Effect of work: rest cycle duration on VO2 fluctuations during intermittent exercise
Résumé
The succession of on-transient phases that induce a repetition of metabolic changes is a possible mechanism responsible for the greater response to intermittent training (IT). The objective of this study was to quantify [Formula: see text] fluctuations during intermittent exercise characterised by the same work:rest ratio, but different durations and identify which duration leads to the greatest fluctuations. Ten participants (24 ± 5 years; [Formula: see text]: 42 ± 7 mL·min ·kg ) performed (1) an incremental test to exhaustion to determine peak work rate (WR) and oxygen uptake ([Formula: see text]), (2), and three 1 h intermittent exercises alternating work period at 70% WR with passive recovery period of different 1:1 work:recovery duty cycles (30 s:30 s, 60 s:60 s, 120 s:120 s). [Formula: see text] response analysis revealed differences in the fluctuations across the intermittent conditions despite an identical total energy expenditure. The sum of the cycle's nadir-to-peak [Formula: see text] differences (ΣΔ[Formula: see text]) and the oxygen fluctuation index (OFI) were both greater in the 60 s:60 s condition (ΣΔ[Formula: see text]: +38% ± 13% and +19% ± 18% vs. 120 s:120 s and 30 s:30 s, P < 0.05; OFI: +41% ± 29% and +67% ± 62% vs. 120 s:120 s and 30:30 s, P < 0.05). [Formula: see text] fluctuation analysis was successful in identifying the intermittent condition associated with the greatest disturbances: the 60 s:60 s duty cycle induces more [Formula: see text] fluctuations. The present findings also demonstrate that the selection of the duty cycle duration for submaximal intermittent exercise (70% of WR) prescription is of interest to produce high [Formula: see text] fluctuations.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...