple inhibiting relation are singleton, they can be replaced

41



by their elements without loss of information, e.g. replacing (a, {b}) by (a, b). This implies that

a simple inhibiting relation π ⊆ 2
P × 2

2
P

can be equivalently considered as a relation on 2
P

(i.e.

π ⊆ 2
P × 2

P
).

Definition 3.2.5. We say that a simple inhibiting relation is acyclic if it does not have any
cycles when considered as a relation on 2

P
.

An acyclic BIP-like SOS operator is a composition operator defined as ((Pi)ni=1,R), where
(Pi)ni=1 are disjoint sets of ports and R is a set of BIP-like SOS rules (3.13) with a simple and
acyclic inhibiting relation. AcBSOS (Acyclic BSOS) is a restriction of SiBSOS, with GAcBSOS

comprising only acyclic BIP-like SOS operators.

Notice that, for any CBIP operator ((Pi)ni=1, γ, π), the inhibiting relation of the set of BIP-like
SOS rules defining its semantics coincides with π and, therefore, is simple and acyclic. Although
the example in Section 3.2.2 shows that there exist AcBSOS operators that cannot be expressed
as one CBIP operator, we have shown [BB16; BB20] that all AcBSOS operartors can be
expressed as a composition of several CBIP ones. Hence the weakly more expressive relation
CBIP→ AcBSOS in Figure 3.2.

3.3 The offer predicate

The example of Section 3.2.2 shows a composition of two operators that cannot be flattened
within the constraints of the classical BIP framework. The stated reason for this impossibility
result is that, if such a BIP operator were to exist, the corresponding priority model would have
to introduce a deadlock, violating the property proven in Lemma 2.1.9.

Let us now consider that same example from a different perspective: what is it that prevents a
priority model from inhibiting the interaction p? Inspecting the rules (3.14) it is straightforward
to conclude that p should have been inhibited by r but this latter cannot be part of the interaction
model—indeed, it must be synchronised with t to form the interaction rt. In other words,
information that can be used by the priority model comprises only the interactions authorised
by the underlying interaction model. All the information about transitions enabled in sub-
components is lost in the compound component.

3.3.1 Extension of the semantic domain

An alternative approach, consists in extending the definition of the component behaviour to
integrate part of this information about the active transitions of its subcomponents. To this end,
we extend the notion of behaviour with an additional offer predicate [BS11; BB15]. The notable
difference with the approach of the previous section is that information is made available about
the active transitions of the atomic subcomponents situated at the lowest levels of the hierarchy
instead of the one immediately underneath the considered one.

Definition 3.3.1. An extended behaviour is a tuple B = (Q,P,−→, ↑, q0), where (Q,P,−→, q0) is
an LTS and ↑ is an offer predicate on Q × P , such that q↑p holds (the port p ∈ P is offered in
the state q ∈ Q) whenever there is a transition from q containing p, that is holds the following
proposition:

∀q ∈ Q, ∀p ∈ P, (∃a ∈ 2
P
∶ p ∈ a ∧ q

a
−→) ⟹ q↑p. (3.15)

The offer predicate extends to sets of ports: for a ∈ 2
P

, q↑a
def
= ⋀p∈a q↑p. Notice that

q↑∅ ≡ true. We denote q /↑a def
= ¬(q↑a) = ⋁p∈a q /↑p.

Behaviour equivalence from Definition 3.2.3 is extended canonically as follows.
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Definition 3.3.2. Two extended behaviours Bi = (Qi, Pi,−→i, ↑i, q
0
i ), with i = 1, 2, are equiva-

lent—denoted B1 ≃ B2, by abuse of notation—if P1 = P2 and there exists a bisimulation relation
R ⊆ Q1 ×Q2, such that q

0
1Rq

0
2 and, for all (q1, q2) ∈ R and p ∈ P1, holds q1↑1p⇔ q2↑2p.

All six frameworks considered in Section 3.2.4 share the same semantic domain and can be
extended to corresponding frameworks using the semantics domain with the offer predicate. Let
F = (G,C,B,≃, σ) be one of the six frameworks considered in Section 3.2.4. The corresponding
extended version F

′
= (G,C,B

′
,≃

′
, σ

′), has B
′

the set of extended behaviours as in Defini-
tion 3.3.1, ≃

′
the equivalence from Definition 3.3.2 and the semantic mapping σ

′
is defined by

putting σ
′(C) def

= (Q,P,−→, ↑, q0), with (Q,P,−→, q0) = σ(C) and

q↑p
def

⇔ {∃a ∈ 2
P ∶ p ∈ a ∧ q

a
−→, if C ∈ C,

∃i ∈ [1, n] ∶ qi↑p, if C = f⟨C1, . . . , Cn⟩ and q = (q1, . . . , qn).
(3.16)

Notice that, for atomic components C ∈ C, we put q↑p⇔ ∃a ∈ 2
P ∶ p ∈ a ∧ q

a
−→, as opposed

to (3.15) in Definition 3.3.1, where the implication goes only one way. This distinguishes atomic
components from the composite ones. More importantly, the predicate ↑ is defined by the same
rule, for all composition operators.

Note 3.3.3. The above extension is clearly isomorphic w.r.t. component equivalence. In partic-
ular, this implies that it does not affect the expressiveness hierarchy in Figure 3.2.

Example 3.3.4. Consider again the compound component of Example 3.2.1. By redefining the
semantics of priority models in terms of the offer predicate, the rules (3.14) become:

q1
p
−→ q

′
1 q2 /↑r

q1q2q3
p
−→ q

′
1q2q3

,
q1

q
−→ q

′
1

q1q2q3
q
−→ q

′
1q2q3

,
q2

s
−→ q

′
2

q1q2q3
s
−→ q1q

′
2q3

,
q2

r
−→ q

′
2 q3

t
−→ q

′
3

q1q2q3
rt
−→ q1q

′
2q
′
3

,

(3.17)

which, in this modified semantics, represent also the defining mapping of the flat composition
operator obtained by combining the interaction model γ = {p, q, s, rt} with the priority model
π = {p ≺ r}. ◇

3.3.2 Firing-Negative-Activation SOS and Offer BIP

Generalising (3.17), we consider the following SOS format, proposed intially in [BS11]:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{qi
a∩Pi
−−−→ q

′
i ∣ i ∈ Ia} {qi = q′i ∣ i ∉ Ia} {qj /↑b ∣ (j, b) ∈ H}

{qk↑(c ∩ Pk) ∣ k ∈ [1, n]}
q1 . . . qn

a
−→ q

′
1 . . . q

′
n

»»»»»»»»»»»»»»»»»»

Φ(a,H, c)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

, (3.18)

where Φ(a,H, c) is some predicate imposing constraints on a, c ⊆ P and H ∈ [1, n] × 2
P

, such

that, for each (j, b) ∈ H holds b ∈ 2
Pj . As above, I

a def
= {i ∈ [1, n] ∣ a ∩ Pi ≠ ∅}.

Contrary to the BSOS format (3.13), there are three types of premises in (3.18) other than
q = q

′
, respectively called firing, negative and activation premises. Firing and activation premises

are collectively called positive. The key difference with BSOS (3.13) is that the negative premises
are based on the offer predicate. Recall that q↑∅ = true. Furthermore, q↑c1∧q↑c2 = q↑(c1 ∪ c2).
Hence, one activation premise per component is sufficient to define any inference rule.

We denote by FNASOS = (GFNASOS,C,B
′
,≃

′
, σ

′) the framework with GFNASOS compris-
ing all FNASOS glue operators: the composition operators defined as ((Pi)ni=1,R), where (Pi)ni=1
are pair-wise disjoint sets of ports and R is a set of FNASOS rules (3.18). The remaining elements
are C, B

′
, ≃

′
defined as in Section 3.3.1 and σ

′
is defined inductively by R and (3.16).
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Proposition 3.3.5. FNASOS possesses uniform flattening.

Sketch of the proof. The proof follows by taking the classical composition of SOS rules. Notice
that, for any n-ary composition operator, the definition of the offer predicate can also be written
as a set of SOS rules:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

qi↑p

q1 . . . qn↑p

»»»»»»»»»»»»
i ∈ [1, n]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (3.19)

Thus, we only have to notice that this composition trivially preserves the format (3.18).
Indeed, for firing premises, the rules in the same format are substituted directly. For, negative
and activation premises, substituted rules are in format (3.19) and, therefore, negative premises
are substituted by negative premises, activation premises—by activation premises.

Let us now redefine the BIP composition operators in the style of the rule format (3.18). The
interaction models are exactly the same as in the classical BIP (see Section 2.1.1).

An offer priority model on a set of ports P is a relation π ⊆ 2
P × ((2P ∪ {⊥}) × 2

P ).3 Here,

we introduce a fresh symbol ⊥ ∉ P and extend the offer predicate by putting q↑⊥
def
= false. We

write a ≺ (b, c) as a shorthand for (a, (b, c)) ∈ π. The semantics of applying π to a component
with the interface P is defined by the following set of rules:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

q
a
−→ q

′ {q /↑b ∣ a ≺ (b, c)} q↑c

q
a
−→ q

′

»»»»»»»»»»»»
(a, , c) ∈ π

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (3.20)

The symbol ⊥ allows us to add witness premises without any negative ones by putting a ≺ (⊥, c).
Clearly, to add negative premises without any witness ones, it is sufficient to have (a, b,∅) ∈ π.

4

Definition 3.3.6. An n-ary Offer BIP glue operator is a triple ((Pi)ni=1, γ, π), where (Pi)ni=1 are

pair-wise disjoint sets of ports and, denoting P
def
= ⋃n

i=1 Pi, the remaining two elements γ ⊆ 2
P

and π ⊆ 2
P × ((2P ∪ {⊥}) × 2

P ) are, respectively, interaction and offer priority models on P .

We denote by OBIP = (GOBIP,C,B
′
,≃

′
, σ

′) (Offer BIP) the framework with C, B
′

and ≃
′

defined as in Section 3.3.1 and the set GOBIP comprising all Offer BIP glue operators with their
corresponding semantics given by the rules (2.1) and (3.20).

3.3.3 Further expressiveness results

For the sake of comparison, we define two additional frameworks.
WBSOS (Witness BIP-like SOS) extends BIP-like SOS glue operators with positive witness

premises q
c
−→ q

′
that do not contribute to the transition defined by the rule, i.e. the enabledness

of a transition in one of the components is tested without the transition being fired. Witness
premises in WBSOS mimick the activation premises in FNASOS without using the offer pred-
icate. As FNASOS, WBSOS possesses uniform flattening [BB20].

ABIP (Activation BIP) is a hybrid framework, which mixes the classical and offer semantics
by relying on the usual transition relation for the inhibiting component of the priority model
(negative premises) while using the offer predicate for that of the activation component (non-
firing positive premises).

The expressiveness relations among all the frameworks defined so far are shown in Figure 3.3
[BB20]. Observe that, contrary to the CBIP ⇒ BSOS, we have strong equivalence OBIP ⇔

3
Contrary to the definition in Section 2.1.1 we do not impose additional restrictions on π. In particular, we

cannot require it to be a partial order, since its domain and co-domain are not the same.
4
We cannot use ∅ instead of ⊥ because q↑∅ = true (see Definition 3.3.1).
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Figure 3.3: Expressiveness relations among all the considered frameworks [BB20]

FNASOS. In particular, a key property that contributes to “collapsing” the expressiveness
hierarchy is that q↑b∧ q↑c = q↑(b ∪ c), which does not hold for the transition relation −→. Thus,
in particular, there is no need to have multiple inhibiting interactions as in XBIP.

One should also notice that, by Propositions 3.1.11–3.1.13, relations shown in Figure 3.3 also
imply OBIP ¾ XBIP, OBIP ¾ RBIP etc. (and similarly for FNASOS).

It is interesting to observe that, when restricted to flat systems, i.e. those consisting of one
operator applied to sets of atomic components, a comparison can be established: every OBIP
operator can be expressed as an ABIP operator and every ABIP operator can be expressed as a
WBSOS one. The restriction to atomic components is crucial here, with the key property being

that the equivalence q↑p⇔ ∃a ∶ q
a
−→ ∧ p ∈ a holds only on atomic components.

Although the classical and offer BIP are not comparable in general, we have presented in
[BB15] a characterisation of the behaviour hierarchy, consisting of three properties, which allows
us to draw some commonalities.

5
The first property, when satisfied by all operand components,

guarantees that the same glue operators (interaction and priority models) that are used with
the classical semantics, can be used with the offer semantics to obtain an equivalent system. In
general, the first property is not preserved by composition. However, it is preserved in hierar-
chical systems, where all priority models are applied after all interaction models. This allows us
to conclude that the behaviour of any such system, where atomic components satisfy the first
property, is not affected by switching from the classical to the offer semantics.

The second and third properties are more technical. If satisfied by all atomic components
in the system, the second property, which is weaker than the first one, guarantees that the
combination of glue operators (interaction and priority models) in the classical semantics can be
adapted to the offer semantics by some additional modifications to the priority model.

The third property—the weakest of the three—guarantees only that, for any system built in
the classical semantics, if the property is satisfied by all atomic components, a glue operator can
be found in the offer semantics that would construct an equivalent system with the same atomic
components.

5
In [BB15], we use a different but equivalent representation for Offer BIP glue operators.
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3.4 Key contributions

A first attempt at the characterisation of the BIP expressiveness was made in [BS08a]. Among
the claims made in that paper, the most consequential—although technically minor—can be
informally summarised by the statement: “BIP possesses the expressiveness of the universal glue”.
With my former PhD student Eduard Baranov, we have provided in [BB15] a counter-example
showing that the classical semantics of BIP does not possess flattening, which implies that it
does not possess strong full expressiveness w.r.t. BIP-like SOS either. Indeed, the above informal
statement is wrong. The fundamental reasons for this absence of strong full expressiveness lie in
the definition of the priority models driven by the imperative that applying a priority model do
not introduce deadlocks in the otherwise deadlock-free system. This property turns out to be one
of the key reasons underlying the expressiveness limitations, since deadlocks can be introduced
by certain operators respecting the BIP-like SOS format.

This has motivated a further study that we have conducted with Eduard Baranov to char-
acterise the expressiveness of BIP and its variants. That work forms the core of the present
chapter. Its initial elements were published in the proceedings of the EXPRESS/SOS 2016 work-
shop [BB16] and followed by a significantly extended journal version [BB20].
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Chapter 4

JavaBIP

This chapter presents JavaBIP—a Java implementation of BIP coordination mechanisms initially
developed in collaboration with Crossing-Tech S.A.—an EPFL Innovation Park company—and
two PhD students [Bli+17] and aimed at general purpose software engineering rather than the
design of embedded systems.

The main challenge comes from the fact that, in the context of general purpose software engi-
neering, one cannot expect developers to take a disciplined essentially top-down approach relying
exclusively on high-level models and semantics-preserving transformations. The key reasons are
1) the complexity of the software stack and, in particular, the broad use of existing libraries and
frameworks and 2) rapid code evolution due, for example, to agile development methodologies.

In such context, instrumenting the code to introduce coordination primitives would increase
the maintenance costs and strongly impede the work of developers by forcing them to take this
instrumentation into account in further evolutions of the software. For this reason, we have
decided to move away from the code generation paradigm, instead relying on Java annotations
and reflection mechanisms to define BIP models associated to Java objects.

Component specifications required by JavaBIP provide an abstract view of the software under
development. Beyond coordination, which is the primary goal of JavaBIP, this abstraction of the
software component behaviour can be used for test generation and run-time monitoring.

In this chapter, I briefly present

• the coordination mechanisms adopted in JavaBIP

• the modular architecture used for the JavaBIP implementation

• the mechanism allowing to add and remove components from the system dynamically

• two applications currently under development illustrating the possibilities for obtaining
high-level models

4.1 Quick tour of JavaBIP

4.1.1 The key notions

A runnable system in JavaBIP consists of two major parts: the engine and several modules, one
for each component to be coordinated (see Figure 4.1). In a nutshell, a JavaBIP component
extends a Java class with a behavioural BIP specification (that we shorten to “BIP spec”) de-
scribing an FSM through Java annotations. Thus, each module is composed of 1) a plain Java
object encompassing the functional code of the component, 2) an FSM providing the correspond-
ing behaviour specification, and 3) a dedicated executor—an object that implements the FSM
semantics by keeping track of its current state and of the available transitions.

Transitions of FSMs defining component behaviour specifications can be of three types: en-
forceable, spontaneous and internal. Enforceable transitions are controlled by the engine. At each
execution cycle, executors inform the engine about enforceable transitions offered by the compo-
nents in their current state. The engine decides which of these should be executed and notifies
the executors of its decision. Spontaneous transitions are used to take into account changes in the
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Figure 4.1: High-level view of the JavaBIP runnable system architecture

environment and, therefore, they are not announced to the engine but rather executed after detec-
tion of events in the environment of the component. Finally, internal transitions allow behaviour
specifications to update their state based on internal information—when enabled, they are exe-
cuted immediately. Spontaneous and internal transitions cannot be used for synchronisation with
other components.

We have developped a generic Executor class that is instantiated in conjunction with each
BIP spec, i.e. a Java class with BIP annotations. It drives the execution of the corresponding
component using Java Reflection API. The Executor is also responsible for communicating with
the JavaBIP engine to enforce the BIP protocol.

The coordination constraints are specified in terms of glue and data wires. The glue consists of
synchronisation constraints encoding the set of possible interactions as described in the previous
chapters. Contrary to the classical BIP, we have decided to use a Boolean encoding based
on first-order interaction logic as the underlying representation of glue. This notation imposes
synchronisation constraints based on component types rather than on component instances, which
allows developers to write glue specifications without knowing the exact number of components
in the system. The classical BIP connectors can be implemented on top of this Boolean encoding
as syntactic sugar. Similarly, data transfer is specified using a lower level mechanism than in
the classical BIP. It is specified as a set of data wires connecting required inputs with provided
outputs of the components. However, the following key principle of BIP holds also for JavaBIP:
data transfer can only happen upon an interaction involving ports through which the corresponding
data variables are accessible.

The behaviour specification of each component along with the glue and data wire specifications
are provided to the engine. The engine orchestrates the overall execution of the system by
1) deciding which component transitions must be executed at each cycle, 2) transferring the
necessary data, and 3) notifying the executors of the selected transitions. The executors then
call the appropriate methods of the BIP Spec objects encompassing the functional code of the
corresponding components.

4.1.2 The Camel Routes example

To illustrate the basic notions presented in Section 4.1.1, let us consider the Camel routes example,
which was our motivating use case during the initial development of JavaBIP. The use case
consists in managing the memory usage by a set of Camel routes [TASF]. Camel routes were

48



Monitor

on

add

[hasCapacity ]

rm
add

rm

Route 3

done

wait

off

on

on

off

end

[!g ]

internal

[g ]

finished

on

finished

off

Route 2

done

wait

off

on

on

off

end

[!g ]

internal

[g ]

finished

on

finished

off

Route 1

done

wait

off

on

on

off

end

[!g ]

internal

[g ]

finished

on

finished

off

Figure 4.2: JavaBIP models of three routes and a monitor

extensively utilized in Connectivity Factory™—the flagship product of our industrial partner
Crossing-Tech S.A. A Camel route connects a number of data sources to transfer data among
them. The data can be fairly large and may require additional processing. Hence, Camel routes
share and compete for memory. Without additional coordination, simultaneous execution of
several Camel routes can lead to OutOfMemory exceptions, even when each route has been tested
and sized appropriately on its own.

The Camel API provides the methods resume and suspend to control the activation of a
route.

1
For simplicity, we assume here that the memory used for data transfer by an active route

is known, whereas the memory used by a suspended route is negligible.

Our goal is to limit the number of routes running simultaneously to ensure that the available
memory is sufficient for the safe functioning of the system. To achieve this, we introduce an
additional monitor component as shown in Figure 4.2 where it is composed with three routes.
The behaviour specifications of the Route and Monitor component types are shown in Figures 4.3
and 4.4, respectively.

Behaviour specification

In Figure 4.2, enforceable transitions are shown with blue arrows, the only visible spontaneous
and internal transitions are shown with a red and a dark grey arrow, respectively. Boolean
expressions in square brackets are the corresponding transition guards.

The Route model, shown in the left-hand side of Figure 4.2, has four states: off, on, wait
and done. Its initial state is off (cf. Figure 4.3 line 7). When the route is at state off, it can
start working by executing the transition on. Respectively, when the route is at state on, it can
suspend its work by executing the transition off . The on and off transitions are both enforceable
(cf. Figure 4.3 lines 3–4) and are associated with the resume() and suspend() methods of the
Camel API (see Figure 4.3 lines 19–27).

Following the call to suspend() associated with the transition off , the route moves to the
state wait. If the route has finished processing the previous data batch, it will be suspended
immediately—modelled by the internal transition to the state done (cf. Figure 4.3 lines 32–33).
Otherwise, the internal transition is disabled. Instead, to move to the state done, the route has
to wait for the processing termination event, associated with the spontaneous transition end (cf.
Figure 4.3 lines 29–30 and line 2). Neither of these two transitions invokes any code—their role
is to update the current state of the BIP Spec FSM. Since their guards—evaluated using the

1
https://camel.apache.org/manual/latest/lifecycle.html
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1 @Ports ({

2 @Port(name = "end", type = PortType.spontaneous),

3 @Port(name = "on", type = PortType.enforceable),

4 @Port(name = "off", type = PortType.enforceable),

5 @Port(name = "finished", type = PortType.enforceable)

6 })

7 @ComponentType(initial = "off", name = "Route")

8 public class Route implements CamelContextAware {

9
10 private CamelContext camelContext;

11 private String routeId;

12 private int deltaMemory = 100; // Dummy value , for the sake of simplicity

13
14 public Route(String routeId , CamelContext camelContext) {

15 this.routeId = routeId;

16 this.camelContext = camelContext;

17 }

18
19 @Transition(name = "on", source = "off", target = "on")

20 public void startRoute () throws Exception {

21 camelContext.resume(routeId );

22 }

23
24 @Transition(name = "off", source = "on", target = "wait")

25 public void stopRoute () throws Exception {

26 camelContext.suspend(routeId );

27 }

28
29 @Transition(name = "end", source = "wait", target = "done", guard = "!g")

30 public void spontaneousEnd () {} // "!g" in the guard above means "not g"

31
32 @Transition(name = "", source = "wait", target = "done", guard = "g")

33 public void internalEnd () {}

34
35 @Transition(name = "finished", source = "done", target = "off")

36 public void finishedTransition () {}

37
38 @Guard(name = "g")

39 public boolean isFinished () {

40 return camelContext.getInflightRepository ().

41 size(camelContext.getRoute(routeId ). getEndpoint ()) == 0;

42 }

43
44 @Data(name = "deltaMemory",

45 accessTypePort = AccessType.allowed , ports = { "on", "finished" })

46 public int deltaMemory () {

47 return deltaMemory;

48 }

49 }

Figure 4.3: Annotations for the Route component type

method isFinished() (Figure 4.3 lines 38–42)—are disjoint, only one of these two transitions
can be enabled at the same time.

Contrary to the internal transition, which is executed immediately when its guard is enabled,
the transition labelled by the spontaneous port end has to wait for the corresponding notification
from the Camel route. In the current version of JavaBIP, the way such notifications are configured
depends on the API provided by the Java class of the coordinated object. In the Camel routes
example, they are configured using the so-called route policies, which allow defining callbacks on
certain events. Since this configuration process is specific to the Camel routes examples and does
not illustrate any generic JavaBIP concepts, I do not show it here.

2

Checking whether the route has finished processing is performed through the guard g used
in the negative form for the spontaneous transition end and in the positive form for the inter-
nal transition from the state wait (cf. Figure 4.2 and the guard attribute of the @Transition

annotation in Figure 4.3 lines 29 and 32).

2
The corresponding code can be consulted on GitHub.
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1 @Ports ({

2 @Port(name = "add", type = PortType.enforceable),

3 @Port(name = "rm", type = PortType.enforceable)

4 })

5 @ComponentType(initial = "on", name = "MemoryMonitor")

6 public class MemoryMonitor {

7
8 final private int memoryLimit;

9 private int currentCapacity = 0;

10
11 public MemoryMonitor(int memoryLimit) {

12 this.memoryLimit = memoryLimit;

13 }

14
15 @Transition(name = "add", source = "on", target = "on", guard = "hasCapacity")

16 public void addRoute(@Data("memoryUsage") Integer deltaMemory) {

17 currentCapacity += deltaMemory;

18 }

19
20 @Transition(name = "rm", source = "on", target = "on")

21 public void removeRoute(@Data(name="memoryUsage") Integer deltaMemory) {

22 currentCapacity -= deltaMemory;

23 }

24
25 @Guard(name = "hasCapacity")

26 public boolean hasCapacity(@Data("memoryUsage") Integer memoryUsage) {

27 return currentCapacity + memoryUsage < memoryLimit;

28 }

29 }

Figure 4.4: Annotations for the Monitor component type

The Monitor model, shown in the right-hand side of Figure 4.2, has only one state and two
enforceable transitions: add (cf. Figure 4.4 lines 15–18) for adding running routes and rm (cf.
Figure 4.4 lines 20–23) for removing them. The add transition has the guard hasCapacity (cf.
Figure 4.4 lines 25–28) that checks whether the available memory limit of the system, defined
through the constructor of the MemoryMonitor class (see Figure 4.4 lines 11–13), is sufficient for
adding more running routes.

Coordination specification

The complete system consists of several routes and one monitor. The Route model is the same for
all routes and the monitor is connected to all of them in the same manner, as shown in Figures 4.2
and 4.5.

The port on of each route component must synchronise with the port add of the monitor.
Thus, if the available memory capacity is not sufficient, the on transition is blocked. Since
the add port of the monitor is connected to the on ports of several different routes by binary
connectors, it must only synchronise with one of them at a time. The fluid interface specification
synchron(...).to(...) (Figure 4.5 line 5) is an example of syntactic sugar that we have
developed on top of the funamental JavaBIP macros. In this example, it specifies a binary
synchronisation on•−−−•add . Similarly, the transition finished of each route must be synchronised
with the transition rm of the monitor (Figure 4.5 line 6).

To decide whether the memory available in the system is sufficient to add another route, the
monitor needs to know how much memory that route is going to use. This value is provided by
the route component through an output variable deltaMemory declared by the @Data annota-
tion (Figure 4.3 lines 44–45). It is computed by the method deltaMemoryOnTransition() and
accessible through ports on and finished (Figure 4.3 lines 44–48).

On the receiving end, the monitor uses an input variable memoryUsage (Figure 4.4 lines 16,
21 and 26) to evaluate the guard hasCapacity and to perform the update on the add and rm
transitions.
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1 BIPGlue bipGlue = new TwoSynchronGlueBuilder () {

2 @Override

3 public void configure () {

4 // Two binary connectors

5 synchron(Route.class , "on").to(MemoryMonitor.class , "add");

6 synchron(Route.class , "finished").to(MemoryMonitor.class , "rm");

7
8 // Singleton connector

9 port(Route.class , "off"). acceptsNothing ();

10 port(Route.class , "off"). requiresNothing ();

11
12 // Data wire

13 data(SwitchableRoute.class , "deltaMemory").to(MemoryMonitor.class , "memoryUsage");

14 }

15 }.build ();

16
17 BIPEngine engine = engineFactory.create("myEngine", bipGlue );

Figure 4.5: Specification of the glue

Input and output ports are connected by directed binary data wires (cf. Figure 4.5 line 13; not
shown in Figure 4.2 for the sake of clarity). Data exchange between the routes and the monitor
happens if the corresponding synchronisation (on•−−−•add or finished•−−−•rm) can be executed,
i.e. at least one of the routes is in the state off or done, respectively.

Notice that the access control functionality implemented in this example, can also be im-
plemented in an actor-based framework, through a synchronisation on a future. Indeed, by
implementing the monitor as an actor capable of serving the request hasCapacity, it is sufficient
to send such a request before resuming a route and store the returned Boolean yes-or-no value in
a future, then immediately consulting this future as part of a branching condition. This would
block the route activation until the reply from the monitor is available, effectively achieving a
synchronisation between the route and the monitor. The advantage of the JavaBIP approach is
that—contrary to the solution using a Boolean future—it does not require the synchronisation
to be hardcoded in the route specification.

Indeed, following the BIP separation of concerns principle, the specification of the synchro-
nisations on•−−−•add and rm•−−−•finished is not part of the behaviour specification presented in
Figures 4.2, 4.3 and 4.4. This ensures the modularity of the system, since, for example, the same
BIP spec of a Camel route can be reused with a completely different monitor. As another exam-
ple, the system shown in Figure 4.6 ensures mutual exclusion among four routes by assembling
them in a token ring instead of using a monitor. (Notice that the “token” can only be injected
into the system once.)

Similarly, if, at a later stage in the project or for the purpose of debugging, the developer
needed to introduce a logger component to keep track of route management operations, this
could be achieved simply by defining the corresponding BIP specification and replacing binary
synchronisations (Figure 4.2) by ternary ones.

4.1.3 Require and Accept macros for glue specification

The primitive mechanism provided in JavaBIP for the specification of glue relies on a macro
notation, similar to the one introduced in [Boz+12b]. Consider a port p of a component type T
labelling one or more transitions of T . The synchronisation constraint associated to all transitions
of T labeled by p is the conjunction of a causal and an acceptance constraint, defined, respectively,
by the Require and the Accept macros. We now describe the meaning of the two macros through
representative examples. The generalization of the above definitions to more complex macros is
straightforward, but cumbersome. Therefore we omit it here.
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Figure 4.6: Four Camel routes arranged in a token ring (The behaviour of Camel route compo-
nents is not shown for emphasis on the structure of the system. It is the same as in Figure 4.2.)

The Require macro is used to specify ports required for synchronisation. Let T
1
, T

2
∈ T be

two component types. The macro

T1.p Require T2.q

means that, to participate in an interaction, each of the ports p of component instances of type
T1 requires synchronisation with precisely one of the ports q of component instances of type T2.
Notice that the cardinality of required component instances is explicit: should two instances of
the same port type be required, this is specified by explicitly putting the required port type twice,
e.g.

T1.p Require T2.q T2.q ,

and so on for higher cardinalities. We call effect what is specified in the left-hand side of
Require (e.g. T1.p) and cause what is specified in the right-hand side (e.g. T2.q T2.q). A
cause consists of a set of OR-causes, where each OR-cause is a set of ports. For p to participate
in an interaction, all the ports belonging to at least one of the OR-causes must synchronise. For
instance,

T1.p Require T2.q T2.q ; T2.r

means that p requires either the synchronisation of two instances of q or one instance of r. Notice
the semicolon that separates the two OR-causes.

The Accept macro defines optional ports for synchronisation, i.e. it defines the boundary of
interactions. This is expressed by explicitly excluding from interactions all the ports that are not
accepted. Let T

1
, T

2
∈ T be two component types. The following:

T1.p Accept T2.q
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Figure 4.7: JavaBIP software architecture.

means that p accepts the synchronisation of instances of q but does not accept instances of any
other port types.

4.2 Implementation

The software architecture of the JavaBIP runnable system is shown in Figure 4.7. As explained
in Section 4.1.1, it consists of two main parts: the modules and the engine, shown, in the top and
bottom parts of the figure, respectively. Each module sends to the engine the specification of its
behaviour. The glue and data-wire specifications are provided to the JavaBIP engine separately.

4.2.1 JavaBIP engine

The implementation of the engine is modular. It consists of a stack of coordinators and the
kernel. The coordinators manage the flow of information between the modules and the kernel.
Coordinators use dedicated encoders to transform the diverse specifications into permanent and
temporary Boolean constraints that are sent to the kernel. The imposed constraints can be of
two types:

• Permanent constraints are received only once at initialization. They encode information
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about the behaviour, glue and data wires of the components. In Figure 4.7, the flow of
permanent constraints is shown with solid arrows labeled “permanent”.

• Temporary constraints are received at each execution cycle. They encode information about
the enabled transitions of the components. In Figure 4.7, the flow of temporary constraints
is shown with dashed arrows labeled “temporary”.

We have developed two coordinators that manage different types of constraints: the Glue
coordinator and the Data coordinator. However, for systems without data transfer, it is sufficient
to use only the Glue coordinator. Other coordinators can be easily added to manage other types
of constraints—the implementation of the coordinator stack renders the architecture extensible.

The kernel solves the combined constraints imposed by the behaviour, glue and data-wire
specifications and passes the solution back to the coordinators. Its implementation relies on
Binary Decision Diagrams (BDDs)

3
[Ake78], which are efficient data structures to store and

manipulate Boolean formulas. Each coordinator interprets the relevant part of the solution and
triggers the corresponding action in the executors, where the actual API function calls to the
controlled Java objects are made. If the kernel cannot find a solution because the combined
constraints are contradictory, a deadlock occurs.

Glue coordinator

The Glue coordinator implements the basic BIP coordination, i.e. it manages the information
about the behaviour, glue and current state of the components. It encompasses three dedicated
encoders (cf. Figure 4.7): the Behaviour encoder, the Glue encoder and the Current State en-
coder. The Boolean constraints encoding component behaviour and glue are permanent, hence
only computed once at initialization. The Boolean constraints encoding the current states of
components are temporary, hence recomputed at each execution cycle.

Each component is registered with the Glue coordinator by providing its behaviour specifica-
tion. Then, the Glue coordinator forwards to the Behaviour encoder the lists of enforceable ports
and states of each registered component. For each enforceable port, a Boolean port variable is
created by the BDD manager. Similarly, for each state, a Boolean state variable is created. The
behaviour constraints are built, using the port and state variables.

The Behaviour encoder computes the behaviour constraint based on the following rules:

1. Each component can be at one state at a time.

2. Each state has the associated set of enforceable ports that can be enabled when the com-
ponent is in that state.

3. A component may skip the cycle without executing any of the transitions and remaining at
the same state.

The Glue encoder receives from the Glue coordinator the glue specification. The glue BDD is
computed using the port variables that have been previously created by the Behaviour encoder.

The Current State encoder is notified each time the Glue Coordinator is informed of a com-
ponent state. In addition to the current state, such notifications include the list of enforceable
ports that are disabled due to evaluation of guards. Indeed, since they cannot be fired at that
cycle, the valuation of the corresponding Boolean variables has to be set to false in any constraint
solution considered by the engine kernel.

The current state BDD of each component is then transferred to the engine kernel, where
the conjunction of all current state BDDs is computed at each execution cycle and is further
conjuncted all permanent constraints.

3
We have used the JavaBDD package, available at http://javabdd.sourceforge.net
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Data coordinator

The Data coordinator is used on top of the Glue coordinator. Using the Data encoder, it encodes
as permanent constraints the information about data wires, which connect input and output data
provided by the components. In particular, at initialization phase, the Data coordinator receives
the data-wire specification of the system (cf. Section 4.1.2). The Data coordinator queries the
registered components to determine the ports that require data (input data) and the ports that
provide data (output data). Then, the Data coordinator passes to the Data encoder the data
wires and the pairs of ports that require and provide data. For each pair of ports, the Data
encoder creates a Boolean data variable. It then computes the permanent constraint based on
the following rules:

1. Data can only be transferred along a data wire connecting two ports if these ports participate
in the interaction.

2. A port that requires input data either for its guard or for the associated method, can only
be fired if such data is, indeed, provided.

In addition, at each execution cycle, the Data coordinator produces temporary constraints im-
posed on component interaction by the guards associated to component inputs. These temporary
constraints block the data transfer along the data wires, where the proposed output data values
do not satisfy the guards associated to the corresponding input data. To this end, each guard
that requires input data is evaluated on all data values proposed along the data wires attached
to the corresponding port.

4.2.2 Experimental evaluation

We show experimental results for four examples: 1) the Publish-Subscribe example illustrating
mainly the use of spontaneous ports (full details in [Bli+17]); 2)–3) two implementations of
the Camel routes example (Section 4.1.2), one with and one without data transfer; and 4) the
Trackers-and-Peers example presented below. The JavaBIP models of these examples are available
as part of the JavaBIP repository

4
on GitHub.

Trackers and Peers example

Trackers and Peers is a toy example with a complex coordination pattern involving multiparty
interaction. It was initially presented in [Boz+12a]. Although it is inspired by a wireless audio
protocol for peer-to-peer communication, it should be noted that this example does not implement
any kind of message passing (see also footnote 7 on page 9). Here, we provide it purely as an
example of a BIP model allowing us to stress-test the JavaBIP engine and evaluate the practical
limitations of the current implementation.

The model has two component types: Tracker and Peer. The protocol allows an arbitrary
number of peers to communicate along an arbitrary number of communication channels. Each
channel is managed by a unique tracker.

The model for two peers and one tracker is shown in Figure 4.8. Peers are allowed to use at
most one channel at a time. Access to channels is subject to the following registration mechanism.
Every peer selects the channel it wants to use and registers through the register port that is
synchronised with the log port of the tracker. During this synchronisation, components are
exchanging data. In particular, the tracker sends its identity to the peer and the peer stores it.
Once registered, peers can either speak to the channel or listen to other registered peers in the
channel.

4
https://github.com/sbliudze/
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Figure 4.8: JavaBIP models of one tracker and two peers

To ensure atomicity of each communication, every tracker ensures that at most one registered
peer is speaking on its corresponding channel. However, several peers can speak on different
channels as part of the same interaction. Thus, every interaction can involve arbitrary subsets of
peers and trackers as long as at most one peer speaks on each channel. The interaction structure
of this example is, therefore, exponentially complex both in the number of peers and in the
number of trackers.

To allow all peers to communicate with all trackers, all corresponding connectors must be
present in the system. Data transfer is used to ensure that peers can interact only with the tracker
they had previously been registered with: for each interaction, trackers propose their identity as
data and peers use the idOK guard to decide with which trackers they can synchronise. Thus, all
transitions of the system are enforceable and in all possible interactions (except when a tracker
is broadcasting without any registered peers) data are exchanged between components.

Evaluation results

To simplify the evaluation and the presentation of the results, we have decided to ensure that the
model sizes of all four examples are parametrised by one integer value, which is the total number
of components of all types. In particular, in the Camel routes examples (with and without data),
all components bar one monitor are routes. In the Trackers-and-Peers example, there are always
four times more peers than trackers.

The experiments were run on an Intel Core i7-2640M CPU at 2.80 GHz x 4 with 8 GB RAM.
Figure 4.9a shows the average execution time of the first 1000 engine cycles for all four examples,
with the number of components ranging from 5 to 75. Figure 4.9b shows the peak memory usage
of the BDD Manager for each of the three examples. Table 4.1 summarizes all results shown in
Figures 4.9a and 4.9b. The two Camel routes examples illustrate the impact of data transfer on
the performance of the engine. The behaviour and interaction models of the two Camel route
examples are equivalent; in the latter, components also exchange data. Although data transfer
causes an increase in the execution time and memory usage of JavaBIP, the overall coordination
overhead remains low. The Publish-Subscribe example uses both enforceable and spontaneous
transitions. Spontaneous transitions are not controlled by the JavaBIP engine which leads to low
coordination overhead as illustrated in Figure 4.9a.

We conclude that the performance of the engine is mostly determined by the complexity of
the glue specification. In the Trackers & Peers case-study, the number of possible interactions
increases exponentially with the number of components: e.g. the number of possible interactions is
in the order of 10

24
for 75 components. Coordinating a system of such complexity with traditional

techniques would be very difficult and error-prone. In JavaBIP, the full glue specification does
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(a) Average engine execution time. (b) BDD Manager peak memory usage.

Figure 4.9: Performance diagrams

Table 4.1: Engine times and BDD Manager peak memory usages

Nb of Publish-Subscribe Routes no data Routes with data Trackers & Peers

com- Time Memory Time Memory Time Memory Time Memory

ponents (ms) (MB) (ms) (MB) (ms) (MB) (ms) (MB)

5 < 1 0.026 < 1 0.010 < 1 0.015 < 1 0.640

10 < 1 0.048 < 1 0.029 < 1 0.075 2.103 2.278

15 < 1 0.084 < 1 0.047 1.147 0.099 4.264 7.584

20 < 1 0.108 < 1 0.079 1.254 0.180 6.002 10.338

25 < 1 0.130 < 1 0.099 1.585 0.220 8.980 15.932

30 < 1 0.161 1.254 0.120 1.614 0.324 12.329 23.670

35 < 1 0.184 1.328 0.169 1.895 0.456 18.643 31.896

40 < 1 0.233 1.459 0.200 2.393 0.560 24.727 43.045

45 < 1 0.251 1.874 0.238 2.731 0.700 31.187 51.598

50 < 1 0.295 2.167 0.280 3.568 0.780 38.943 69.984

55 < 1 0.315 2.346 0.340 3.796 0.840 49.766 87.097

60 < 1 0.338 2.786 0.387 5.093 0.920 63.766 99.983

65 < 1 0.366 3.286 0.410 5.345 1.028 85.327 113.983

70 1.001 0.394 3.749 0.450 5.548 1.105 99.876 131.237

75 1.125 0.437 4.133 0.488 6.970 1.170 113.657 146.476
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not exceed 20 lines of code.

To evaluate the impact of the JavaBIP engine on the system execution time, we have used
Camel Routes to transfer files of different size on the same machine that we used to run the
above tests. We measured that a Camel Route needs 113 ms to transfer a 3 KB file, while for
a 75 MB file a Camel Route needs 890 ms. Notice that this is “an ideal scenario” since only
one Camel route is running at each time. In the case where four Camel Routes are running
simultaneously, to transfer the 75 MB file we need more than 900 ms. We argue that the overhead
induced by the JavaBIP Engine, which is less than 1 ms for four Camel Routes and one Monitor,
is negligible when compared to 900 ms or even to 113 ms. Additionally, the memory usage of the
BDD Manager remains very low—less than 2 MB for 75 components in the Camel Routes with
data example.

4.3 Dynamicity

The JavaBIP version presented in the previous sections is static: to coordinate a system, the full
set of components has to be registered before starting the engine. No components can be added
on-the-fly and, most importantly, if a failure occurrs in a single component, the engine execution
has to stop and the full set of constraints has to be computed anew. On the contrary, modern self-
adaptive systems, ranging from cloud platforms and applications to nanosatellite constellations,
make use of components that can join and leave during system execution. To allow component
instances of known types, i.e. types for which synchronisation constraints exist, to register and
deregister at runtime without any additional input from the developer, we have introduced a
notion of system validity: a system is valid if and only if its set of possible interactions is not
empty. The notion of validity allows the engine to be started and stoped automatically at runtime
by just checking the status of the system. By stopping the engine if the system is invalid, we
eliminate any processing time needed by the engine. To check system validity, we use directed
graphs with edge coloring to model component synchronisation dependencies. Notice that the
introduced notion of validity is only relevant for the engine: in an invalid system, components
can still communicate asynchronously through notification of spontaneous events.

We have extended the interface and implementation of the engine to register, deregister, and
pause a component at runtime. The difference between pausing and deregistering a component
is as follows. If a component deregisters, then the engine clears all the associated data and refer-
ences to this component; other components cannot synchronise with the deregistered component
unless it registers anew. If a component is paused, other components cannot synchronise with
it but the engine keeps all associated data and references to it; the paused component can start
synchronising with other components by simply informing the engine that it is back on track. As
above, a component is paused only from the perspective of the engine: this does not prevent it
from executing internal transitions or interacting with other components through notification of
spontaneous events.

The dynamicity extension was carried out by Valentin Rutz as part of his Master thesis
work [Rut16], co-supervised by Anastasia Mavridou and me. It has not yet been merged into the
JavaBIP main branch.

4.4 Applications

In this section, I briefly present two applications of JavaBIP currently under development, which
both illustrate—from slightly different perspectives—the issue of obtaining high-level models for
software coordination. The first one aims at the design of Cloud Computing systems through the
integration with OCCIware, an existing domain-specific tool. In that context, FSM specifications
for the various components are either know in advance or assumed to be provided by the designers.
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Listing 4.1: Specifying the coordination constraints

1 <annotations name=”Specification”>
2 <annotation id=”switchServer 3”>(Monitor 3.switchServer)−(Switch.switchServer)</annotation>
3 <annotation id=”addDB 3”>(Monitor 3.addDatabase)−(HerokuController.addDatabase)</annotation>
4 <annotation id=”data 3”>data: String currentReq: Monitor 3−HerokuController</annotation>
5 <annotation id=”more than one server”>prop: (>= Monitor 3.RNRequestReady 2)</annotation>
6 ...
7 <annotation id=”MAIN”>switchServer 3, addDB 3, data 3, more than one server</annotation>
8 </annotations>

The key point is, therefore, the specification and generation of the glue constraints.

The second application aims for the safe reconfiguration of software systems, relying on Feature
Models for the specification of valid configurations. Contrary to the first application, no compo-
nent behaviour is provided a priori, whereas the glue constraints are obtained in a straightforward
manner from input feature models.

4.4.1 Exogenous coordination of Cloud Computing systems

In [Le +23], we have proposed a proof-of-concept framework for the design and validation of
Cloud Computing (CC) systems following the exogenous coordination approach. To this end,
we have extended the OCCIware [ZCM17; ZCM19] model-driven cloud resource management
framework with coordination capabilities using JavaBIP. For validation we rely on the iFinder
tool [Ben+09] from the BIP framework. OCCIware allows cloud architects to construct CC mod-
eling frameworks that target specific cloud domains and reduce development time by supporting
the Models@run.time approach [BBF09] and code generation [Par+15]. In particular, OCCIware
provides the means for specifying the behaviour associated with OCCI entities as FSMs. While
FSMs in the OCCIware models can be leveraged to monitor and coordinate the activities of the
corresponding entities, there are currently no such mechanisms available.

Based on the FSM specifications of component kinds, BIP connectors provided as additional
annotations, and on the configuration model that specifies the component instances of each kind,
our tool generates a BIP model for verification using iFinder. The verified design is then used to
generate the Java implementation comprising the usual OCCI resource connector templates with
additional JavaBIP annotations and the glue code for runtime coordination.

For the detailed presentation of OCCIware, we refer the reader to [ZCM19]. Here, we shall only
mention that it relies on the OCCI Core specification, which is a simple resource-oriented model.
Among others it comprises the following concepts: Resource represents any cloud computing
resource, e.g. a virtual machine, a network, an application container, an application. Link is a
relation between two Resource instances, e.g. a computer connected to a network, an application
hosted by a container. Entity is the abstract base class of all resources and links. Kind is the
notion of class/type within OCCI, e.g. Compute, Network, Container, Application. Every entity
has one kind. Action represents an action that can be executed on entities, e.g. start a virtual
machine, stop an application container, restart an application, resize a storage. In addition, the
OCCIware metamodel defines, among others, the concept FSM modelling the behaviour of OCCI
concepts such as kind instances. We use such FSMs to model (Java)BIP component behaviour
without any transformation (OCCI actions correspond to BIP ports). Note that the OCCI design
defines kinds—instances of these kinds are defined separately in the configuration model.

OCCIware annotations To provide the means for specifying the coordination constraints, we
have introduced a dummy resource called “Specification” (see Listing 4.1), which leverages
OCCIware annotations to define: 1) BIP connectors, 2) data wires between components, and
3) properties that must be satisfied at runtime.

BIP connectors are defined using a textual representation based on the Algebra of Connectors
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(see lines 2 and 3). We use parentheses to identify port names (e.g. action switchServer of the
kind Monitor3 in line 2) and dashes to visually separate ports. In our OCCIware extension,
data wire annotations start with the keyword “data:”. They specify the type and the name of
the data item, and the two ends of the wire. The annotation in line 4 declares that the string
value currentReq can be transferred from Monitor3 to HerokuController . Linear properties can
be specified in the prefix notation using the keyword “prop:” (e.g. line 5). These properties
are passed directly to iFinder for verification. Finally, since these specifications are added to
the OCCI design before the configuration model is created, we do not require that they all be
necessarily activated in the final model. The MAIN annotation defines the list of other constraints
to be included in the model (line 7).

Model verification with iFinder The iFinder input consists of 1) a BIP model containing
components and connectors, 2) the list of components with the algorithms for the invariant com-
putations, and 3) the linear properties specified in the OCCI design. The generation of such input
is straightforward. Component and connector types for the BIP model are obtained directly from
the FSMs associated to OCCI kinds and connector specifications. The compound system is ob-
tained by instantiating these types based on the configuration model. For the invariant computa-
tion, we use the iFinder atom-control algorithm for the components and control-reachability

for the composed system [Ben+09]. Our tool then runs iFinder on the generated BIP model to
check the specified linear properties and deadlock freedom. If the result is valid, the design
can be used for implementation. Otherwise, iFinder returns a counter-example that the cloud
architects can use to refine the design.

JavaBIP specifications Generation of the BIP specifications for the components is straight-
forward since the FSMs are provided in the OCCIware model explicitly. The glue specification is
generated in the form of Require/Accept macros by analysing connector specifications recur-
sively to exhibit causality relations between groups of ports in a manner similar to that described
in [BS10].

Figure 4.10 shows a fragment of the OCCIware design of the Monitor-Switch application,
which is part of the case study we use for the validation (see [Le +23] for additional details).
In particular, this application defines four scenarii embodied by different monitors defined in the
OCCI design. Only one of these monitors needs to be included in the actual system. Selecting
a monitor only involves a change in the configuration model and the MAIN specification but no
changes in the code of other components.

Figure 4.11 shows the generated Require macros for the connectors specified in Listing 4.1
(Accept macros are omitted for brevity).

4.4.2 Runtime software variability models

Feature modeling is a widely used approach to capture commonalities and variability across
software systems that are part of a product line or system family [Kan+90; Sch+12]. In particular,
such models specify the configurations of the system that are deemed valid. A key concern in
that context is how to ensure that reconfiguration of a running software system only involves
valid configurations? Of course, this does not only apply to the initial and target configurations:
all intermediate configurations must also be valid according to the variability model.

In [FBD22], we proposed an approach that leverages feature models for acquiring a compact
representation of a set of valid configurations of a system in the form of a JavaBIP model used to
control the software system at run time. The JavaBIP model runs alongside the software system,
intercepts reconfiguration requests and enforces the constraints ensuring by construction that all
intermediate configurations are safe. Since each feature is represented by a dedicated JavaBIP
component, this is achieved without the need of computing the configurations neither at design
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Figure 4.10: Fragment of the OCCIware design of Monitor-Switch Web application

Figure 4.11: Generated glue macros for the connectors specified in Listing 4.1
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Figure 1: A sample feature model

lines since then. There are different feature model lan-
guages. We refer the reader to [69] for a detailed sur-
vey on the different feature model languages. Below,
we review the most well known notations for those
languages.

2.1. Basic feature models
We group as basic feature models those allowing the

following relationships among features:

• Mandatory. A child feature has a mandatory re-
lationships with its parent when the child is in-
cluded in all products in which its parent fea-
ture appears. For instance, every mobile phone
system in our example must provide support for
calls.

• Optional. A child feature has an optional rela-
tionship with its parent when the child can be
optionally included in all products in which its
parent feature appears. In the example, software
for mobile phones may optionally include sup-
port for GPS.

• Alternative. A set of child features have an al-
ternative relationship with their parent when only
one feature of the children can be selected when
its parent feature is part of the product. In the ex-
ample, mobile phones may include support for a
basic, colour or high resolution screen but only
one of them.

• Or. A set of child features have an or-relationship
with their parent when one or more of them can
be included in the products in which its parent
feature appears. In Figure 1, whenever Media is
selected, Camera, MP3 or both can be selected.

Notice that a child feature can only appear in a prod-
uct if its parent feature does. The root feature is a part
of all the products within the software product line. In

addition to the parental relationships between features,
a feature model can also contain cross-tree constraints
between features. These are typically in the form:

• Requires. If a feature A requires a feature B, the
inclusion of A in a product implies the inclusion
of B in such product. Mobile phones including
a camera must include support for a high resolu-
tion screen.

• Excludes. If a feature A excludes a feature B,
both features cannot be part of the same product.
GPS and basic screen are incompatible features.

More complex cross-tree relationships have been
proposed later in the literature [5] allowing constraints
in the form of generic propositional formulas, e.g. “A
and B implies not C”.

2.2. Cardinality–based feature models

Some authors propose extending FODA feature
models with UML-like multiplicities (so-called car-
dinalities) [28, 65]. Their main motivation was driven
by practical applications [26] and “conceptual com-
pleteness”. The new relationships introduced in this
notation are defined as follows:

• Feature cardinality. A feature cardinality is a
sequence of intervals denoted [n..m] with n as
lower bound and m as upper bound. These in-
tervals determine the number of instances of the
feature that can be part of a product. This rela-
tionship may be used as a generalization of the
original mandatory ([1, 1]) and optional ([0, 1])
relationships defined in FODA.

• Group cardinality. A group cardinality is an in-
terval denoted 〈n..m〉, with n as lower bound and
m as upper bound limiting the number of child
features that can be part of a product when its

3

Figure 4.12: A sample feature model (from [BSR10])

nor at run time. Indeed, only the components corresponding to the features actually involved in
the reconfiguration execute transitions.

Feature models Feature models define variability in terms of features and their relationships.
A feature could be a software artefact such as a part of code, a component, or a requirement.
Feature models are usually depicted as tree diagrams whose nodes represent features that can
be selected to build a software product. The tree hierarchy describes a composition relationship
between features while additional constraints refine these relationships.

Every node of a feature model represents a mandatory or an optional feature. Furthermore,
sub-features of a feature can form an OR- or a alternative (XOR) group. In addition to such
structural constraints, feature models define two types of integrity constraints among features:
one feature can excludes or requires another.

A simple example of the mobile phone variability model is shown in Figure 4.12. The features
Calls and Screen are mandatory, whereas GPS and Media are optional. The Screen feature can
be realised through at most one of the three alternative sub-features Basic, Color, and High

Resolution. On the contrary, the Media feature can be realised through any combination of the
sub-features Camera and MP3. The features GPS and Basic are mutually exclusive, whereas the
Camera feature requires the High resolution screen.

The semantics of a feature model is the set of all valid configurations, i.e. sets of features. A
configuration is valid if it satisfies all structural and integrity constraints of the feature model.
A non-valid configuration that can be completed to a valid one by only adding features is called
partial. All other configurations are invalid.

JavaBIP specifications In the JavaBIP specification, one component is generated for each
feature with the corresponding FSM constructed based on the feature type and on its subfeatures.
For example, in an alternative group, only one feature can be selected at a time. Thus, if a
feature is parent of an alternative group (e.g. the Screen feature in Figure 4.12), a corresponding
component is created and all sub-features (Basic, Colour and High resolution in Figure 4.12) are
represented by states in the FSM of that component.

More precisely, as illustrated in Figure 4.13, each sub-feature is represented by a group of
states to reflect the fact that the feature can be requested, selected, requested for deselection and
deselected. Requests for selection or deselection are intercepted and injected into the runtime
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Figure 4.13: Fragment of the JavaBIP specification generated from the feature model in Fig-
ure 4.12 (enforceable, spontaneous and internal transitions are shown by solid black, dashed
green and solid red lines, respectively)
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JavaBIP variability model as notifications of spontaneous events. Thus the corresponding actions
are only executed when the model allows to do so without violating the configuration validity. In
particular, selection and deselection of features can happen out of order w.r.t. the corresponding
requests.

While structural constraints are enforced by the component behaviours as above, parent-
child relations among nodes of the feature model tree and integrity constraints are enforced
by synchronising component behaviours. Synchronisations between parent and corresponding
child nodes ensure that when a child feature is selected, the parent component is, indeed, in
the corresponding state. Integrity constraints impose that two features must (resp. must not) be
simultaneously selected. For a requires constraint, this is achieved by synchronising the transitions
corresponding to the selection and the deselection of the two features. For an excludes constraint,
we synchronise the selection of one feature with self-loop transitions (see Figure 4.13) signalling
that the other feature is not selected (and vice versa). For example, consider the constraint
imposing that the Basic feature excludes the GPS feature (Figure 4.12). The port GPS of
component GPS is synchronized with the port not Basic of component Screen to ensure that
the Basic feature can be selected only if component GPS is not in the state GPS , meaning that
feature GPS is not active.

4.5 Key contributions

Although the journal publication presenting the JavaBIP framework [Bli+17] came out only
in 2017, initial developement was carried out at EPFL, in the context of a project funded by
the Swiss Commission for Technology and Innovation (CTI), in 2012–13 by my former PhD
students Anastasia Mavridou and Alina Zolotukhina with contributions and supervision by me
and Radoslaw Szymanek who was representing our industrial partner.

The dynamicity extension was designed and implemented in a Master project by Valentin Rutz
(EPFL) supervised mostly by my former PhD student Anastasia Mavridou [MRB17; Rut16].

Finally, two PhD students—Salman Farhat and Tr̀ınh Lê Khánh—whom I have recently co-
supervised at the Spirals team of Inria Lille and CRIStAL worked on the applications [Le +23;
Far+23].

In chronological order

[Rut16] Valentin Rutz. “Introducing dynamicity in JavaBIP”. MA thesis. EPFL, School of
Computer and Communication Sciences, June 2016.

[Bli+17] Simon Bliudze, Anastasia Mavridou, Radoslaw Szymanek, and Alina Zolotukhina.
“Exogenous coordination of concurrent software components with JavaBIP”. In:
Software: Practice and Experience 47.11 (Nov. 2017). Pp. 1801–1836. issn: 1097-
024X. doi: 10.1002/spe.2495.

[MRB17] Anastasia Mavridou, Valentin Rutz, and Simon Bliudze. “Coordination of Dynamic
Software Components with JavaBIP”. In: Proceedings of the 14th International Con-
ference Formal Aspects of Component Software (FACS). Vol. 10487. Lecture Notes
in Computer Science. Springer, 2017, pp. 39–57. doi: 10.1007/978-3-319-68034-7 3.

[Far+23] Salman Farhat, Simon Bliudze, Laurence Duchien, and Olga Kouchnarenko. “Toward
Run-time Coordination of Reconfiguration Requests in Cloud Computing Systems”.
In: Proc. of the 25th Int. Conf. on Coordination Models and Languages (COORDI-
NATION). Vol. 13908. LNCS. Springer, June 2023, pp. 271–291. doi: 10.1007/978-
3-031-35361-1 15.
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[Le +23] Trinh Le Khanh, Hoang-Gia Nguyen, Simon Bliudze, and Philippe Merle. “Towards
Exogenous Coordination of Concurrent Cloud Applications”. In: International Jour-
nal of Software Engineering and Knowledge Engineering 0.0 (2023). Online ready,
pp. 1–25. doi: 10.1142/S0218194023500389.
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Chapter 5

Conclusion and future work

In this manuscript, I have presented some of my main contributions towards the overarching goal
of ensuring software correctness.

As a post-doc at Verimag and a scientific collaborator at EPFL, I worked on the theoret-
ical foundations and implementation of tools for the component-based design of correct-by-
construction concurrent software and, specifically, on the BIP compositional framework. This
approach provides a powerful and flexible way for the design of component-based heterogeneous
systems, encompassing at the same time different paradigms of communication (broadcast, ren-
dezvous), operation (synchronous, asynchronous) etc. A programming language implementing
this model and a number of related tools have been developed at Verimag.

This work also underlies the more recent results, where we show that BIP architectures com-
bining components and interaction models (but not priorities) enforcing behavioural properties
can be composed in a constructive manner. We have shown that safety properties are always
preserved and exhibited algorithmically verifiable conditions for the preservation of liveness prop-
erties.

Prior to that work, by-construction correctness provided by the BIP design flow was limited
to the fact that automatically generated executable code was guaranteed to satisfy the properties
established on the corresponding BIP models. The notion of architectures finally allows the by-
construction correctness to be guaranteed already at the level of BIP models. This is achieved by
establishing a direct association between behavioural properties and architectures that enforce
such properties on BIP models. The architecture-based approach was validated by synthesising a
BIP model for the on-board software of the CubETH nanosatellite, from a set of user requirements
and a minimal number of initial atomic components. In the context of a collaborative project
funded by the European Space Agency, we have systematised this approach and developped tools
to support the users in the requirement specification.

With the goal of informing the choice of the coordination mechanisms for subsequent work.
I have conducted a formal study of the expressiveness of the BIP composition operators. De-
viating from the two traditional approaches defined, respectively, by the questions What can be
computed? and How concise is the program?, this work has focused instead on the question of
What systems can be assembled from a given set of components? In collaboration with my former
PhD student Eduard Baranov, we have defined a simple algebraic framework for the comparison
of expressiveness of component-based systems and applied it for a study of the expressiveness of
BIP.

One of the conclusions of that study is that the key imperative underlying the complexity of
the BIP expressiveness hierarchy is that application of priorities should not generate additional
deadlocks in the composed system. Abandoning that imperative allowed us to define an alterna-
tive offer semantics for the BIP priorities operators, which collapses the expressiveness hierarchy
and allows a Boolean encoding of arbitrary BIP glue, including both interactions and priorities.
Furthermore—even though I have decided not to include this result in the present manuscript—in
his PhD thesis, Eduard has shown that, with the offer semantics, the composability of architec-
tures extends to architectures with priorities.

Such a Boolean encoding underlies JavaBIP—a framework for the coordination of Java com-
ponents that implements the BIP coordination mechanisms. JavaBIP was initially developed
in collaboration with another two of my former PhD students, Anastasia Mavridou and Alina

67



Zolotukhina and a company from the EPFL Innovation Park. We have 1) developed a set of
libraries and annotations, which allow the specification of FSM associated to Java classes, and
of the coordination constraints; 2) implemented an extensible engine that coordinates the exe-
cution of concurrent components based on a symbolic representation of coordination constraints
provided by dedicated coordinators. Our implementation comprises the Glue Coordinator, im-
plementing the BIP synchronization mechanism, and the Data Coordinator, allowing components
to exchange data upon synchronizations. Other coordinators can be easily added with no or little
impact on the framework architecture.

I have briefly presented an extension of JavaBIP, which allows starting, stopping, pausing and
resuming components dynamically at run time, and two applications explored recently by Tr̀ınh Lê
Khánh and Salman Farhat—two PhD students whom I have co-supervised—which both illustrate
from slightly different perspectives the issue of obtaining high-level models for the software coor-
dination. The first one aims at the design of Cloud Computing systems through the integration
with OCCIware, an existing domain-specific tool. The second aims for the safe reconfiguration
of software systems, relying on Feature Models for the specification of valid configurations.

Directions of future work

The results presented in this manuscript contribute to the development of the Rigorous System
Design approach, in general, and its implementation in the BIP and JavaBIP frameworks, in
particular. Below, I briefly discuss five key directions that should be explored to further advance
toward these goals.

Unifying modelling framework for self-adaptive systems The RSD approach consists
in applying automatic model transformations, from a high-level specification model, through a
sequence of intermediate transformations potentially using additional input models, to generation
of executable code. Correctness guarantees are obtained based on two key factors: 1) availability
and correctness of high-level models and 2) correctness of transformations. Thus, the corner-
stone of the RSD approach is a unifying modelling framework, incorporating behavioural and
composition models for the system components. Such a framework must be endowed with an
unambiguous operational semantics, necessary to prove the correctness of both high-level models
and of transformations. Given a modelling framework, an implementation of the RSD approach
further relies on methods and tools for the design of correct high-level models and for the gener-
ation of efficient executable code.

The key challenges to address in the design of a unifying modelling framework for self-adaptive
systems are the heterogeneity, reflexivity (the defining property of self-* systems) and dynamic-
ity of the underlying systems arising from changes in both structure (instantiation and removal
of components) and resource availability (e.g. due to failures or reconfigurations). Relegating
the management of these aspects to component functionality is not an option, since that would
dramatically curtail the modularity and maintainability of the system. Instead, they have to be
explicitly taken into account both in theory—by the underlying component models and the cor-
responding composition operators—and in practice—by the coordination engines implementing
their semantics.

Architecture styles Architectures, as presented in Chapter 2, are behaviour transforming
operators applied to sets of components with essentially a fixed interface. On the contrary,
an architecture style is a parametrised architecture that can be applied to an arbitrary set of
components satisfying the minimal assumptions on their interfaces. The characteristic properties
of architecture styles must be parametrised accordingly.

The first challenge w.r.t. architecture styles is to extend property preservation results. We
also need an intuitive formalism that can be used by system designers without additional training
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to specify, understand and apply architecture styles. Automatic synthesis of architecture styles
from specifications expressed using notations commonly used in the industry (e.g. UML sequence
diagrams) is key to ensuring a broad coverage of desired properties.

Currently the architecture-based design flow relies on the assumption that architectures do,
indeed, enforce their stated characteristic properties. Broader adoption will be conditional on
the possibility of providing formal guarantees that this is, indeed, the case. Although the BIP
framework includes efficient verification tools for statically-defined systems, none are available
for parametrised systems with an unbounded number of components. The parametrised model
checking literature contains a wealth of techniques, such as the cut-off results for disjunctive and
conjunctive guards [EK03], network decomposition techniques [Ami+14; Cla+04], techniques
based on well-structured transition systems [Abd+96] and monotonic abstraction [Abd+09]. At
least two different—yet complementary—approaches can be taken to address the validation of
architecture styles with respect to their characteristic properties: 1) classifying the architecture
styles and their characteristic properties, making them amenable to verification by the above
techniques and 2) defining a bottom-up procedure for assembling architecture styles from simple
constituents and inductively proving that the resulting architecture style indeed imposes the
desired characteristic property.

Model extraction Automatic code generation is widely accepted for the design of embedded
systems. This is not the case in the general-purpose software engineering. Automatic code
generation can conflict with the modifications of the underlying components, e.g. the changes
of the software code carried out by the developers as part of software evolution due to both
debugging and development of new versions. To ensure that the models obtained along the chain
of the transformations remain relevant, we need mechanisms for the detection of changes in the
software code and their backward propagation to the high-level models.

While the BIP framework assumes that the behaviour of all atomic components is explicitly
defined in the BIP language, a BIP Spec in JavaBIP represents an abstraction of a pre-existing
process. It serves as a mediator between the JavaBIP coordination engine and the actual com-
ponent process being executed. BIP Specs are assumed to be correct and provided by domain
experts posessing detailed knowledge of the meaningful states of a component. However, domain
experts are not always available to provide BIP Specs. Thus, we need methods and tools for the
automatic generation of BIP Specs by analysing the source code of the corresponding processes.

To obtain BIP Specs one could use existing tools (e.g. [Gha; Paw+15]) for parsing source
code and building Abstract Syntax Trees (ASTs), which would then be explored to identify
branching points (if, switch, loops, try-catch blocks etc.) for building the FSMs. Clearly, a
näıve approach, considering all such points as control states, would result in FSMs that would
be too large to be exploitable by designers. It will, however, provide the ground truth for the
establishing the correctness of further advanced approaches. The key difficulty is to determine
what information is relevant for the purposes of component coordination and abstracting away the
rest in a consistent manner. This issue could be approached from different angles: using external
configuration information, heuristics based on the analysis of class structure (fields tested by a
large number of API methods are more likely to contribute significantly to the component state),
branching conditions etc., or even AI-based tools [Den22]. Appropriate abstraction/refinement
techniques, such as bisimilarity [Par81] with action refinement [GG01], would be necessary to
ensure consistency between the resulting BIP Spec and the detailed FSM obtained by the näıve
approach.

Model-software adequation When a BIP Spec is made available, there is no guarantee that
it is and will remain correct w.r.t. the process executing at run-time: the expert could have made
a mistake or the process design could have evolved since the creation of the BIP Spec. Thus, we
need run-time monitoring tools to test and detect the correspondence between BIP Specs and
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the corresponding processes at run-time.
Both static and dynamic approaches must be developed to ensure that the models and the

executable software stay coherent. Dynamic observation of the actual state of the software can
reveal its inconsistencies with the runtime model (see also [Fal+14]). When such changes are
detected, static analysis of the source code, potentially augemented with corresponding version-
ning histories, can be used to identify the changes to be incorporated into the runtime model
and be propagated accordingly along the chain of the transformations, using techniques simi-
lar to [Par+11; Paw+15]. Alternatively, model learning [Ang87; Moe+16] and repair [ADS18]
techniques must be used, when source code is not available.

Distributed implementation Besides the issue of high-level models discussed above, another
key challenge to be addressed to allow the adoption of the RSD approach in general and (Java)BIP
in particular is the distributed implementation of the BIP Engine protocol. While synchronous
interaction relied upon by both BIP and JavaBIP provides an abstraction that drastically simpli-
fies reasoning about the coordinated system behaviour, it is rarely provided by target platforms
and is hard to implement. Both BIP and JavaBIP implement the coordination semantics us-
ing centralised engines orchestrating the execution of system components, which represents a
significant bottleneck for large systems. As a consequence, developers shy this abstraction in
favour of message-passing communication primitives. These provide scalability but at the cost of
a limit on the expressiveness of the coordination mechanisms, particularly so when multy-party
coordination is required.

In the context of BIP, previous attempts [Bon+10; Qui13] at a distributed implementation
exist but only partially address the problem. Most importantly, they disregard the inherent struc-
ture of BIP connectors considering only sets of flat interactions defined by a list of components
that must all participate in the synchronisation. Eliminating structure from BIP connectors may
lead to exponential explosion of the number of such flat interactions. Thus, we need new proto-
cols that would take into account the interaction structure, if necessary, relaxing the atomicity
of synchronisations.
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