Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Adaptive Algorithms for Tracking Tensor-Train Decomposition of Streaming Tensors

Abstract : Tensor-train (TT) decomposition has been an efficient tool to find low order approximation of large-scale, high-order tensors. Existing TT decomposition algorithms are either of high computational complexity or operating in batch-mode, hence quite inefficient for (near) real-time processing. In this paper, we propose a novel adaptive algorithm for TT decomposition of streaming tensors whose slices are serially acquired over time. By leveraging the alternating minimization framework, our estimator minimizes an exponentially weighted least-squares cost function in an efficient way. The proposed method can yield an estimation accuracy very close to the error bound. Numerical experiments show that the proposed algorithm is capable of adaptive TT decomposition with a competitive performance evaluation on both synthetic and real data.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.univ-lille.fr/hal-02865257
Contributeur : Remy Boyer <>
Soumis le : jeudi 11 juin 2020 - 15:56:23
Dernière modification le : vendredi 21 août 2020 - 17:37:35

Fichier

EUSIPCO(1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02865257, version 1

Citation

Le Thanh, Karim Abed-Meraim, Nguyen Linh-Trung, Remy Boyer. Adaptive Algorithms for Tracking Tensor-Train Decomposition of Streaming Tensors. European Signal Processing Conference (EUSIPCO'20), Jan 2021, Amsterdam, Netherlands. ⟨hal-02865257⟩

Partager

Métriques

Consultations de la notice

176

Téléchargements de fichiers

135