Absolute Absorption Cross-Section of the Ã←X˜ Electronic Transition of the Ethyl Peroxy Radical and Rate Constant of Its Cross Reaction with HO2
Résumé
The absolute absorption cross-section of the ethyl peroxy radical C2H5O2 in the Ã←X˜ electronic transition with the peak wavelength at 7596 cm−1 has been determined by the method of dual wavelengths time resolved continuous wave cavity ring down spectroscopy. C2H5O2 radicals were generated from pulsed 351 nm photolysis of C2H6/Cl2 mixture in presence of 100 Torr O2 at T = 295 K. C2H5O2 radicals were detected on one of the CRDS paths. Two methods have been applied for the determination of the C2H5O2 absorption cross-section: (i) based on Cl-atoms being converted alternatively to either C2H5O2 by adding C2H6 or to hydro peroxy radicals, HO2, by adding CH3OH to the mixture, whereby HO2 was reliably quantified on the second CRDS path in the 2ν1 vibrational overtone at 6638.2 cm−1 (ii) based on the reaction of C2H5O2 with HO2, measured under either excess HO2 or under excess C2H5O2 concentration. Both methods lead to the same peak absorption cross-section for C2H5O2 at 7596 cm−1 of σ = (1.0 ± 0.2) × 10−20 cm2. The rate constant for the cross reaction between of C2H5O2 and HO2 has been measured to be (6.2 ± 1.5) × 10−12 cm3 molecule−1 s−1.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|