High-order tensor estimation via trains of coupled third-order CP and Tucker decompositions

Abstract : In this work, equivalence relations between a Tensor Train (TT) decomposition and the Canonical Polyadic Decomposition (CPD)/Tucker Decomposition (TD) are investigated. It is shown that a Q-order tensor following a CPD/TD with Q > 3 can be written using the graph-based formalism as a train of Q tensors of order at most 3 following the same decomposition as the initial Q-order tensor. This means that for any practical problem of interest involving the CPD/TD, it exists an equivalent TT-based formulation. This equivalence allows us to overcome the curse of dimensionality when dealing with the big data tensors. In this paper, it is shown that the native difficult optimization problems for CPD/TD of Q-order tensors can be efficiently solved using the TT decomposition according to flexible strategies that involve Q − 2 optimization problems with 3-order tensors. This methodology hence involves a number of free parameters linear with Q, and thus allows to mitigate the exponential growth of parameters for Q-order tensors. Then, by capitalizing on the TT decomposition, we also formulate several robust and fast algorithms to accomplish Joint dImensionality Reduction And Factors rEtrieval (JIRAFE) for the CPD/TD. In particular, based on the TT-SVD algorithm, we show how to exploit the existing coupling between two successive TT-cores in the graph-based formalism. The advantages of the proposed solutions in terms of storage cost, computational complexity and factor estimation accuracy are also discussed.
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal.univ-lille.fr/hal-02354634
Contributeur : Remy Boyer <>
Soumis le : jeudi 7 novembre 2019 - 19:32:40
Dernière modification le : vendredi 13 décembre 2019 - 08:42:04

Fichier

LAA_nov_2019.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02354634, version 1

Citation

Yassine Zniyed, Remy Boyer, André de Almeida, Gérard Favier. High-order tensor estimation via trains of coupled third-order CP and Tucker decompositions. Linear Algebra and Applications, Elsevier - Academic Press, 2019. ⟨hal-02354634⟩

Partager

Métriques

Consultations de la notice

61

Téléchargements de fichiers

80